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Quantum state transfer and input-output theory with time reversal
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Being able to reliably transfer the quantum state from one system to another is crucial to developing quantum
networks. A standard way to accomplish this transfer of information is by making use of an intermediate
information carrier (e.g., a photon) that is emitted by the first system and absorbed by the second. For such
a scenario one can develop an effective description by eliminating the intermediate degrees of freedom, which
yields an effective direct coupling between the two systems. If, however, the spectral properties of the two
systems are different, the photon’s time-frequency shape needs to be appropriately modified before it reaches the
second system. We study here the effective description that results when we thus manipulate the intermediate
photon. We examine a unitary transformation U that time reverses, frequency translates, and stretches the photon
wave packet. We find that the concomitant modifications to the effective description can best be understood in
terms of a change to the state’s time argument ρ(t ) = ρ1(t̃ ) ⊗ ρ2(t ), where t̃ is a fictitious time for the first
system that is stretched and runs backward. We apply this theory to three-level � systems inside optical cavities,
and we numerically illustrate how performing the unitary transformation U results in improved quantum state
transfer.
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I. INTRODUCTION

Quantum processors can be interconnected to make hy-
bridized and distributed quantum devices that are more
powerful than their isolated components [1–3]. Hybridization
allows for the individual system’s strengths to be leveraged
so as to create more versatile, robust, and scalable quantum
information architectures [3–12]. For instance, one could use
fast gate solid-state qubits as processors and long coherence
time trapped-ion qubits for memory storage [5]. Distributed
quantum information processing is essential to quantum net-
working [1,2,13,14]. A crucial part of this interconnection
is achieving quantum state transfer (QST) between different
quantum systems that are spatially separated [15–18]. This
transfer can be achieved using flying qubits, envisaged here
as photons, but phonons could be used for optomechanical
systems [9,17,19], to carry quantum information from one
system to another [1,13,20]. Such direct transfer can be used
to distribute entanglement, e.g., by sending one qubit of a
Bell state to another location, with applications in quantum
networking, quantum key distribution, and other protocols
[1,11].

Connecting different quantum systems with high fidelity
is challenging because they may have different resonance
frequencies and decay rates. In such cases it is well known
that one ought to shift the frequency of the light pulse emitted
by one system so as to interact resonantly with the receiving
system and also stretch or compress the pulse in the time do-
main to match the receiving system’s timescales [18,21–23].
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In addition, one should time reverse the light pulse, simply
because the light pulse that will be optimally absorbed by
a system should be the time reverse of what it would emit
[24–26]. Thus, this challenge can be dealt with by manipulat-
ing the light emitted by one system so that it will be absorbed
by the next.

Analyzing the state transfer process requires a theoretical
description of how light drives quantum systems. The de-
scription of how a coherent state interacts with an atom is
straightforward and well known [27]. In contrast, describing
how a general quantum state of the electromagnetic field
interacts with an atom is surprisingly difficult. Gardiner and
Carmichael developed a strategy that allows one to manage a
wider class of field states, called input-output theory [28–30].
In this theory, one includes a quantum description of the
source of the light and then assumes the light propagates
freely and unidirectionally to a cascaded quantum system.
That photonic degree of freedom can then be eliminated (by
solving the Heisenberg equations for the continuous mode
bath operators) to obtain an effective description where the
source and receiver are directly coupled. The effective Hilbert
space is then typically no longer infinite dimensional and in
fact it is rather small if we can model the systems as ones with
just a few energy levels (which we can if the interaction is
nearly resonant).

Employing this formalism, we consider two quantum sys-
tems, labeled 1 and 2, that are coupled indirectly by the ability
to exchange photons. We assume this coupling is unidirec-
tional, that is, system 1 can produce a photon that travels to
system 2, but no photon travels from system 2 back to system
1. There is no reflection along the quantum channel linking
the systems because we assume that the output field of system
2 is directed down a loss channel consisting of a different

2469-9926/2023/108(1)/012421(12) 012421-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012421&domain=pdf&date_stamp=2023-07-19
https://doi.org/10.1103/PhysRevA.108.012421


KEVIN RANDLES AND S. J. VAN ENK PHYSICAL REVIEW A 108, 012421 (2023)

spatial mode; this could be implemented using a ring cavity
(see Sec. IV) or circulator [14]. This unidirectional character
of the theory is clear in the effective description, in which
there are two types of time evolution: One is by discrete jumps
and the other is continuous time evolution governed by a
Schrödinger-like equation, but with a non-Hermitian effective
Hamiltonian [31–33]. This effective Hamiltonian will contain
a term proportional to σ−

1 ⊗ σ+
2 without the Hermitian con-

jugate term (see Appendix A). Here σ±
j are the creation and

annihilation operators for system j = 1, 2, that is, there is a
term that annihilates an excitation in system 1 and creates an
excitation in system 2, but not vice versa.

In this paper our primary motivation concerns what
changes in the theoretical description if the light does not
simply propagate freely but is manipulated by means of a
unitary transformation U . This extends the seminal theoreti-
cal work of Cirac et al. [13], which describes a method for
achieving ideal QST between identical atoms in cavities using
time-symmetric pulses. The scheme that Ref. [13] proposes,
and likewise the scheme we develop, is reversible, so crucially
the state can be transferred from an atom to the field and
vice versa (field to atom). This reversible mapping has been
experimentally verified [34].

One question we answer is, for the class of unitary trans-
formations U we consider, can we still eliminate the light
from our description to get a simple effective direct coupling
between the two systems? The second question we answer is
more subtle: The fact that the effective Hamiltonian contains
just a term proportional to σ−

1 ⊗ σ+
2 (naively) seems to indi-

cate that the photon emitted by system 1 will be absorbed by
system 2 even without manipulating the photon. However, we
know that this alone does not suffice. In fact, the optimal sort
of wave packet that would be absorbed by system 2 would
have to be the time inverse of the wave packet system 2 would
emit itself. So suppose we apply a unitary transformation that
time reverses the wave packet emitted by system 1. Then, how
can we see from the effective description that system 2 will
absorb the photon more efficiently?

We obtain the answers by slightly changing the standard
interpretation of the equations obtained in the effective de-
scription where the two systems are directly coupled. Doing
that will lead us to define a mathematical object ρ(t ) consist-
ing of two parts. One part is simply the state of system 2 at
time t and the other is the state of a fictitious system 1̃ at a
time t̃ = f (t ) that decreases as a function of t if we apply
a time-reversal transformation. The time evolution of that
mathematical object thus corresponds to system 2 evolving
forward in time in a standard way, yet it is driven by the
backward-evolving fictitious system 1̃. This is similar in spirit
to the theory of the past quantum state [35], which likewise
introduces a mathematical object consisting of one forward-
evolving standard quantum state and a backward-evolving
part. In the latter case the backward-evolving part describes
retrodiction, whereas in our case it results only if we time
reverse the single-photon wave packet.

