
PHYSICAL REVIEW A 108, 012425 (2023)

Approximate reconstructability of quantum states and noisy quantum secret sharing schemes
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We introduce and analyze approximate quantum secret sharing in a formal cryptographic setting, wherein
a dealer encodes and distributes a quantum secret to players such that authorized structures (sets of subsets
of players) can approximately reconstruct the quantum secret and omnipotent adversarial agents controlling
nonauthorized subsets of players are approximately denied the quantum secret. In particular, viewing the map
encoding the quantum secret shares for players in an authorized structure as a quantum channel, we show that
approximate reconstructability of the quantum secret by these players is possible if and only if the information
leakage, given in terms of a certain entanglement-assisted capacity of the complementary quantum channel to
the players outside the structure and the environment, is small.

DOI: 10.1103/PhysRevA.108.012425

I. INTRODUCTION

Quantum resources enable cryptographic tasks beyond
what is classically possible. For instance, quantum key dis-
tribution [1,2] provides an information-theoretic means for
generating shared classical keys. Secret sharing (SS) is an-
other fundamental cryptographic primitive, wherein a dealer
(D) distributes a secret as shares to a set of players, ℘, such
that any group in the authorized structure � ⊆ 2℘ (sets of
authorized subsets of the players) reconstructs the secret by
combining shares and decoding, whereas groups in the com-
plementary adversarial structure �̄ = 2℘ \ � cannot obtain any
information about the secret. SS has been quantized in two
ways: quantum-safe classical SS [3] and the version we em-
ploy here—quantum secret sharing (QSS) [4] as a special case
of quantum error correction [5]—which can be partially uni-
fied via quantum graph states for qubits [6] and subsequently
for qudits [7]. Quantum secret sharing has applications in
quantum Byzantine agreements [8] and distributed quantum
computation [9], among others.

Ideal (t, n)-threshold QSS features perfect reconstructabil-
ity and perfect secrecy, as elucidated in Fig. 1(a); i.e., any t out
of n players can reconstruct the secret perfectly, and perfect
secrecy means that fewer than t players do not gain any in-
formation about the secret. From this foundation, generalized
QSS can be constructed from threshold QSS by evenly or
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unevenly distributing shares to players [4,10,11]. In (t, n)-
QSS [3,4,10], a dealer (D) employs an encoding map E to en-
code a quantum secret, � ∈ D(H ) (trace-class positive den-
sity operator), into n q-dimensional qudits, i.e., onto Hilbert
space H ⊗n

q (n-fold tensor product of q-dimensional Hilbert
spaces). Each share of one qudit is sent to one of n players,
such that � comprises all groups of at least t players and �̄ is
the complement, namely, all groups of fewer than t players.

Here, we construct a theory of approximate secrecy and re-
constructability by introducing an adversary model, as shown
in Fig. 1(b). In our model, the adversary structure com-
prises omnipotent adversaries who are denied control over
�, but can collaborate with players in �̄. Imperfect SS has
been considered, but strong assumptions on the adversary’s
capability are required [12]. In contrast, the dichotomy be-
tween reconstructability and secrecy is quite general and is
inherently quantum due to the no-cloning principle [13,14],
devoid of any classical analog: classically, the ability to copy
a secret allows an authorized set to reconstruct the secret
exactly, but cannot provide a guarantee that an adversary
who could have intercepted the communication cannot do the
same. Approximate QSS relaxes the requirements of perfect
reconstructability for � and perfect secrecy for �̄. Approxi-
mate quantum secret sharing schemes derived from quantum
Reed-Solomon codes were investigated in [15], but this leaves
open the question of how more general approximate quan-
tum secret sharing schemes perform. The dichotomy between
approximate recoverability and approximate secrecy has also
been investigated [11,16–18], but it remains unclear how these
quantities relate to the maximum rate at which the secret is
transmitted to the adversary.
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FIG. 1. (a) Ideal threshold QSS scheme. The dealer encodes the
secret with channel E and distributes the shares to players 1, 2, 3,
4, and 5. Players in the set A = {3, 4, 5} collaborate in the decoding
using the map RA and reconstruct the secret. We label the players
outside A as Ā = {1, 2}. (b) Adversarial attack on a threshold QSS
scheme. The adversary colludes with players 1 and 2. They apply the
map ZA on the players’ qudits, potentially adding noise to the sys-
tems of any player. Depending on the attack, the legitimate players
can still approximately recover the secret |ψ〉.

