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Emergence of monogamy under static and dynamic scenarios
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Characterizing multipartite quantum correlations beyond two parties is of utmost importance for building
cutting edge quantum technologies, although the comprehensive picture is still missing. Here we investigate
quantum correlations (QCs) present in a multipartite system by exploring connections between magentathree
different frameworks, namely, the monogamy score (MS), localizable quantum correlations (LQC), and genuine
multipartite entanglement (GME) content of the state. We find that the frequency distribution of GME for Dicke
states with higher excitations resembles that of random states. We show that there is a critical value of GME
beyond which all states become monogamous and it is investigated by considering different powers of MS
which provides various layers of monogamy relations. Interestingly, such a relationship between LQC and MS
as well as GME does not hold. States having a very low GME (low monogamy score, both positive and negative)
can localize a high amount of QCs in two parties. We also provide an upper bound to the sum of bipartite QC
measures including LQC for random states and establish a gap between the actual upper bound and the algebraic
maximum.
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I. INTRODUCTION

Correlations play a fundamental role in providing insight
into the laws describing nature at various scales. The fea-
tures possessed by these correlations depend on the theory
under which they have been analyzed—some characteristics
are common to all the theories while others are exclusive
to a particular one. Correlations in the quantum domain,
commonly referred to asquantum correlations (QCs), possess
many such unique characteristics that are qualitatively differ-
ent from classical correlations (CCs). From entanglement to
nonlocality [1,2], these special properties constitute and, in
turn, help to understand the intricacies of quantum mechan-
ics. Importantly, these specialties of QCs are responsible for
fueling tasks like quantum teleportation [3], quantum dense
coding [4], genuine randomness certification [5], quantum
computation [6], etc., which are impossible via the sole use
of CCs.

Rapid developments in realizing quantum technologies de-
mand complete characterization of multisite entangled states.
Since QCs shared between multiple parties might be of dif-
ferent types, it is often difficult to determine a concrete way
to assess quantumness in a multipartite state. Depending on
the available resource, a number of quantum information
schemes using shared multipartite quantum correlated states
have been designed. For example, in order to obtain a quan-
tum advantage in both classical and quantum information
transmission, it is necessary for multiple senders and re-
ceivers to share states that have QCs in the sender-receiver
bipartition [3,4], whereas in measurement-based quantum
computation, genuine multiparty entangled states become a
resource [6]. Therefore quantifying QCs from different per-
spectives and establishing links between them can be crucial
for developing quantum technologies. In this work, we focus
on three aspects of multipartite QC measures, belonging to

three distinct paradigms: (1) genuine multiparty entanglement
content, which can be quantified via the geometric structure
of multipartite quantum states [7]; (2) monogamy of quantum
correlations which constraints the ability of multiple quantum
parties to share correlations [8,9]; and (3) measurement based
correlations in which QC is concentrated in fewer parties
by performing suitable measurements on the other remaining
parties [10–12] see Fig. 1 for a schematic representation of
our analysis). To carry out the investigation, we introduce
two quantities, the critical GGM, and the critical exponent
α, beyond which all states satisfy the monogamy inequality,
given by δQα = Qα (ρ1:rest) − ∑N

i=2 Qα (ρ1:i ), where Q is the
quantum correlation measure under consideration for a given
N-party state ρ1,...,N , rest in the subscript defines the rest of
the parties except the first party and α is referred to as critical
exponent.

We address two important questions to establish a con-
nection between all the correlation measures: (i) is there a
threshold on the multiparty entanglement content of Haar-
uniformly simulated states above which they all satisfy some
monogamy relation for a fixed critical exponent? It will be
interesting to determine if the correlation measure and the
exponent used to establish the monogamy relation affect the
results. (ii) What is the minimum amount of genuine mul-
tiparty entanglement required to localize a high value of
bipartite QC? Answering these questions initially requires in-
dependent analysis of these measures for randomly generated
states which we will study here (see [13] and localizable en-
tanglement for α = 1 [14,15]) and we will study in this paper.
Additionally, we will establish a connection between these
seemingly unrelated measures. Apart from their fundamental
significance, genuine multipartite QC measure, monogamy
relations and localizable correlations also possess some util-
itarian applications like distinguishing classes of quantum
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FIG. 1. Schematic representation of interplay between different
multipartite quantum correlations, thereby providing classifications
among multipartite quantum correlation measures—genuine multi-
partite entanglement, monogamy- and measurement-based quantum
correlations are related. Analysis shows that features of multipartite
QCs are more prominently present in monogamy-based measures
compared to the measurement-based ones, considered in this paper.

states [16], in quantum cryptography [17–19] and character-
izing phases in many-body systems [9,11,12,20–25] (see also
Refs. [9,13,14,26–53]).

We report that the critical GGM required to satisfy
monogamy inequality decreases with the number of parties for
all quantum correlation measures, thereby providing sufficient
criteria, independent of QC measures. On the other hand, for
states with less number of qubits and a fixed amount of GGM,
the critical exponent can assume very high values but as the
number of qubits grows, it saturates to its lower limits, thereby
showing the increase of quantumness in randomly simulated
states with a number of parties.