In Sec. II we rehearse the input-output methods of Gardiner
[29] to model the two systems interacting unidirectionally
via a bosonic bath connecting them. We determine the field
resulting from the systems’ interaction, which is the physical
entity we transform in Sec. III B. In Sec. III we describe and

analyze a scheme for QST using photon manipulation that
could be used for hybrid quantum networking. Modeling the
photon manipulation as a unitary transformation, we show
how to include field transformations in input-output theory.
We analyze how the field is transformed and how equations of
motion (EOMs) for system 2 operators are affected. In Sec. IV
we consider two systems each comprised of a three-level atom
in a cavity, where a resonant two-photon Raman process is
used to couple each atom to its respective cavity. Here we
show that our scheme can be used to achieve ideal QST. We
discuss our results and give some conclusions in Sec. V. This
includes a discussion of the dynamics of the composite state
of systems 1̃ and 2, ρ(t ), where we add a new interpretation
of the state’s time argument.

II. GENERAL SETUP

We assume that each system ( j = 1, 2) encodes the state
of a qubit in a long-lived effective two-level system with
ground state |g j〉 and excited state |e j〉. We suppose that
system 1 starts in an arbitrary superposition cg|g1〉 + ce|e1〉,
which is the state we want to transfer, and that system 2
starts in its ground state |g2〉. Thus, we want to implement the
transformation

[cg|g1〉 + ce|e1〉] ⊗ |g2〉 �−→ |g1〉 ⊗ [cg|g2〉 + ce|e2〉]. (1)

For now we assume that we have a way of inducing absorption
and emission in these two-level systems via laser pulses. To
determine the requisite details of these pulses, one needs to
specify what the underlying systems encoding the qubits are,
which we keep arbitrary for now. In Sec. IV we show, follow-
ing the work of Ref. [13], how this can be done for three-level
atoms in optical cavities, where the atomic ground states are
coupled by a Raman transition, forming our qubits.

Based on the input-output formalism, we model the quan-
tum channel as a quasi-one-dimensional bath, with boson
annihilation operators b(ω), that both systems 1 and 2 are
coupled to. Let the positions of systems 1 and 2 be x1 = 0 and
x2 = cτ > 0, respectively. Based on the formalism developed
in Refs. [29,32], we model the total Hamiltonian as

H = Hsys + HB + Hint, (2)

where Hsys is the sum of the Hamiltonians for the two systems
and

HB =
∫

dω|ω|b†(ω)b(ω) (3)

and

Hint = i
∫

dω{κ1(ω)[σ−
1 b†(ω) − σ+

1 b(ω)]

+ κ2(ω)[σ−
2 b†(ω)e−iωτ − σ+

2 b(ω)eiωτ ]} (4)

are the Hamiltonians for the bath and its interaction with the
two systems (in the rotating wave approximation), respec-
tively (h̄ = 1). Integrals without explicit bounds are taken to
be from −∞ to ∞. For much of our analysis Hsys is left
unspecified and can be interpreted as a general operator on the
two systems (see Sec. IV for a concrete example). We work in
the Heisenberg picture, so the operators σ±

j and b depend on
time. Note this is a quasi-one-dimensional setup in that the
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only propagating degree of freedom is the longitudinal mode
characterized by b(ω) and the other three quantum numbers
(polarization and two transverse spatial modes) are fixed.

We now make the Markov approximation of a flat cou-
pling κ j =

√
γ j/2π within a narrow bandwidth of positive

ω (e.g., the linewidth for optical cavities). This includes set-
ting κ j (ω) = 0 for negative ω, encoding the unidirectional
nature of the coupling [29,32]. (In particular, see Sec. II B
of Ref. [32] for a justification of this approximation and
some discussion of the integration limits.) Then we define the
forward-traveling photon field operator1 as

A+(x, t ) = 1√
2π

∫
dω b(ω, t )eiωx/c. (5)

After solving the Heisenberg EOM for b(ω, t ) with initial
condition at t0 < t , this field can be expressed in terms of the
rightward- and leftward-propagating in fields

br
in(t ) = 1√

2π

∫ ∞

0
dω e−iω(t−t0 )b(ω, t0) (6)

and

bl
in(t ) = 1√

2π

∫ ∞

0
dω e−iω(t−t0 )b(−ω, t0), (7)

respectively.2 Specifically, one finds

A+(x, t ) = br
in(t−) + bl

in(t+) + √
γ1u(x)σ−

1 (t−)

+ √
γ2u(x − cτ )σ−

2 (t− + τ ), (8)

where t± = t ± x/c and u(x) is the Heaviside step function
with u(0) = 1/2. Using a final condition at t1 > t , one finds a
similar expression for A+(x, t ) in terms of the out fields br,l

out

defined similarly to br,l
in with t0 → t1. Equating these expres-

sions for A+(x, t ) and using the independence of x and t then
implies

bl
out(t ) − bl

in(t ) = 0 (9)

and

br
out(t ) − br

in(t ) = √
γ1σ

−
1 (t ) + √

γ2σ
−
2 (t + τ ). (10)

Physically, Eq. (9) says that the leftward-propagating free
fields are not changed and Eq. (10) says that the rightward-
propagating free fields are changed by the radiation from the
two systems (as is consistent with the unidirectional cou-
pling).

As the leftward-propagating free field is unchanged, we fo-
cus on the rightward-propagating field and abbreviate bin,out ≡
br

in,out. Then with

c1(t ) := γ1

2
σ−

1 (t ) + √
γ1bin(t ) (11)

1We take this name for the field operator A+ from Ref. [26]. Here
A+ is a vector potential scaled such that A+(A+)† is a photon flux and
under the Markov approximation [32] it is proportional to the electric
field (which is what Ref. [29] refers to it as).

2Note that btotal
in = br

in + bl
in ∝ ∫ ∞

−∞ dω e−i|ω|(t−t0 )b(ω, t0 ), where the
|ω| comes from Eq. (3) [29].

and

c2(t ) := γ2

2
σ−

2 (t ) + √
γ1γ2σ

−
1 (t − τ ) + √

γ2bin(t − τ ),

(12)
the general Heisenberg EOM for a system operator s(t ) is [29]

ṡ(t ) =
2∑

j=1

(c†
j [s, σ

−
j ] − [s, σ+

j ]c j ) − i[s, Hsys], (13)

in which each operator has the same time argument t and
[·, ·] is the commutator. Note that bl

in does not appear in this
expression due to the assumption that κ (ω) = 0 for negative
ω, which effectively restricts the ω integral bounds.

Let s j denote a system j operator. Then as [s1, σ
±
2 ] = 0,

Eq. (13) implies

ṡ1(t ) = c†
1[s1, σ

−
1 ] − [s1, σ

+
1 ]c1 − i[s1, Hsys], (14)

so ṡ1(t ) depends on system 1 and field operators at the same
time t . Similarly, as [s2, σ

±
1 ] = 0,

ṡ2(t ) = c†
2[s2, σ

−
2 ] − [s2, σ

+
2 ]c2 − i[s2, Hsys], (15)

so ṡ2(t ) depends on system 2 operators at the same time t and
on the delayed output of system 1 at time t − τ through c2(t ).