II. MAIN RESULT

Consider now a (t, n)-threshold QSS scheme where a
q-dimensional secret is shared with players holding qudits (d-
dimensional quantum systems). In our model, given any A ∈
�, the adversary can attack all qudits after the dealer applies
the encoding map E and prior to reconstruction. The effect
of the adversary’s action amounts to applying an effective
channel ZA. Thus, the quantum channel mapping the quantum
secret to the quantum state on A just before reconstruction is

NA = trĀ ◦ZA ◦ E, (1)

with trĀ denoting the partial trace that removes the players in
Ā = {1, . . . , n} \ A. The |A| authorized players then apply a
recovery channel RA that maps the qudits labeled by A to a
single q-dimensional system.

We then define our (t, n)-threshold QSS scheme to be δ-
reconstructable if

δ = max
A:|A|�t

min
RA

D�(RA ◦ NA, I ), (2)

where the reconstruction channels RA are of the form above,
I denotes the identity channel, and D� denotes the diamond
(or stabilized) norm distance between quantum channels (see
below). Here the maximization is over all authorized groups,
but without loss of generality we can restrict to structures with
|A| = t . The diamond norm distance between two channels E
and F is defined as

D�(E,F ) = max
|ψ〉∈H⊗H′

1
2‖E ⊗ I (|ψ〉〈ψ |)

−F ⊗ I (|ψ〉〈ψ |)‖1, (3)

where ‖ · ‖1 is the Schatten 1-norm and the optimization goes
over all auxiliary Hilbert spaces H′. The use of a stabilized
distance here is crucial as it ensures that arbitrary secrets can
be restored, inclusive of their correlations with a quantum
memory held by a third party.

Alternatively, we can replace D� with a fidelity-based sta-
bilized distance, namely,

F�(E,F ) = min
|ψ〉∈H⊗H′

F [E ⊗ I (|ψ〉〈ψ |),F ⊗ I (|ψ〉〈ψ |)],
(4)

where F is the Uhlmann fidelity, F (ρ, τ ) = ‖√ρ
√

τ‖2
1. We

say that the scheme is ε-reconstructable in fidelity if

ε = 1 − min
A:t�|A|

max
RA

F�(RA ◦ NA, I ). (5)

We can relate the two notions of recoverability using
Fuchs–van de Graaf inequalities, namely, for any quantum
channel F , we show in the Appendix that

D�(F , I ) � 1 − F�(F , I ) � D�(F , I )2. (6)

From this, we can immediately conclude that γ -recoverability
in fidelity implies

√
γ -recoverability in the diamond norm

and, conversely, δ-recoverability in the diamond norm implies
δ-recoverability in fidelity also.

Next, we establish the notion of approximate secrecy. For
this, we need to introduce complementary channels [19] for
the channels NA, which intuitively model how much informa-
tion the adversary retains after the attack. In particular, for a
channel NA, we introduce its Stinespring isometry U and de-
fine N̂A = trA ◦ U , where trA is the partial trace removing the
authorized set. Here, if E has Kraus operators Ei, ZA has Kraus
operators ZA, j , and the partial trace on Ā has Kraus operators
〈kĀ| ⊗ IA, where IA is the identity operator on the authorized
set A, then NA has Kraus operators (〈kĀ| ⊗ IA)ZA, jEi. Then,
define the operator W = ∑

i, j,k |i, j, k〉 ⊗ [(〈kĀ| ⊗ IA)]ZA, jEi.
The map U is then defined as U (ρ) = W ρW †.

With this, we say that a (t, n)-threshold QSS scheme has
ε-secrecy if

ε = 1 − min
A:|A|�t

max
σ

F�(N̂A,VA,σ ), (7)

where VA,σ is a preparation channel that prepares a fixed
density matrix σ . Namely, VA,σ traces out the qudits of the
players in A and prepares a quantum state described by the
density matrix σ , where the output σ does not contain any
information about the input state, i.e., the input state is com-
pletely hidden. Hence, when N̂A = VA,σ for some σ , we have
ε = 0: a condition for perfect secrecy. The other extreme case
is when N̂A = I, i.e., all the information is leaking through
N̂A. In this case, it can be seen that ε = 1.

