
PHYSICAL REVIEW A 108, 012426 (2023)

Accessing the full capabilities of filter functions: Tool for detailed noise
and quantum control susceptibility analysis
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The filter function formalism from quantum control theory is typically used to determine the noise suscep-
tibility of pulse sequences by looking at the overlap between the filter function of the sequence and the noise
power spectral density. Importantly, the square modulus of the filter function is used for this method. In this
work we show that by using the square modulus one neglects valuable information about the system dynamics.
We take advantage of the full filter function by including information about the phase of the perturbation and the
resulting rotation axis. By decomposing the filter function with phase preservation before taking the modulus,
we are able to consider the contributions to x, y, and z rotations separately. Continuously driven systems provide
noise protection in the form of dynamical decoupling by canceling low-frequency noise; however, generating
control pulses synchronously with an arbitrary driving field is not trivial. Using the decomposed filter function
we look at the controllability of a system under arbitrary driving fields, as well as the noise susceptibility, and
also relate the filter function to the geometric formalism.
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I. INTRODUCTION

One of the biggest hurdles in realizing a large-scale quan-
tum computer is mitigating decoherence caused by noise in
the qubit environment. Qubits are notoriously sensitive to
noise originating from the material stack, control instruments,
etc. [1,2]. There are many means to reduce the effect of noise
sources in qubit devices, such as isotropic purification of
the host material [3] and feedback protocols [4–6]; however,
the residual noise still limits qubit performance.

Different qubit modalities are plagued by different noise
frequency distributions. Qubits in the solid state, for example,
are typically dominated by 1/ f noise [2,7]. One method to
tackle this type of noise is through continuous driving. Driven
two-level systems, often referred to as microwave dressed sys-
tems [8–10], are continuously decoupled from environmental
noise. Moreover, by tailoring the amplitude modulation of the
driving field one can achieve higher-order noise protection
[11]. This control strategy is compatible with global control
[10,12], which is promising for scalability. Single-qubit con-
trol is implemented by applying an additional local control
pulse, to dynamically control the individual qubit frequency,
on top of the continuous global microwave drive. However,
working out the required wave form of the local control pulses
to be applied synchronously with the continuous driving field
is not trivial.

Here we develop a generalized method to find the wave
form of the local control pulses required for two-axis control
of a two-level system driven by an arbitrary global driving
field. The global driving field decouples the system from low-
frequency noise, whereas the local control pulses allow for
single-qubit addressability. We find the local control pulses
by decomposing the filter function calculated from Magnus

expansion series and including phase information about the
perturbation term. We show how this is related to the geomet-
ric formalism [13,14] and how the accumulated effect of noise
or control pulses is expressed in a three-dimensional (3D)
space representation. This work expands on similar methods
[15–18] that were previously developed for noise analysis,
with tools for a more general analysis of the control of driven
systems. More specifically, the developed methods are impor-
tant in the context of driven qubit control protocols [10,11,19]
in order to understand the origin of the local control pulses
and the noise-canceling properties of the global driving fields.

This work is applicable to any quantum-information-
processing platform including quantum dots, donors, super-
conducting platforms, ion traps, etc., where the circuit model
is typically used to model quantum computation [20]. We
stress that the directional information extracted in this work
does not necessarily have any physical meaning for filter func-
tion applications other than qubit dynamics. We also note that
the perturbation term in this work can take fixed frequency
and phase values.

II. CALCULATION OF THE COMPLEX
FILTER FUNCTION

A driven qubit subject to a single quasistatic noise source
can be described by the rotating frame Hamiltonian

Hr (t ) = Hdrive(t ) + δH

= �RI(t )σx + �RQ(t )σy + δβσi. (1)

Here, �RI/Q(t ) describes the envelope of arbitrary driving
fields along perpendicular axes, σn (n = x, y, and z) are the
Pauli matrices, and δβ is a small perturbation term. We will

2469-9926/2023/108(1)/012426(8) 012426-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9212-4040
https://orcid.org/0000-0002-3915-8089
https://orcid.org/0000-0002-7209-9180
https://orcid.org/0000-0003-1389-5096
https://orcid.org/0000-0002-8713-150X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012426&domain=pdf&date_stamp=2023-07-24
https://doi.org/10.1103/PhysRevA.108.012426


INGVILD HANSEN et al. PHYSICAL REVIEW A 108, 012426 (2023)