As the EOM for s1 depends on a single time, we can shift
this time to t − τ to match the time arguments of the system
1 and field operators in the EOM for s2. Using this structure,
we can therefore write the composite state of both systems in
the Schrödinger picture as

ρ(t ) := ρ1( f (t )) ⊗ ρ2(t ), (16)

with f (t ) = t − τ . The point is that both the equations for
system 1 and system 2 can refer to the same time f (t ) for the
state of system 1. Importantly, this is true both for Gardiner’s
original equations [29] and for our transformed equations (see
Appendix A 2), where f (t ) will take a more complicated form.

III. INCORPORATING PHOTON MANIPULATION

A. Setup

As the systems are spatially separated, the QST of Eq. (1)
happens indirectly via the exchange of a photon. The idea is
that laser pulses induce a coherent superposition of an emitted
photon (if system 1 is excited) and the vacuum (if system 1 is
in the ground state). This transfers the state to the field mode,
where the coherent superposition then propagates along the
channel to system 2. We then want laser pulses to transfer the
state of the field to system 2, inducing absorption if there was
a photon.

The problem is that a photon emitted by system 1 will not
necessarily interact strongly with and be absorbed by system
2. In fact, the optimal photon wave packet for system 2 to
absorb is the time-reversed wave packet a lone system 2 would
emit [13]. Thus, we consider applying a unitary transforma-
tion along the channel that time reverses, frequency translates,
and stretches the photon wave packet, transforming it into
the time-reversed output of system 2. With an appropriately
implemented unitary, carefully designed laser pulses would
induce absorption in system 2, thus completing QST, as illus-
trated in Fig. 1.
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FIG. 1. Scheme to transfer quantum information between dis-
tinct quantum systems along a channel. For the sake of illustration,
in this figure, we suppose that system 1 is initially excited and
emits an exponentially decaying wave packet, which is common to
spontaneous emission processes [24].

Transformations of this form could be physically imple-
mented in a single device, as proposed by Ref. [26], or
by applying different transformations sequentially, say, a
time lens for time reversal and stretching [23,36], followed
by quantum frequency conversion. The scheme proposed
by Ref. [26] relies on nonlinear optical processes, either
sum-frequency generation (SFG) or four-wave-mixing Bragg
scattering, driven by a short classical pump pulse.

Reference [13] developed a scheme to achieve QST be-
tween distant identical atoms by producing time-symmetric
photon wave packets. Incorporating photon manipulation into
our scheme makes it more versatile so that we can transfer
information between systems with distinct spectral proper-
ties [37] and the wave packets need not be time symmetric
[38]. [For completeness we note that Ref. [25] demonstrates
a method for producing a photon wave packet with a ris-
ing exponential shape, thus mimicking a time-reversed wave
packet, by producing two photons and measuring one of them
to herald the other. It is not clear whether such a heralding-
based method could be adapted to our context, in which we
need an appropriate superposition of the vacuum state and a
single-photon state (conditioned on the state of system 1) in
order to transmit the quantum state of one material system to
another.]

To narrow our focus to the effect of the transformation, not
its physical implementation, we will treat the transformation
device as an idealized black box located at position x = X ,
0 < X < cτ . We discuss the correspondence between this ab-
stracted device and a potential physical implementation using
SFG [26] in Appendix B. Thus, we compound the photon
manipulations into a single unitary transformation

U (ν, ν ′) = eiνT

√
ξ

δ

(
ν ′ + ν − ω0

ξ

)
, (17)

which acts on a function in frequency space by time reversing
it, scaling it by ξ−1/2 (such that it will scale the photon flux by
ξ in the time domain), and shifting it by ω0:

F̃ (ν) =
∫

dν ′U (ν, ν ′)F (ν ′) = eiνT

√
ξ

F

(
ω0 − ν

ξ

)
. (18)

It satisfies the unitarity condition∫
dν ′′U (ν, ν ′′)U ∗(ν ′, ν ′′) = δ(ν − ν ′). (19)

We start in frequency space because the transformation would
be physically implemented using nonlinear-optical processes
that modify frequencies [26,39].

The transformation can be expressed in the more intuitive
time domain using Fourier transforms as

U (t, t ′) =
√

ξeiω0(T −t )δ(t ′ − t̃ξ ), (20)

with

t̃ξ (t ) := ξ (T − t ), (21)

where it acts on functions as

F̃ (t ) =
∫

dt ′U (t, t ′)F (t ′). (22)

The time parameter T in the phase sets the time the transfor-
mation begins, as justified in Sec. III B. Thus, the parameters
ξ , ω0, and T can be tuned such that the transformation time
reverses the slowly varying envelope of the wave packet and
shifts the resonance frequency and decay rate of system 1 to
those of system 2.

As the transformation of the photon wave packet occurs
over a finite duration (whose start and end times have to be
tuned), we may distinguish four different stages:

Stage 1 before transformation;
Stage 2 input field processing;
Stage 3 transformed field production;
Stage 4 transformation complete.

The initial field produced by system 1 freely propagates
during stage 1 until some time t = ti, at which point the first
part of the field to be transformed enters the transformation
device at x = X . (We interpret these as stages of the wave-
packet transformation at the transformation device, though
they can also be thought of as stages at system 2 with the
appropriate time delay τ − X/c.) Let l denote the width of the
input field we want to transform with corresponding duration
tl = l/c. Then the transformation device will “process” this
portion of the input field (which is ideally a single-photon
wave packet) during stage 2, ti < t < ts ≡ ti + tl . This results
in a gap3 in the field of duration tl during which a vacuum field
V (x, t ), 〈V 〉 = 0, is produced because our system is “buffer-
ing” until t = ts when the transformed field production begins.
(See Appendix B for a physical description of this buffering
stage.)

The transformed wave packet is produced during stage 3
for ts < t < t f ≡ ts + tl/ξ as the wave packet is stretched by
ξ in the time domain. During this field production we block
any incident field from passing through X to ensure that there
is always a single f (t ) describing the time argument of the
field (making it a well-defined function), as later discussed in
Appendix A 2. This will result in some loss, yet the times T

3The buffering of stage 2 can be modeled as the activation of
a c mode in the vacuum state that mixes with our input field via
a time-dependent beam-splitter transformation. The c mode has
creation and annihilation operators c†

in and cin, respectively, that
satisfy the same commutation relations as bin. Then the field being
transmitted through the unitary transformation device at x = X is
cos θ (t )bin(t ) − i sin θ (t )cin(t ), where θ (t ) is a switching function
that determines whether the c mode is active. Thus, θ should be a
smoothed out (for continuity) square wave that is π/2 during stage 2
of the transformation and zero otherwise.
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and tl can be tuned to capture almost the entirety of the initial
wave packet, making the loss arbitrarily small. We analyze
this loss explicitly for our example in Sec. IV D. After the
transformation is complete at t = t f , i.e., during stage 4, any
of the original field (including noise) passing through X will
be unchanged and the field will freely propagate.