We prove that for a fixed amount of genuine multipartite
entanglement (GME) content of an arbitrary three-qubit state
and the generalized Greenberger-Horne-Zeilinger (gGHZ)
state [54], the monogamy score of entanglement for the for-
mer is always lower than that of the gGHZ state. Such an
upper bound obtained from the gGHZ state does not hold
for states having more than three qubits. We also show that
Dicke states with higher excitations behave more like the
random states while the Dicke states with single or low excita-
tions are not. A usual way of analyzing monogamy is to look
at the sum of all possible bipartite correlations with respect
to a particular party of a multipartite state. The monogamous
feature is reflected as an upper bound to this sum which turns
out to be much smaller than the algebraic maximum of the
sum. We provide an estimate of the sum for different bipartite
quantum correlation measures of random multipartite states
as well as Dicke states, thereby revealing the gap between the
algebraic maximum and the actual value which leads to the
violation of monogamy inequality.

In the case of measurement-based QC measures, we show
that even if the original state has low GME as well as low (both
positive and negative) monogamy score, substantial quantum
correlation can be localized using projective measurements,
which becomes more pronounced in the case of states having
more number of qubits. We support such observation both
qualitatively and quantitatively by considering the minimum
localizable QC produced from states with a fixed amount
of GME or monogamy score. A slightly contrasting behav-

ior is observed for randomly generated Dicke states with
a single excitation for which states possessing high GME
(monogamy score) can always produce a moderate amount of
localizable entanglement although low GME can also achieve
high localizable entanglement. This is due to the fact that
the sample space of Dicke states having high GGM is low
in number with the increase of the number of parties. Both
the results illustrate that the monogamy score can capture the
features of multipartite QCs more prominently compared to
the measurement-based QCs, thereby showing the interplay
between measurement - and monogamy-based measures with
GME. We also report that, unlike monogamy scores, the sum
of the localizable QCs of multipartite random states can reach
close to their algebraic maximum, especially for states with a
low number of qubits.

The paper is organized in the following way. Section II
establishes a relationship between monogamy of QCs and
genuine multipartite entanglement for random multipartite
states by varying parties from three to six, Dicke states with
different excitations [55] and three-qubit W-class states [56].
We characterize the set of states which are nonmonogamous
with respect to certain bipartite QC measures, in terms of
genuine multipartite entanglement content in Sec. II B. In
Sec. III, we finally relate the three quantities, monogamy
score, localizable entanglement, and GGM as well as report an
upper bound on the distribution of localizable entanglement.
The summary of results and their implications are presented
in Sec. IV.

II. MONOGAMY VERSUS GENUINE MULTIPARTITE
ENTANGLEMENT

Before providing the relation, let us first present the prereq-
uisites to carry out the investigation. We first give definitions
of monogamy score of an arbitrary QC measure, classes of
multiqubit states under study and genuine multipartite entan-
glement measure.

Monogamy of QC. The restrictions on the distribution of bi-
partite quantum correlations, Q, in a multiparty state, ρ1,...,N ,
is referred to as the monogamy of QCs. Quantitatively, it
constrains the sum of all bipartite QCs of a quantum state
with a given nodal party, say, 1, i.e., it provides an upper
bound, Q(ρ1:rest ), on

∑N
i=2 Q(ρ1:i ) where without loss of gen-

erality, we assume the nodal party to be the first party. Hence,
a state is said to be monogamous with respect to Q if it
satisfies Q(ρ1:rest ) � ∑N

i=2 Q(ρ1:i ). This is evaluated via the
monogamy score, which for any power, α, of a given Q, is
defined as [57]

δQα = Qα
1:rest −

N∑
i=2

Qα
1:i, (1)

where Qα
1:rest ≡ Qα (ρ1:rest ) and Qα

1:i ≡ Qα (ρ1:i ). In this work,
the QC measures are considered to be negativity (N ), concur-
rence (C), and quantum discord (D).

Simulation of quantum states. An N-qubit random pure
state chosen Haar uniformly reads as [58]

|ψR〉 =
2N∑
i=1

ξi|i1i2...iN 〉, (2)
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where ξ j = a j + i b j with a j and b j ∈ R being sampled from
a Gaussian distribution of mean 0 and unit standard deviation
(G(0, 1)) and {|ik〉}s constituting the computational basis. For
N = 3, the state space splits into two inequivalent classes of
states under stochastic local operations and classical commu-
nication, the GHZ- and the W-class states [56]. The GHZ class
states take the same form as in Eq. (2), while the W-class
states, constituting a set of measure zero are given by

|ψW 〉 = a|000〉 + b|001〉 + c|010〉 + d|100〉, (3)

where a, b, c, d are complex numbers whose real parts are
taken from G(0, 1). For states with higher number of qubits,
i.e., for (N � 3), we consider another class of states, the Dicke
states [55], which reduces to the generalized W state [obtained
from Eq. (3) by putting a = 0] for a three-qubit case. A Dicke
state of N qubits having r excitations is defined as

∣∣ψ r
D

〉 =
∑

cPP (|0〉⊗(n−r) ⊗ |1〉⊗r ), (4)

where P denotes the permutation of all states with n − r
excitations, |1〉 and r ground states, |0〉. The coefficients cP =
c1P + ic2P are again chosen from G(0, 1) during their sim-
ulation, so that random Haar uniformly chosen Dicke states
are numerically generated. For four- and five-party states, the
excitations are taken to be a single or two while we have upto
three excitations for six-qubit Dicke states.