FIG. 1. Common use of filter function for noise susceptibility and improved method for control susceptibility. (a) A CPMG pulse train
produces a filter function (b) which overlaps with the power spectral density results in some noise rotation magnitude χ . (c) For a driven system
the decomposed filter function gives access to the rotation axis and information about the susceptibility as a function of perturbation frequency
and phase (d), which can be used as two-axis control parameters to be applied synchronously with the global field through local control knobs.

from now on assume a driving field along x and a pertur-
bation along z (σi = σz). However, we note that the driving
axis and the perturbation axis can be arbitrarily chosen. By
choosing the perturbation axis along z, it represents detuning.
If we were to choose x instead (σi = σx), it would represent a
perturbation of the driving field amplitude. One can think of
the perturbation as either stochastic noise or an intentionally
applied control pulse with well-defined frequency and phase.
This can be seen in Fig. 1, where the spin in panel (a) has
a noise perturbation and the other two spins in panel (c) have
control perturbations. We start out by treating δβ as noise, and
we come back to control later. By noise we refer to stochastic
processes relevant to the system at hand causing perturbations.
For silicon metal-oxide-semiconductor quantum dots, for ex-
ample, magnetic noise from 29Si isotopes and charge noise are
relevant [2].

It is useful to move into an interaction picture set by the
global driving field in order to isolate the effect of the pertur-
bation in a noise propagator,

H int
z (t ) = δβU †

drive(t )σzUdrive(t )

= δβ
∑

j=x,y,z

R j (t )σ j, (2)

where the rotation matrix is given by [15]

Rj (t ) = Tr[U †
drive(t )σzUdrive(t )σ j]/2. (3)

Here, Udrive is the time evolution operator derived from Hdrive.
By integrating H int

z (t ) over time, we find the accumulated
effect from the perturbation in the frame of the driving field,
described in first-order Magnus expansion by

A1z(t ) = 1

δβ

∫ t

0
H int

z (t )dt . (4)

Here, z represents the perturbation axis. Higher-order terms
of the Magnus expansion can be included for a more accurate
representation of the accumulated effect of the noise. The
perturbation magnitude δβ is, in general, limited to small
values compared to the terms in Hdrive to avoid higher-order
terms. That is, we are restricted to the weak noise (or control)
regime.

Equation (4) equals zero if the global driving field cancels
out the effect of the perturbation to the first order. On the other
hand, if the perturbation introduces rotation around σk after
time T , A1z(T ) is proportional to σk . Equation (4) is used in
the geometric formalism in order to describe cancellation of
quasistatic noise using 3D space curves [13]. Details about
the connection between filter functions and the geometric
formalism are discussed later.

By multiplying the integrand in Eq. (4) with a complex
exponential function, we look at the effect of the perturbation
at different frequencies and phases. That is, we replace the
quasistatic perturbation term δβ with the ac complex term
δβ( f , t ) = ˆδβei(2π f t ). The underline notation here refers to
a phasor and the hat notation refers to the magnitude of
the phasor. Hence, δβ( f , t ) is a complex number contain-
ing frequency and phase information. The interaction picture
Hamiltonian is now a function of time and perturbation
frequency:

H int
z ( f , t ) = δβ( f , t )U †

drive(t )σzUdrive(t ). (5)

This results in a generalized form of the interaction picture
and after integrating over time we get what we call the first-
order filter function of the driving field:

Fz( f , t ) = 1
ˆδβt

∫ t

0
H int

z ( f , τ )dτ . (6)

Here the complex exponential represents a perturbation
with defined frequency f applied for a time t along axis z.
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By using a phasor, we can assess the phase as well as the
frequency sensitivity. Using a symmetry argument, we sub-
tract the total time divided by 2 in the complex exponential.
This effectively sets the phase of the perturbation from the
center of the sequence, which simplifies the phase information
for plotting and presentation purposes. The filter function is
normalized with time so that the magnitude corresponds to
the rotation efficiency, and by increasing the total time of the
driving, the filter bandwidth becomes narrower as expected
from Fourier analysis.