B. Field transformation

Consider the part of the field in Eq. (8) that describes the
radiation propagating from system 1 to system 2, x1 < x < x2,

A+
i (x, t ) = A+

i (t−) := bin(t−) + √
γ1σ

−
1 (t−), (23)

where we recall that t− = t − x/c. The first term on the right-
hand side is the input to system 1 and the second is the
radiation emitted by system 1. The subscript i denotes that
this is the initial field, which will be transformed at x = X ,
before it is incident on system 2, according to Eq. (22) as

Ã+
X (t ) =

√
ξeiω0(T −t )A+

i (X, t̃ξ ). (24)

We can now determine the interval of time for which this
transformed outgoing field is valid. For the transformation to
be causal the field must depend on past times t � t̃ξ such that
t � ts ≡ T/(1 + ξ−1), which defines the physical meaning of
T .

The transformed field being produced during stage 3 will
freely propagate for x � X after the transformation as

Ã+(x, t ) = Ã+
X

(
t − x − X

c

)

=
√

ξeiω0(T −t−−X/c)A+
i [T (t−)], (25)

with T (t−) := t̃ξ (t−) − (1 + ξ )X/c as shorthand. To produce
a field with a decay rate matching system 2 we select

ξ = γ2/γ1. (26)

Then, comparing the original and transformed fields at system
2, x = x2 = cτ , we find that the system 1 operators transform
as

√
γ1σ

−
1 (t − τ ) → √

γ2eiω0(T −t+τ−X/c)σ−
1 [T (t − τ )], (27)

and similarly for bin, giving us the transformed, τ -delayed,
operators that impact the evolution of system 2 operators via
the c2(t ) terms in Eq. (15).

Thus, the field propagating between the systems during any
stage is

A+(x, t ) =

⎧⎪⎨
⎪⎩

V (x, t ) for x � X, ti < t − x−X
c < ts

Ã+(x, t ) for x � X, ts < t − x−X
c < t f

A+
i (x, t ) otherwise.

(28)

The first case in Eq. (28) captures the processing of the portion
of the wave packet to be transformed in stage 2, during which
a vacuum field V is produced (see footnote 3). The second
case captures the production and free propagation of the trans-
formed field. The third case captures the free propagation of
the initial field.

For x � X , this general expression for the field only de-
pends on x and t in terms of the combined variable t−, so we
can write it in the form

A+(x � X, t ) = A+(t−) = χ (t−)A+
i ( f (t−)). (29)

FIG. 2. Schematic depiction of three-level atoms in cavities cou-
pled via a quantum channel along which a unitary transformation is
implemented (adapted from Ref. [13]). The black arrows indicate
laser pulses that induce emission in system 1 and absorption in
system 2 (see the text for an explanation). We assume the input field
to cavity 1 is in vacuum, 〈b(1)

in 〉 = 0.

Henceforth taking X = 0 for simplicity (X = 0 adds trivial
shifts that obfuscate the expression), we have

χ (t ) =
{√

ξeiω0(T −t ) for ts < t < t f

1 otherwise
(30)

and

f (t ) =
⎧⎨
⎩

undefined for ti < t < ts
t̃ξ = ξ (T − t ) for ts < t < t f

t otherwise,
(31)

where A+
i ( f = undefined) is interpreted to be the vacuum V

(see footnote 3).

IV. THREE-LEVEL ATOMS IN CAVITIES

A. Hamiltonians

Now we will analyze a concrete example where each sys-
tem j = 1, 2 is comprised of a three-level atom, in the �

configuration with excited state |r j〉 and ground states |g j〉
and |e j〉, that is strongly coupled to a mode of its respective
high-Q cavity with frequency ωc j and annihilation operator
a j . We take |g j〉 to be the zero point of energy Eg = 0, so
|r j〉 has excitation frequency ωr j and the energy difference
between |e j〉 and |g j〉 is Ee j − Egj = ωe j (see Fig. 2). This
example and the underlying scheme extend and are based
on the pioneering work of Ref. [13] on QST in a quantum
network. What we change, relative to Ref. [13], is that the
systems are not identical (they can have different parameters
including resonance frequencies ωr j and decays rates γ j) and
we incorporate our unitary transformation into the scheme.
Additionally, Ref. [13] assumed degenerate ground states as
they had a Cs atom in mind. As we want our scheme to apply
more generally, we do not assume the ground states to be de-
generate (ωe j = 0). This is a small change to the Hamiltonian
but makes it applicable to a larger variety of implementations:
Trapped ion qubits are generally not degenerate (e.g., two
different hyperfine ground states or an S ground state and a
metastable D state), superconducting qubits states are never
degenerate, etc.

For the benefit of the reader, we will relay the steps from
Ref. [13] that are crucial to our work. The idea is that for
each system, |e〉 and |g〉 are coupled by a Raman transition
and form our qubits. Specifically, we drive an excitation from
|e1〉 to |r1〉 using a laser pulse of frequency ωL1 with Rabi
frequency �1(t ) and phase φ1(t ). This is followed by the
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transition |r1〉 → |g1〉 and the corresponding emission of a
photon into cavity 1 with coupling g1. The photon leaks out of
the cavity as a wave packet and propagates down the quantum
channel and enters cavity 2. Next, atom 2 undergoes the time
inverse of the Raman process undergone by atom 1 [with
different parameters g2, ωL2, �2(t ), and φ2(t )]. The photon
is then either absorbed, exciting atom 2 from |g2〉 (where it is
initialized) to |e2〉, such that its state is transferred to atom 2 or
reflected down a different spatial mode (e.g., via a ring cavity
geometry) and the transfer fails.

We want to design the first laser pulse (including the phase)
to ensure that if there is an excitation in atom 1, it is transferred
to cavity 1 and then to the channel. Here we neglect any
absorption in the transmission line, assuming that a photon
emitted by system 1 will make it to system 2. We will not
analyze deviations from this ideal case in this work. Further-
more, we do not want any other excitations to potentially be
transferred to atom 2. Hence we assume a vacuum field input
field to system 1, b(1)

in |in〉 = 0, where the input and output of
each cavity are related by [13,28]

b( j)
out(t ) = b( j)

in (t ) + √
γ ja j (t ). (32)

Additionally, we want to ensure that the relative phase
between |g〉 and |e〉 is transferred. This can be done using a
local oscillator at the location of each system, j = 1, 2, with
frequency ωe j to serve as a well-defined frequency reference.
We assume that the noise in each local oscillator is negligible
and the two local phases are stabilized relative to each other
[40]. Later, we adjust the Hamiltonians such that the two bare
atomic states effectively become degenerate, which makes the
treatment more similar to Ref. [13].

In our scheme, the corresponding photon wave packet is
manipulated while propagating between the systems, so the
input to cavity 2 is the transformed (and time-delayed) output
of cavity 1. Thus, we also want to design the unitary trans-
formation and the second laser pulse to minimize loss due to
reflection at system 2 and hence achieve ideal QST. The total
system Hamiltonian is Hsys = H1 + H2, where

Hj = ωc ja
†
j a j + ωr j |r j〉〈r j | + ωe j |e j〉〈e j |

+ g j (|r j〉〈g j |a j + H.c.)