Finally, we define the strength C of the adversarial model
for a (t, n)-threshold QSS scheme,

C = max
A:|A|�t

C(N̂A), (8)

where C(N̂A) is the entanglement-assisted classical capacity
of N̂A, which is defined for a channel N with input labeled by
X and output labeled by Y as

C(N ) = max
|ψ〉∈HX ⊗HX

I (X : Y )τ , (9)
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where τ = I ⊗ N (|ψ〉〈ψ |) and I (X : Y )τ is the quantum
mutual information evaluated for the state τ . The mutual
information itself can be expressed in terms of the Umegaki
relative entropy, denoted D(·‖·), namely,

I (X : Y )τ = min
ρY

D(τ‖ρX ⊗ ρY ), (10)

where ρX and ρY are the marginals of τ . Using this, we can
introduce a modified entanglement-assisted capacity, where
I (X : Y )τ is replaced by

Ĩ (X : Y )τ = − max
ρY

ln F (τ, ρX ⊗ ρY ), (11)

which is a variant of the mutual information based on the
sandwiched Rényi relative entropy of order 1/2 [20,21], given
by

D̃α (ρ‖σ ) = 1

α − 1
ln tr

[(
σ

1−α
2α

)α
ρ
(
σ

1−α
2α

)α]α
, (12)

where ρ and σ are quantum states and α �= 1. The
corresponding generalized mutual information is
Ĩα (X : Y )τ = minρY D̃α (τ‖ρX ⊗ ρY ) [22], and Ĩ (X : Y )τ =
Ĩ1/2(X : Y )τ . The quantity Cα (N ) = maxτ Ĩα (X : Y )τ is
a generalized entanglement-assisted capacity because
C(N ) = limα→1 Cα (N ). Next, we define the modified
strength of the adversarial model as C̃ = max|A|�t C1/2(N̂A),
which corresponds to setting α = 1/2. The value of α = 1/2
is chosen to express the generalized mutual information in
terms of fidelity. Since D̃α is monotone nondecreasing in α

[20], we can deduce that C � C̃.
With all this preparation in hand, we can now state our

main result.
Theorem 1. Consider any (t, n) QSS scheme with an adver-

sarial model. The following are equivalent:
(i) The adversarial model has modified strength C̃.
(ii) The scheme has ε-secrecy with ε = 1 − exp(−C̃).
(iii) The secret is ε-reconstructable in terms of fidelity.
An immediate corollary of this, given the relations dis-

cussed above, is that if the adversarial model has strength at
most C, then the secret is δ-recoverable in diamond distance
with δ � √

1 − exp(−C).
Proof of Theorem 1. From Beny-Oreshkov duality [23]

between channels and complementary channels, we have

max
R

F�(R ◦ N ,M) = max
S

F�(N̂ ,S ◦ M̂), (13)

where optimizations are over all quantum channels with
appropriate input and output dimensions. Suppose that our
scheme is ε-reconstructable in fidelity. By applying Beny-
Oreshkov duality, we get that for any A ⊂ {1, . . . , n},

ε = 1 − min
A:|A|�t

max
RA

F�(RA ◦ NA, I )

= 1 − min
A:|A|�t

max
SA

F�(N̂A,SA ◦ Î ). (14)

As Î is the trace channel, SA ◦ Î is, without loss of generality,
a preparation channel VA,σ which prepares a state σ . Since
this applies for all A such that |A| � t , it follows that the QSS
scheme also has ε-secrecy.

The crucial step in our proof relates maxσ F�(N̂A,VA,σ ) to
the entanglement-assisted capacity of N̂A using the following
lemma.

Lemma 1. For any A ⊂ {1, . . . , n},
max

σ
F�(N̂A,VA,σ ) = e−C̃A , (15)

where C̃A = C1/2(N̂A).
In essence, Lemma 1 connects the worst-case entanglement

fidelity with a variant of the entanglement-assisted capacity
that arises from generalized sandwiched Rényi divergences.