The filter function from Eq. (6) at any given time is a
2 × 2 × N complex matrix, where N is the number of fre-
quency samples. In order to look at the directional and phase
information, this matrix is decomposed by taking the trace
with the product of the Pauli matrices. This results in a 3 × N
complex vector,

Fz( f ) = [Fzx( f ), Fzy( f ), Fzz( f )] · [σx, σy, σz], (7)

where the Pauli components are defined according to

Fz j ( f ) = Tr[Fz( f ) · σ j]. (8)

For the case of single-qubit dynamics, this three-dimensional
vector intuitively represents rotation in a Cartesian coordinate
system. For the two-qubit case, on the other hand, the vector
has 15 dimensions (e.g., F[z⊗I][x⊗y], F[z⊗I][x⊗I]) and arbitrary
phase information for both qubits. Therefore, the directional
information becomes less intuitive. The maximum magnitude
of the rotation around axis j and the corresponding phase of

the perturbation for the single-qubit case can be calculated
according to

|Fz j ( f )| = mag[Fz j ( f )], (9)

φz j ( f ) = arg[Fz j ( f )]. (10)

Here, φz j = 0 corresponds to a cosine wave form centered
around T/2. It is also possible to calculate the rotation mag-
nitude for the arbitrary perturbation phase (not necessarily the
maximum rotation magnitude) by multiplying Eq. (6) by an
arbitrary complex exponential and taking the real part before
taking the trace of the product with the Pauli matrices:

Fz j ( f , φ)=Tr(Re[Fz( f ) × e−iφ] · σ j )=Re[Fz j ( f ) × e−iφ].

(11)

The method described above is a more complete way of
calculating the filter function compared to the conventional
one [21–28], where the squared absolute value of the Fourier
transform of the time-domain filter function or switching
function is used:

F ( f , t ) = |ỹ( f t )|2. (12)

The switching function y(t ) toggles between +1 and −1 for
every applied π pulse between free precession periods. For
noise spectroscopy, the overlap between the power spectral
density (PSD) and the filter function is then used to evaluate
the noise sensitivity [PSD (yellow) and |F | (black line) in
Fig. 1(b)]. This method can also be used to filter out noise

FIG. 2. Examples of the full filter function. Driving field over a time T , filter function magnitude |Fz j | (unitless and dB), and corresponding
perturbation phase φz j as a function of perturbation frequency for (a) a bare system, (b) a dressed system, and (c) a cosine-modulated dressed
system. Multiples of 1/T are shown with vertical dashed lines.
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FIG. 3. Multiperiod filter function. The same examples as in Fig. 2 but with a time corresponding to five periods. (a) Bare system,
(b) dressed system, and (c) cosine-modulated dressed system.

during control [18,29,30]. However, by calculating the filter
function in this simplified way, all directional and phase in-
formation is lost.

This work involves the integration of directional and phase
information, as well as the application of it to construct
single-qubit controls for driven systems. The method devel-
oped here merely extracts the parameters to enable control of
such systems, whereas previous literature focuses on undriven
systems where control is, in principle, trivial, but the aim
is to construct control with certain filtering properties as an
optimization problem. Expanding this method to multiqubit
scenarios is not trivial [31]. One approach is focusing on
the error rates to turn it into a signal-processing problem by
making use of the sparsity of the dynamics [32]. This can
aid in multiqubit control analysis and we leave this for future
work.

We study next a few examples to help interpret the full
information from the complex filter function. In Fig. 2 the
driving fields and filter functions for a bare system, a dressed
system, and a modulated dressed system (according to the
SMART protocol [19]) are shown. For the dressed example
we use an amplitude corresponding to 1-MHz Rabi oscilla-
tions, and we use the same power for the modulated dressed
example. However, any frequency scale is applicable. Here the
three components of the decomposed filter function are shown
together with the square root of the sum of squares. The latter
represents the simplified version [Eq. (12)]. The magnitude of
each component represents the effective rotation around the
respective axis and the phase corresponds to the maximum
magnitude at any frequency.

The bare system in Fig. 2(a) is sensitive to dc noise with
decreasing filter gain for higher frequencies. Low-frequency
noise causes rotation around axis z, which can be seen from
the nonzero value of |Fzz| [blue trace (light gray)]. The bare
system filter function has zero magnitude at multiples of 1/T
(dashed vertical lines), where T is the total duration. These
are the cases where the noise effectively results in an identity
gate (e.g., 2π phase accumulation). The bare system can, in
fact, not be seen as a perturbation problem, since δβσz is the
only term in the Hamiltonian.

The dressed system in Fig. 2(b), on the other hand, is in-
sensitive to dc noise and mainly responds to 1/T as indicated
by the |Fzz| and |Fzy| peaks at 1 MHz. This frequency noise
causes z rotation and/or y rotation depending on the phase of
the noise.