+ � j (t )

2
(ei[ωL jt+φ j (t )]|e j〉〈r j | + H.c.) (33)

is the Hamiltonian for system j and H.c. denotes the Hermi-
tian conjugate of the previous term.

For each system j = 1, 2, we go into rotating frames via
transformations of the form U = exp[iωLt (a†a + |r〉〈r|) +
iωet |e〉〈e|], where the ωe|e〉〈e| term is used to effectively
make the two atomic ground states degenerate. Then, assum-
ing the lasers are strongly detuned |� j | � � j, g j, |φ̇ j | (with
� j = ωL j − ωr j) to suppress spontaneous emission, we can
adiabatically eliminate the excited state |r〉 [41]. Doing so, the
new system Hamiltonians are

Hj =
(

g2
j

� j
|g j〉〈g j | − δ j

)
a†

j a j + δω j (t )|Ej〉〈Ej |

− iG j (t )(a j |Ej〉〈g j | − H.c.), (34)

where δ j = ωL j − ωc j , δω j (t ) := �2
j (t )/4� j , and Gj (t ) :=

g j� j (t )/2� j are the Raman detunings, the ac Stark shifts
to |Ej (t )〉 := eiφ j (t )|e′

j〉, and the Jaynes-Cummings interaction
strengths for the effective two-level atoms, respectively [13].4

Here |e′
j〉 = U |e j〉 = eiωe j t |e j〉 is the bare atomic state |e j〉 in

the new frame, while |gj〉 is unchanged.

B. System evolution

Now we want to determine how the state of the systems,
expanded as

|ψ (t )〉 = α1(t )|Eg〉|00〉 + α2(t )|gE〉|00〉
+ β1(t )|gg〉|10〉 + β2(t )|gg〉|01〉, (35)

will evolve. The basis states, read from left to right, give the
state of atoms 1 and 2 (E or g) and the states of cavities 1
and 2 (0 or 1). We leave out a |gg〉|00〉 term because, in the
absence of noise, the zero-excitation part of the transfer in
Eq. (1), cg|g1〉|g2〉 �→ cg|g1〉|g2〉, is trivial. Now we will go
from the Heisenberg picture, in which system operators satisfy
Eq. (13), to the Schrödinger picture. In doing so we will
work with time-delayed operators and variables for system
1 [e.g., σ−

1 (t − τ ) → σ−
1 (t ) and so forth for bin, �1, and

φ1], effectively eliminating the time delay τ . This Heisen-
berg to Schrödinger picture conversion can be described
using the so-called quantum trajectory method, where |ψ〉
experiences smooth evolution governed by a non-Hermitian
effective Hamiltonian Heff as well as discrete quantum jumps,
where a so-called jump operator J is randomly applied to the
state of our two systems (then the state has to be renormalized
|ψ〉 → J|ψ〉/〈ψ |J†J|ψ〉) [32]. Employing this method, we
find that for a vacuum field input to system 1 the effective
Hamiltonian in the rotating frame used above is

Heff = H1 + H2 − i

2
(γ1a†

1a1 + γ2a†
2a2 + 2

√
γ1γ2eiζ t a†

2a1),

(36)

where Hj are the Raman Hamiltonians of Eq. (34). We define
ζ ≡ ωL2 − ωL1, which is a frequency mismatch that degrades
the QST when the unitary transformation is not applied. The
corresponding phase factor eiζ t comes from two different
rotating frames for the two systems. (See Appendix A 1 for
further discussion of the quantum trajectory method including
a more general derivation of Heff.)

We find the state amplitude EOMs

α̇1 = −G1β1, (37a)

β̇1 = G1α1 − γ1

2
β1, (37b)

α̇2 = −G2β2, (37c)

β̇2 = G2α2 − γ2

2
β2 − √

γ1γ2eiζ tβ1, (37d)

where we picked laser phases and detunings that satisfy
−φ̇ j ≡ δω j (so φ j is determined by the pulse � j up to an

4We rephased φ j → φ j + π/2 so that the pulses Gj are real. Then
α1 and β1 are real, while α2 and β2 will be complex for ζ = 0.
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initial condition) and δ j = g2
j/� j (so that we must pick spe-

cific laser frequencies ωL j), respectively.5 We assume these
conditions are met. Note that the EOMs for system 2 are the
same as those for system 1 except for the β1 term in Eq. (37d),
which encapsulates how an excitation in cavity 1 is transferred
to cavity 2.

C. Photon transformation

So far, this section is just a generalization of Ref. [13] to
nonidentical, nondegenerate systems. Our larger modification
is incorporating the effect of the unitary transformation so
that the two nonidentical systems naturally interact with each
other. Thus we will now analyze the impact of the unitary
transformation on the amplitude EOMs. The photon wave
packet emitted by system 1 can be specified by the mode
function

�1(t ) := 〈gg|〈00|b(1)
out|ψ (t )〉, (38)

whose modulus squared is the expectation value of the number
operator for the output of cavity 1, N1 = (b(1)

out )
†b(1)

out, with
respect to the state |ψ〉:

〈N1(t )〉 = |�1(t )|2. (39)

For a vacuum field input

�1(t ) = 〈gg|〈00|√γ1a1|ψ〉 = √
γ1β1(t ). (40)

The transformed (tilded) cavity creation operator can be
found using Eq. (27) at system 1 (again with X = 0) with
σ−

1 → a1 to be

ã1(t ) = χ (t )a1( f (t )). (41)

It follows that the transformed wave packet is

�̃1(t ) = 〈gg|〈00|√γ1ã1|ψ〉 = √
γ1χ (t )β1( f (t )) (42)

so that system 2 is driven by the transformed amplitude

β1(t ) → β̃1(t ) = χ (t )β1( f (t )), (43)

whose form varies depending on what stage of the transforma-
tion we are considering and we interpret β1( f = undefined) ≡
0. Hence under the transformation, Eq. (37d) becomes

β̇2 = G2α2 − γ2

2
β2 − √

γ1γ2eiζ t β̃1 (44)

with the other equations (37a)–(37c) remaining the same. For
ts < t < t f this gives

β̇2 = G2α2 − γ2

2
β2 − γ2eiω0T ei(ζ−ω0 )tβ1(t̃ξ ), (45)

which motivates the choice ω0 = ζ for the frequency shift of
the transformation in order to cancel out the time-dependent
phase in the last term of Eq. (44) during stage 3.

5The condition δ = g2/� (for each system, j = 1, 2) implies that
the laser detunings and hence laser frequencies are determined by
� = ωL − ωr = ωc−ωr

2 ±
√

( ωc−ωr
2 )2 + g2, where |�| � g so the +

solution is valid and implies ωL = ωc + g2

ωc−ωr
+ O( g4

(ωc−ωr )3 ) such
that we need to lase near the cavity resonance ωL ≈ ωc.