The first step in proving Lemma 1 is to show that

F�(N̂A,VA,σ ) = min
ρ

q(ρ, σ )2, (16)

where

q(ρ, σ ) = F [(
√

ρ ⊗ I )J (
√

ρ ⊗ I ), ρ ⊗ σ ]1/2. (17)

Here,

J = (1 ⊗ N̂A)
∑
i, j

|ψi〉|ψi〉〈ψ j |〈ψ j | (18)

is the Choi-Jamiolkowski matrix [24,25] of the channel
N̂A, and I denotes an identity matrix. To show (16), we
initially write the spectral decomposition of any density
matrix ρ as ρ = ∑

i λi|ψi〉〈ψi|, where |ψi〉 denotes an or-
thonormal basis. Since λi are non-negative, we can write√

ρ = ∑
i

√
λi|ψi〉〈ψi|. Next, the purification of � is |ψ�〉 =∑

i

√
λi|ψi〉|ψi〉. If we trace out either the first or second part

of the system of the purified state |ψ�〉, we will reconstruct the
state ρ. Using this notation, note that when N̂A takes as input
the state ρ, we have

τ = (1 ⊗ N̂A)(|ψ�〉〈ψ�|)
=

∑
i, j

√
λi

√
λ j (1 ⊗ N̂A)(|ψi〉|ψi〉〈ψ j |〈ψ j |)

= (
√

ρ ⊗ I )(1 ⊗ N̂A)(
∑
i, j

|ψi〉|ψi〉〈ψ j |〈ψ j |)(√ρ ⊗ I )

= (
√

ρ ⊗ I )J (
√

ρ ⊗ I ). (19)

Hence we can see that

F�(N̂A,VA,σ )

= F [(1 ⊗ N̂A)(|ψ�〉 〈ψ�|), ρ ⊗ σ ]

= F [(
√

ρ ⊗ I )J (
√

ρ ⊗ I ), ρ ⊗ σ ]

= [tr
√

(
√

ρ ⊗ √
σ )(

√
ρ ⊗ I )J (

√
ρ ⊗ I )(

√
ρ ⊗ √

σ )]2

= [tr
√

(ρ ⊗ √
σ )J (ρ ⊗ √

σ )]2. (20)

Using the definition of the fidelity, we note that

q(ρ, σ ) = tr
√

(ρ ⊗ σ 1/2 )J (ρ ⊗ σ 1/2 ) (21)

= tr
√

J 1/2(ρ2 ⊗ σ )J 1/2 (22)

= ‖J 1/2(ρ ⊗ √
σ )‖1. (23)

Here, in the penultimate equality, we use the fact tr(XJX )1/2 =
tr(J 1/2X 2J 1/2 )1/2 for positive semidefinite X and J . From (20)
and (21), we can establish (16).

The second step in the proof of Lemma 1 is to show that
the function q(ρ, σ ) is convex in the density matrix ρ and
concave in the density matrix σ . Concavity of q(ρ, σ ) in σ
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is immediate from the fact that the expression in (22), ω �→
tr
√

ω, is concave and the linearity of the expression under the
square root in σ . To show convexity in ρ, we simply note that
any norm as in (23) is convex, and the expression inside the
norm is linear in ρ. Since q(ρ, σ ) is convex in ρ and concave
in σ , we can apply the minimax theorem [26] to interchange
the maximization and minimization, in the sense that

max
σ

min
ρ

q(ρ, σ ) = min
ρ

max
σ

q(ρ, σ ). (24)

Third, we use (24) along with the identity (16) to es-
tablish the equivalence between a fidelity and Rényi mutual
information.

Denoting the input and output registers of N̂A as X and Y ,
respectively, we see that

Ĩ (X : Y )τ = min
σ

D̃1/2[(1 ⊗ N̂A)(|ψ�〉 〈ψ�|‖ρ ⊗ σ )]

= min
σ

{− ln F [(1 ⊗ N̂A)(|ψ�〉 〈ψ�|, ρ ⊗ σ )]}
= min

σ
[− ln q(ρ, σ )2]. (25)

Because − ln is a monotone decreasing function, we deduce
that Ĩ (X : Y )τ = − ln[maxσ q(ρ, σ )2]. Applying the defini-
tion of the generalized entanglement-assisted capacity, we
get C̃A = − ln[minρ maxσ q(ρ, σ )2]. Next, the minimax result
(24) implies that

C̃A = − ln[max
σ

min
ρ

q(ρ, σ )2]. (26)