The cosine-modulated dressed case in Fig. 2(c) is also
insensitive to dc noise, but responds to 1/T and its mul-
tiples with decreasing filter gain for increasing frequency.
In this case, the peaks of |Fzy| and |Fzz| are separated
both in frequency and phase, with corresponding frequencies
1/T =∼0.6 MHz and 2/T =∼1.2 MHz and phases −90◦
and 0◦. In Fig. 3, the same driving fields are used but with
five times longer duration, showing narrower bandwidth of the
filter functions.

III. FROM FILTER FUNCTIONS
TO THE GEOMETRIC FORMALISM

The geometric formalism is the particular case of the f = 0
filter function [13]. Here we expand the geometric formalism
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FIG. 4. Noise susceptibility from geometric formalism and filter function. (a) Hahn echo sequence for the π gate on the x axis with
three different noise implementations. [(b)–(d)] The three corresponding geometric space curves. [(e)–(g)] Filter function magnitude |Fz j | and
corresponding perturbation phase φz j at three specific time steps. Here, τ/2 = 0.4 µs and tπ = 0.5 µs.

to include noise with frequency f to relate it to the entire
filter function. Now we can describe the filter function and
the space curve with the same equation [Eq. (6)]. We see in
the next example that the filter function is assigned a space
curve for each frequency and phase.

We use the example of the Hahn echo sequence to explain
the connection between the filter function and the geometric
formalism. We use a π pulse on the x axis with a finite
duration, as illustrated in Fig. 4(a), where three different
noise frequency cases are considered with space curves in
Figs. 4(b)–4(d) and three different times are looked at for the
filter function in Figs. 4(e)–4(g) (τ/2, τ/2 + tπ , and τ + tπ ).
The connection between the filter function components and
the 3D space curve in Fig. 4 is given by |Fzz| = z, |Fzy| = y,
and |Fzx| = x for a given time.

For the dc noise case in Fig. 4(b), the system is under free
precession for t � τ/2. This equates to a space curve moving
from the origin to an increasing z value with time. The filter
function accumulates a corresponding |Fzz| value [blue trace
(light gray) at f = 0 in Fig. 4(e)]. During the π pulse the space
curve makes a semicircle in the zy plane where the radius R
increases with the inverse of the Rabi frequency. This equates
to |Fzy| accumulating in Fig. 4(f) [red (dark gray) trace at
f = 0]. After the final free precession the space curve is back
at z = 0, but now the value of y is 2R. For the filter function,
we see in Fig. 4(g) that |Fzz| is zero, whereas |Fzy| is not [blue
and red trace (light and dark gray) at f = 0, respectively].

For the noise cases with f = 0.54 MHz, the system is
under free precession at t � τ/2, and the space curve moves
towards positive or negative z values depending on the phase

and sign of the noise [Figs. 4(c) and 4(d)]. The |Fzz| filter
function magnitude at f = 0.54 MHz in Fig. 4(d) is lower
than that for the dc case due to lower noise power. During
the π pulse for the case with f = 0.54 MHz and φz = 90◦,
the phase shift caused by the π pulse coincides with the
change of sign of the noise [Fig. 4(c)]. Therefore, the space
curve continues to accumulate the z value and the π -pulse
enhances the noise instead of canceling it out. The case with
f = 0.54 MHz and φz = 180◦, on the other hand, makes an
approximate semicircle and comes back to z = 0, but with
a finite y value. From the filter function data in Fig. 4(g)
this can be seen from the |Fzz| peak at f = 0.54 MHz when
φz = 90◦, and a nonzero |Fzy| values at the same frequency
when φz = 180◦.

IV. CONTROLLABILITY USING DECOMPOSED
FILTER FUNCTIONS

The geometric formalism and the filter function are first
of all used to characterize noise performance. However, both
can also be used to describe control. In fact, the way the filter
function is defined in this work, with well-defined frequency
and phase, is more representative of control signals than of
stochastic noise. To make the filter function more accurately
portray stochastic noise, one can, for example, average it over
different phases. We now treat the perturbation δβ as control
(to be applied synchronously with the global driving field).
The noise propagator in Eq. (2) can then be seen as a con-
trol propagator instead. In other words, coherent noise with
defined frequency and phase is equivalent to control pulses.
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Controllability for an arbitrary global driving field is found
by locating the peaks in the filter function and extracting the
frequency and phase. By applying control pulses with these
parameters synchronously with the global field, the desired ro-
tation occurs. In the geometric formalism, this corresponds to
a space curve ending up somewhere along the axis of rotation.
The rotation magnitude is represented by the filter function
gain and the displacement from the origin of the space curve.