Now the problem is to find the pulse shapes Gj ∝ � j

such that ideal QST occurs when we implement our unitary
transformation, that is, we want

α1(−∞) = |α2(+∞)| = 1 (46)

(with the other amplitudes equal to zero at these times due
to normalization). Here we are guided by the expectation that
the laser pulse inducing absorption in system 2, G2, must be
time reversed and stretched relative to the pulse inducing the
emission of system 1, G1. Specifically, we let

G2(t ) = ξG1(t̃ξ ) (47)

such that given solutions α1 and β1 there are corresponding
solutions β2(t ) = −eiω0T β1(t̃ξ ) and α2(t ) = eiω0T α1(t̃ξ ). Note
that we are not optimizing G2 for every parameter value
(starting time ti, duration tl , etc.). Rather, we select this pulse
as it is agnostic to such details, working generally as long
as l is large enough for (almost) all of wave packet to be
transformed. With this choice for G2, constructing G1 such
that α1(−∞) = 1 ensures that |α2(+∞)| = 1 for sufficiently
large l (assuming both pulses are implemented correctly).

To guarantee that the state’s phase is transferred, one must
do two things: Use the local oscillators mentioned above to
define clocks relative to which one can account for free pre-
cession and account for the extra phase eiω0T that appears in
α2 due to the unitary.6 This argument implicitly assumes that
β̃1(t ) = √

ξeiω0(T −t )β1(t̃ξ ) ∀ t , which is only valid during stage
3. However, if we transform enough of the wave packet (make
l big) β1 will be negligibly small outside of stage 3, making
this an increasingly good approximation as l increases.

Now our task is to find a pulse G1 such that the boundary
conditions of Eq. (46) are satisfied. From Eqs. (37a) and (37b)
we find that α1 and G1 uniquely determine each other. Thus,
we can reframe the task as specifying an α1 that goes from
1 at t = −∞ to 0 at t = +∞, from which the first pulse is
uniquely specified (up to a sign):

G1(t ) =
√√√√ α̇2

1eγ1t

eγ1tpβ2
1 (tp) − 2

∫ t
tp

dt ′eγ1t ′
α̇1(t ′)α1(t ′)

. (48)

Here tp is some early time by which the first atomic state is
prepared in the desired superposition state cg|g1〉 + ce|e1〉, so
β1(tp) should be zero.

A natural choice of α1 is the logistic function

α1(t ) = 1 + tanh(−kt )

2
, (49)

from which we can find the corresponding pulse G1 via
Eq. (48) and β1 = −α̇1/G1 from Eq. (37a). We assume the

6We get the phase factor exp(iω0T ) only when we apply the unitary
(stage 3). So if some of the untransformed portion of the photon is
absorbed by system 2, we would induce a phase error. We assume
either that the frequency shift ω0 = ζ is so large that the photon will
not be absorbed without our unitary or that we control ω0 and T such
that ω0T = 0 (modulo 2π ) when ω0 is small.
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FIG. 3. (a) Probability amplitudes and (b) corresponding laser
pulses G1,2 plotted as functions of time t (all quantities are in units
where γ2 = 1) for a logistic α1 with k = 2 in Eq. (49), taking T = 6,
ξ = 1/2, ω0 = ζ = 50, and tl = 4. Here atom 1 is initially excited,
α2

1 (−∞) = 1, and this excitation is transferred to atom 2 with prob-
ability |α2(∞)|2 = 0.97 (|α2| falls just below 1, the upper line, for
large t).

laser pulse applied to system 1, G1, is implemented perfectly.
The ability to control the shape and timing of single-photon
pulses has been demonstrated experimentally for similar sys-
tems [42]. Then we can solve for α2 and β2 numerically
using Eqs. (37c), (44), and (47). We plot the solutions and the
corresponding laser pulses below in Fig. 3. Additionally, we
plot the photon wave packet’s square modulus for the various
stages of the transformation in Fig. 4. In our plots we work in
natural units based on the rate γ2 and the speed of light c, so
times are in units of γ −1

2 , lengths are in units of cγ −1
2 , etc.

FIG. 4. Plot of |�̃1(t−)|2 vs x for various t (in units of γ −1
2 ), illus-

trating the propagation of the photon for a logistic α1 with the same
parameters as in Fig. 3. The wave packet propagates until ti = −2, at
which point it begins being processed until ts = 2. The transformed
wave packet is produced until t f = 10 and then it propagates freely
and induces absorption in system 2 with 97% success rate. Here we
let X = cτ/2 for illustration.

FIG. 5. (a) Probability density functions for loss due to blocking
(dashed line), which is only plotted during stage 3 where it occurs,
and due to imperfections in the shape of the photon wave packet
(solid line). (b) Probability of a quantum jump up to time t (in units
of γ −1

2 ). The parameter values are the same as in Fig. 3. Note that
Pjump tends to 0.029, as is consistent with the 0.97 success rate we
found previously.

D. Two types of loss

We can quantify whether we succeeded in transferring the
quantum state from system 1 to 2 by analyzing two kinds of
loss that are present in our scheme: loss due to blocking the
incident field from propagating through x = X during stage
3 and loss due to an imperfect photon wave-packet shape
leading to the field being reflected from system 2 out another
spatial mode, which occur with probabilities of Pb and Pp,
respectively. The probability density functions for these losses
are

Ṗb =
{
γ1|β1|2 for ts < t < t f

0 otherwise,
(50)

as we block the incident field during stage 3, and

Ṗp = |√γ1eiζ t β̃1 + √
γ2β2|2, (51)

which comes from looking at the decay of the norm of the
effective state due to the unitary transformation and accounts
for the interference between the cavity amplitudes. Without
the unitary, Ṗp is simply minus the time derivative of the norm
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FIG. 6. Plots of (a) the probability density functions and (b) the
total jump probability, choosing the ideal value of T (keeping
ξ = 1/2, ω0 = ζ = 50, and tl = 4) such that ti = −1.4 (all quantities
are in units where γ2 = 1). Here Pjump → 0.014 for large t , which
is slightly less than half of the loss probability we found previously
with ti = −2.

state of |ψ〉.7 The total quantum jump rate up to time t is then

Pjump(t ) =
∫ t

tp

dt ′[Ṗb(t ′) + Ṗp(t ′)], (52)

as illustrated in Fig. 5.
For Figs. 3–5 we selected the parameter values T = 6, ξ =

1/2, ω0 = ζ = 50, and l = 4 such that ti = −ts = −2 because
G1 is large during this window [see Fig. 3(b)]. This is a good
choice but not the ideal choice, which for the same values of
ξ , ω0, ζ , and l involves choosing T = 7.8 such that ti = −1.4.
The corresponding results are plotted in Fig. 6, in which the
errors are spread out among the stages due to delaying the start
of the transformation from ti = −2 to ti = −1.4. This change
in starting time was beneficial as it led to larger portions of
β1 being transformed and hence more destructive interference
between β̃1 and β2 in stage 3 [see Eq. (51)].

Both of these losses can be reduced by transforming more
of the pulse. This can be accomplished by either increasing
l for a given G1 or picking G1 (or equivalently α1) such

7One can equivalently write the probability density of loss due to
an incorrect photon wave packet as Ṗp = − d

dt ( |α̃1|2+|β̃1|2
df /dt + |α2|2 +

|β2|2), where the quantity in parentheses acts as a norm for system 2
and the fictitious system 1̃ driving it. Here α̃1 is defined in a manner
analogous to β̃1 in Eq. (43).