Next, from (16), we can see that maxσ F�(N̂A,VA,σ ) =
maxσ minρ q(ρ, σ )2. Hence,

exp(−C̃A) = max
σ

F�(N̂A,VA,σ ), (27)

and the proof of Lemma 1 follows. Putting Lemma 1 and (14)
together, we complete the proof of Theorem 1. �

III. CONCLUSION, DISCUSSION, AND OPEN QUESTIONS

We have established that the entanglement-assisted capac-
ity of a channel connecting the quantum secret to the quantum
systems of the adversary determines both the approximate
reconstructability and the approximate secrecy of a threshold
QSS scheme. In some sense, our result can be intuitively
understood from the mantra “Quantum information cannot
be learnt without disturbing it.” This mantra can be used to
obtain interpretations of a multitude of topics in quantum the-
ory, such as approximate quantum error correction [27–31],
monogamy of entanglement [32], and the quantum informa-
tion of black-hole evaporation [33]. Particularly for quantum
error correction, the encoding map in a QSS scheme takes
the quantum secret to a quantum error correction code, and
the approximate reconstructability of the secret is precisely
the approximate reconstructability of the code. In this regard,
our theorem implies that if the adversaries trying to learn the
secret have access to a channel with entanglement-assisted
capacity of C, then there exists a decoding operation that re-
constructs the secret up to an error of δ, quantified in terms of
the diamond distance, where δ � √

1 − exp(−C). It remains
an open question as to how different types of capacities other

than the entanglement-assisted capacity influences the theory
of approximate QSS.
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APPENDIX: SUPPLEMENTAL MATERIAL

First we define some notation. Given a Hilbert space H ,
let |H | denote its dimension. We restrict our attention to
finite-dimensional Hilbert spaces. Let M(H ) denote the set
of matrix representations of linear operators on Hilbert space
H . Let D(H ) denote the set of operators in M(H ) that have
unit trace and are positive semidefinite. A quantum channel is
a completely positive and trace-preserving map from M(H )
to M(K ), where H and K are Hilbert spaces. We use the
shorthand (N CPT) to indicate that N is a quantum channel.

Proof of Eq. (6). Note that for a channel F : M(H ) →
M(H ),

F (F ,1) = min
|ψ〉∈H ⊗H

‖|ψ〉‖=1

F [|ψ〉〈ψ |, (I ⊗ F )(|ψ〉〈ψ |)]. (A1)

Now, for any pure state |ψ〉〈ψ | and mixed state σ , we have

F (|ψ〉〈ψ |, σ ) = 〈ψ |σ |ψ〉. (A2)

From the Fuchs–van de Graaf inequalities, we have(
1 − 1

2‖|ψ〉〈ψ | − σ‖1
)2 � F (|ψ〉〈ψ |, σ ),

F (|ψ〉〈ψ |, σ ) � 1 − 1
4‖|ψ〉〈ψ | − σ‖2

1. (A3)

We thereby deduce that

F (F ,1)

� 1 − max
|ψ〉∈H ⊗H

‖|ψ〉‖=1

1
4‖|ψ〉〈ψ | − (I ⊗ F )(|ψ〉〈ψ |)‖2

1

= 1 − 1
4‖1 − F‖2

�

= 1 − D�(1,F )2 (A4)

and

F (F ,1)

�
[
1 − max

|ψ〉∈H ⊗H
‖|ψ〉‖=1

1
2‖|ψ〉〈ψ | − (I ⊗ F )(|ψ〉〈ψ |)‖1

]2

= (
1 − 1

2‖1 − F‖�
)2

= [1 − D�(1,F )]2. (A5)
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Hence,

[1 − D�(1,F )]2 � F (F ,1) � 1 − D�(1,F )2. (A6)

For a tighter lower bound, note that [[34], Lemma 9.1.1]

1
2‖ψ〉〈ψ | − σ‖1 = max

0�P�I
tr P(|ψ〉〈ψ | − σ ), (A7)

and by picking P = |ψ〉〈ψ |, we get
1
2‖ψ〉〈ψ | − σ‖1 � 1 − 〈ψ |σ |ψ〉 = 1 − F (|ψ〉〈ψ |, σ ),

(A8)

and hence

1 − D�(1,F ) � F (F ,1) � 1 − D�(1,F )2, (A9)

which proves Eq. (6) in the main manuscript. �
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