This gate representation, using the filter function and the
geometric formalism, is useful to look at the effective rotation
axis for a given driving field as a function of frequency, phase,
and duration. Hence, the filter function and the geometric
formalism are useful not only for stochastic quasistatic pertur-
bation in the form of noise but also for intentional ac control
perturbations. The gate representation differs from the one in
Ref. [13] where the control pulse is included in Hdrive(t ) and
the gate is represented by the orientation of the final tangent
vector relative to the initial one.

Finally we show an example of how to use the filter func-
tion to find two-axis control of a complicated three-harmonic
global driving field [Fig. 5(a)]. This specific driving field
provides as high as 6th-order noise cancellation (see the
Appendix for more details). The filter function peaks are
located at the 2nd and 5th harmonics (vertical dashed lines
at ∼1.2 MHz and ∼3 MHz) with phase 0◦ (z) and −90◦
(y), respectively. The controls are also represented using the
corresponding space curves in Fig. 5(b). We find that there
are several frequency options that enable two-axis control;
however, for quantum computation we want fast gates in order
to do maximal gate repetitions before decohering and we
therefore choose the most efficient gate implementations with
higher filter gain. Two-axis control of the two dressed systems
in Figs. 3(b) and 3(c) is also found by simply locating the filter
function peaks. These have been demonstrated experimentally
in Refs. [9,19].

V. CONCLUSION

In conclusion we have developed a generalized method to
extract the local control pulses for systems driven by arbitrary
global fields. In designing the global driving field both the
qubit noise and control susceptibility and the power spectral
density must be kept in mind. This allows for controllable ar-
rays of qubits robust against low-frequency noise throughout
the entire computation with control frequencies in strategic
bands. The method is also useful for noise analysis including
directional and phase information.
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FIG. 6. Higher-order Magnus expansion terms. Driving field, space curve, and higher-order Magnus expansion terms for one period of
a driving field consisting of three harmonics with quasistatic noise assumption, showing noise cancellation up to the 6th order. The noise
magnitude equals the driving amplitude.
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APPENDIX: HIGHER-ORDER FILTER FUNCTIONS

In Eq. (6) the filter function is calculated using the first term
of the Magnus expansion series. However, we can truncate
the series at higher order and this will give a more accurate
representation of the noise and control susceptibility of the
system. Higher-order terms of the Magnus expansion series
are calculated with iterative integrals of right-nested commu-
tators [33]. The full Magnus expansion when considering only
the i-axis noise is given by

Ai(t ) = δiA1i(t ) + δ2
i A2i(t ) + δ3

i A3i(t ) + · · · . (A1)

Using the gradient ascent pulse engineering (GRAPE) algo-
rithm, we find that by combining three harmonics for the

driving field we are able to cancel out quasistatic noise up to
the sixth order. The parameters for the driving field are given
here as

H (t ) = �(h1 cos(2π f t ) + h3 cos(6π f t ) + h5 cos(10π f t )),
(A2)

h1 = cos(γ ) cos(δ),

h2 = cos(γ ) sin(δ),

h3 = sin(γ ), (A3)

with � = −2.574 53, γ = −0.490 01, and δ = −1.047 85.
The seven first terms of the three-harmonic drive for qua-
sistatic noise are shown in Fig. 6, where the magnitude of the
higher-order terms are seen to decrease exponentially. This
can be seen from the sum which closely resembles the first
term. The first nonzero term represents the T1 axis of the
driven system, in this case σx.
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[27] Ł. Cywiński, R. M. Lutchyn, C. P. Nave, and S. Das Sarma,
Phys. Rev. B 77, 174509 (2008).

[28] J. M. Martinis, S. Nam, J. Aumentado, K. M.
Lang, and C. Urbina, Phys. Rev. B 67, 094510
(2003).

[29] A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J.
McLoughlin, X. Zhen, T. J. Green, and M. J. Biercuk, Nat. Phys.
10, 825 (2014).

[30] F. K. Malinowski, F. Martins, P. D. Nissen, E. Barnes, Ł.
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