FIG. 7. Plot of Psuccess vs l for identical laser frequencies, ζ = 0,
and a frequency mismatch of |ζ | = 50 (all quantities are in units
where γ2 = c = 1). Here we use the ideal frequency shift ω0 = ζ ,
ξ = 1/2, and T = 3tl/2 such that ts = tl/2. (See the text for further
discussion.)

that the wave packet is more localized. In Fig. 7 we illus-
trate how the probability of success Psuccess ≡ |α2(t → ∞)|2
approaches 1 as l is increased. Note that if the first pulse
is implemented correctly so that α1 → 0 for large times,
then one finds that Psuccess = 1 − Pjump(t → ∞) = (|α1|2 +
|β1|2 + |α2|2 + |β2|2)|t→∞. For ζ = 0, the systems are al-
ready resonant so no frequency shift is needed and hence
Psuccess decreases if only a small amount of the photon wave
packet is transformed (as then much of it is blocked).

We see that when the frequencies of the lasers driving the
systems differ appreciably, i.e., when |ζ | is large, Psuccess is
nearly 0 without the unitary (when l = 0) and so performing
a transformation is critical for QST. Recall that, in our nu-
merics, frequencies are measured relative to the cavity decay
rate γ2, which is typically on the order of kilohertz. Thus,
large |ζ | is relative to γ2. Note that the laser frequency mis-
match ζ will be similar in magnitude to the cavity resonance
frequencies (see footnote 5) for which typical values are on
the order of terahertz (equal to 109 kHz) (this is consistent
with our high-quality factor assumption for each cavity). So
generically |ζ | � γ2 = 1 (in our units) and then Psuccess mono-
tonically increases from 0 at l = 0 to 1 for large l (see the
|ζ | = 50 curve in Fig. 7, which does not change significantly
as |ζ | is further increased;8 we keep |ζ | relatively small in our
numerics to avoid issues with highly oscillatory integrals).

Experimentally, increasing l would necessitate using more
nonlinear optical media to control the unitary transformation,
whereas tailoring G1 to produce a narrow wave packet de-
mands more precise control of the timing so that deviations
from the ideal value of T are more costly. An analysis of the
benefits and limitations of each of these solution methods is
beyond the scope of the present work, as is consideration of
loss due to a frequency mismatch ω0 = ζ .

8For completeness, we note that there is ζ -dependent interference
between the cavity fields exp(iζ t )β̃1 and β2 [see Eq. (51)], which
results in Psuccess oscillating about the large-|ζ | limit. However, this
effect is only pronounced for small but nonzero |ζ |. For instance, for
|ζ | = 10 the oscillations are visually discernable, while for |ζ | = 25
they are not.
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FIG. 8. Schematic illustrating the interpretation of Eq. (53)
(see the text for details).

V. DISCUSSION

In this work we have demonstrated that photon manipula-
tion can be incorporated into input-output theory to achieve,
in principle, ideal quantum state transfer between nonidentical
systems. This offers a potentially versatile scheme for QST in
hybrid quantum networks. We showed, using analytical and
numerical means, how this scheme can be applied to systems
of three-level atoms in cavities to achieve ideal QST. Our
scheme could be generalized to systems with more levels,
where more laser pulses and their time-reversed counterparts
need to be used to induce emission and absorption in the
systems, respectively [43–45]. Furthermore, our scheme could
readily be adapted to other material systems, with the details
contingent on the forms of the system Hamiltonians.

A main result is a new interpretation of the time argument
of system 1 in the effective description where the systems are
directly coupled. In particular, we find that the mathematical
object

ρ(t ) = ρ1(t̃ ) ⊗ ρ2(t ) (53)

describes the composite state of system 2 coupled to a
fictitious system 1̃, which would produce the transformed
wave packet. Then we can eliminate the bath and unitary
transformation from the description and obtain an evolution
equation for the state ρ, in the standard form

ρ̇ = i[ρ, H0] + L[J]ρ, (54)

with

L[J]ρ = JρJ† − 1
2 {ρ, J†J} (55)

a Lindblad superoperator, J a jump operator, and {·, ·} the an-
ticommutator. Yet crucially, the effects of the transformation
(the scaling by a factor ξ and time reversal) are accounted
for by the change in the time argument of the state of system
1, t → t̃ = ξ (T − t + τ ), during the transformation (see Ap-
pendix A for more details). This has the interpretation that the
unitary transformation can be incorporated into the effective
description of the dynamics of system 2 by simply letting
system 1 (which drives system 2) run backward in time at a
new decay rate (see Fig. 8). Thus, the effective description in
the quantum trajectory method is unchanged, yet the interpre-
tation of the state does change.

Clearly, implementing the unitary transformation device in
our scheme would be challenging. We discuss a nonlinear
optical based method to implement our transformation in the
optical domain in Appendix B. However, if we wanted to

perform microwave to optical transduction we would need
a different implementation of our transformation, e.g., using
atomic ensembles or electro-optical systems for frequency
conversion [16], followed by our shaping and time-reversal
procedure. Accordingly, modeling a more realistic, imperfect
transformation device is an important extension of this work.
We leave for future work the analysis of additional losses and
limitations in the transformation.

APPENDIX A: SCHRÖDINGER EVOLUTION

1. Without transformation

The identity

Tr[ρH ṡ(t )] = Tr[ρ̇S (t )s] (A1)

connects the Heisenberg picture operator and state on the left
to the Schrödinger picture operator and state on the right.
Using this identity, the cyclic nature of the trace, and Eq. (13),
we find the evolution equation for the systems and field to be

ρ̇S =
2∑

j=1

([σ−
j , ρSc†

j ] − [σ+
j , c jρS]) − i[Hsys, ρS]. (A2)

In the Schrödinger picture the operators no longer evolve with
time as any implicit time dependence is shifted onto ρS (t ).

The transmission can be described in an effective descrip-
tion where the two systems are directly coupled. This effective
description is obtained by tracing over the bath, yielding the
state of the systems

ρ(t ) = TrB(ρS ), (A3)

which is the same state as in Eq. (16). Considering coherent
input states to the systems |β〉〈β| such that bin|β〉 = β|β〉 with
β ∈ C and

TrB(binρS ) = βρ, (A4)

we find that ρ satisfies Eq. (A2) with bin → β. After some al-
gebra, we can write this master equation for ρ̇ in the Lindblad
form of Eq. (54) with jump operator

J = √
γ1σ

−
1 + √

γ2σ
−
2 + β (A5)

and H0 = Hsys + Hc with

Hc = −i

2
[
√

γ1γ2σ
+
2 σ−

1 + (
√

γ1σ
+
1 + √

γ2σ
+
2 )β] + H.c.

(A6)
describing the coupling between the systems.

Now the connection to the quantum trajectory method
can be made. There is smooth evolution governed by a
Schrödinger-like equation with a non-Hermitian effective
Hamiltonian

Heff = H0 + H ′, (A7)

where H ′ = −iJ†J/2 is the non-Hermitian piece. Addition-
ally, random quantum jumps occur, with probability density
〈ψ |J†J|ψ〉, leading to wave-function decay [32]. (This quan-
tum trajectory formalism can be shown to be equivalent to
the standard Lindblad master equation dynamics for the den-
sity matrix provided we average |ψ〉〈ψ | over an ensemble of
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random trajectories for |ψ〉 [33].) Writing out the effective
Hamiltonian explicitly, we find

Heff =Hsys − i

2
[γ1σ

+
1 σ−

1 + γ2σ
+
2 σ−

2 + 2
√

γ1γ2σ
−
1 σ+

2

+ 2β(
√

γ1σ
+
1 + √

γ2σ
+
2 ) + |β|2], (A8)

where the σ−
1 σ+

2 term survives, not its Hermitian conjugate.
This describes an excitation in the first system transferring to
the second, but not the other way around.

2. With transformation

By implementing our transformation, the output of system
1 transforms according to Eq. (28) in the Heisenberg picture.
Thus, the transformed EOM for s2 depends on system 1 and
field operators at time t̃ ≡ f (t − τ ) and on system 2 operators
at the same time t . The transformed EOM for s1 only de-
pends on operators at a single time f (t ), which can be shifted
to t̃ = f (t − τ ). Specifically, we start with the transformed
Heisenberg EOMs for system operators s j , which are given
by Eq. (13) with the replacements σ−

1 (t ) → χ (t − τ )σ−
1 (t̃ )

for system 1 evolution including via c1 and σ−
1 (t − τ ) →

χ (t − τ )σ−
1 (t̃ ) for system 2 evolution via c2, and likewise for

bin.
Then we go to the Schrödinger evolution of the total trans-

formed state of the systems and bath, ρ̃S (t ), in the same
manner as in Appendix A 1. Tracing over the bath yields the
reduced density operator describing the composite state of the
systems that would produce the transformed wave packet

ρ(t ) = TrB[ρ̃S (t )] = ρ1(t̃ ) ⊗ ρ2(t ). (A9)

This transformed state satisfies the same Lindblad master
equation as before with the transformation being accounted
for by the change in the time argument of system 1 and the
replacements σ−

1 → χ (t − τ )σ−
1 and β → χ (t − τ )β, that is,

the transformed operators acquire an explicit time-dependent
prefactor in the Schrödinger picture. Here ρ1(t̃ ) describes the
real system 1 during stages 1 and 4, the lack of system 1
during stage 2, and a fictitious system 1̃ at time ξ (T − t + τ )
during stage 3.

This Heisenberg ↔ Schrödinger conversion works in a
similar way as before because the unitary transformation to
the field has the effect of transforming system 1 and field oper-
ator arguments from t − τ to f (t − τ ). In the Schrödinger pic-
ture the same unitary is applied to the state, with the same ef-
fect on its argument t . Specifically, during the transformation,
the time argument of ρ1 has slope −ξ corresponding to the
fictitious system 1̃ evolving backward in time (as the slope is
negative) at a new decay rate due to the ξ scaling. Meanwhile
system 2 is continually described by ρ2(t ), as in Eq. (16).

Naively, the jumps in f (t ), and hence t̃ (see Fig. 9), seem
to indicate that system 2 operators would have discontinuities
in their evolution as they are being driven by system 1̃, which
experiences discontinuities when the stage changes. Yet at ti
system 1 is just leaving one of its ground states (the cavity
ground state in Sec. IV) and at ts the decay of the first system
is nearly complete (assuming tl and T are chosen appropri-
ately), so again system 1 will be near a ground state. Hence
the coupling between the systems is effectively zero in both
cases as system 1 is (at least nearly) in a ground state, which

FIG. 9. Plots of f (t ) and f −1(t ) for X = 0 and ξ = 1/2. Here
f −1(t ) is a fictitious time for system 2 as a function of the time for
system 1. In the first plot m denotes the slope of different portions of
f (t ). The horizontal gap of width tl is due to the buffering of stage
2 and the vertical gap of height tl/ξ is due to us blocking the initial
wave packet during stage 3.

yields zero if acted on by the annihilation operator σ−
1 . This

likewise applies to the vertical jump in f (t ) at t f . Moreover,
the evolution of system 1̃ will be smoothed out by the gradual
switching to and from the vacuum field V (x, t ) during stage
2 (see footnote 3). Thus, system 2 will evolve smoothly even
though f (t ) has discontinuities.

APPENDIX B: UNITARY IMPLEMENTATION

Here we describe how our simple model for the unitary
transformation device is related to a physical implementation
proposed by Ref. [26] that uses sum-frequency generation
in a nonlinear medium of length L. Reference [26] consid-
ers a transformation that takes in two signals 1 and 2, with
frequencies ω1 and ω2,9 that are initially a temporal mode
in an arbitrary state and a vacuum state, respectively. These
signals are connected using SFG driven by a short classical
pump pulse of frequency ωp = |ω2 − ω1| that mixes the sig-
nals in the medium. They derive conditions for the output
of the transformation to be signal 1 in the vacuum state and
signal 2 in a temporal mode that is the time reversed and
stretched by ξ counterpart of the initial signal 1 yet is still
centered at ω2. These conditions include that the group slow-
nesses β ′

η = 1/vη (η = 1, 2, p), which are the inverse group
velocities in the medium, are ordered as β ′

1 > β ′
p > β ′

2 (for
ω2 > ω1, otherwise it is reversed), as well as things such as
phase matching. They verify that these conditions can occur
for realistic media. Importantly for QST, they show that the
entanglement between the transformed field (which here is
the output from system 1) and the pump pulse (and hence the
unitary transformation device) stays arbitrarily small in the
limit of a classical (i.e., strong and coherent) pulse. Note that
their signals 1 and 2 are our input and output to the unitary
transformation device, respectively.

Our stages 2 and 3 are captured by their transformation.
Stage 2 begins at ti when signal 1, the input field, first en-
ters the transformation device (nonlinear medium). Signal 1
is followed by signal 2 and the pump pulse, which enter

9Reference [26] uses the notation ω1 = ωs, ω2 = ωr , and ξ = M =
−1/m > 0.
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the medium at the same time. A three-wave-mixing process
(SFG) then begins and signal 2 (the transformed output) exits
the medium, followed by signal 1 and the pump pulse at the
same time. Using these conditions it follows that to transform
a duration tl = l/c of the input pulse we need a medium of
minimum length

L = tl (β
′
1 + β ′

2 − β ′
p − 1/c)−1 >

l

cβ ′
1 − 1

. (B1)

Let texit be the time that signal 2 begins exiting the medium
at x = X + L. Then ts = texit − L/c is the effective time that
the transformed output begins to be produced at x = X . Thus,
the buffering of stage 2 can physically be interpreted as the
effective time between signal 1 entering the medium at x = X
and when the transformed signal 2 would have been at x =
X had it been traveling at the speed of light rather than β ′

2
(i.e., what happens in our simplified device).
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