Genuine multipartite entanglement: generalized geometric
measure. The genuine multiparty entanglement (GME) con-
tent of these random pure states can be computed using the
generalized geometric measure (GGM). It is a distance-based
measure of GME and is defined as the minimum distance of
a given state from the set of all nongenuinely entangled states
in the state space [28,59]. For general mixed states, carrying
out the minimization is very hard [60]. However, for pure
states, the Schmidt decomposition makes the optimization
procedure tractable and the GGM can be expressed in terms
of Schmidt coefficients in different bipartitions of the multi-
partite pure state |ψN 〉 as

G(|ψN 〉) = 1 − max{λA:B|A ∪ B
= {1, 2, . . . , N},A ∩ B = ∅}, (5)

where λA:B is the maximum Schmidt coefficient in the A : B
bipartition of |ψN 〉, and maximization is performed over all
such possible bipartitions. Before exploring the monogamy
features, let us discuss some of the GGM characteristics of
random states which will make it a convenient reference point
when comparisons with the monogamy scores will be made.

Frequency distribution of GGM. To calculate the frequency
distribution, f (G), we count the number of states having GGM
between, say, a and b which is then divided by the total
number of states simulated. In rest of the paper, wherever
we calculate frequency distribution, we use this normalized
version.

For random pure states of three to six qubits, the distribu-
tion takes a bell shape whose mean increases with N while the
standard deviation (SD) decreases with the increase of number
of parties as shown in Table I and Fig. 2. The maximum
value of GGM for random states that can be simulated also
increases when N increases from three to six and it is close to

TABLE I. Mean and SD of GGM, G for random states with
different number of parties.

Mean SD

3 0.162 0.069
4 0.231 0.055
5 0.295 0.042
6 0.347 0.031

its algebraic maximum, i.e., 0.5 for random six qubits, which
can also be obtained for the N-party GHZ state [28].

On the other hand, as one expects, the trends in frequency
distribution for GGM are drastically different for the Dicke
states with low excitations. In particular, if we consider Haar
uniformly generated three-qubit W states, f (G) is steadily
decreasing with a peak around 0–0.05 which hosts half of
the states. The corresponding average GGM is 0.063 with the
standard deviation being 0.056. Hence, most of the states in
this class possess a low genuine multipartite entanglement,
which reaches its maximum at 0.326. The maxima as well
as the average value of GGM for the Dicke states with a
single excitation sharply decreases with the increase of the
number of parties(see Tables II and III). For example, the
fraction of states residing in the GGM bin of 0–0.05 increases
with N–50% for three qubits, 70% for five qubits, and almost
all the simulated states for six qubits. Interestingly, with the
increase of excitations in Dicke states, the distribution follows
the same pattern as in the random states as we will show in the
following proposition.

Proposition 1. The average GGM of an N-qubit Dicke
state with N/2 excitations for even N and N/2 + 1 excitations

FIG. 2. (Normalized) Frequency distribution of GGM (ordinate)
vs GGM (abscissa). Haar uniformly random (red), random Dicke
class with single (blue), two (green), and three excitations (black)
for three- (bottom left), four- (bottom right), five- (top left), and
six-qubit states (top right) are generated. Number of states (all kinds)
simulated is 5 × 105. Although the ordinate is dimensionless, the
abscissa is in ebits.
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TABLE II. Mean and SD of G for random Dicke states having
different number of excitations.

∣∣ψ1
D

〉 ∣∣ψ2
D

〉 ∣∣ψ3
D

〉

Mean SD Mean SD Mean SD

3 0.11 0.079
4 0.062 0.048 0.21 0.082
5 0.039 0.033 0.22 0.066
6 0.028 0.023 0.183 0.049 0.313 0.056

for odd N is almost the same as that of the random states of N
qubits, especially in the limit N 	 1.

Proof. Let us first consider the situation when N is even.
The logic behind the statement remains similar for odd N .
For an N-qubit Dicke state comprising N/2 excitations hav-
ing equal coefficients, the maximum eigenvalue comes from
the 2 : N − 2 bipartition and is given by N/2(N − 1) [61].
Thus the GGM of such a state is Geq = (N − 2)/2(N − 1),
where the superscript “eq” indicates that the coefficients are
all equal. To obtain the GGM of an N-qubit random state,
we observe from our numerical calculations that the largest
eigenvalue comes from a single-party reduced density matrix.
To that end, we try to estimate it by approximating the average
value of the von Neuman entropy (given by −trρ log2 ρ) of the
reduced state, using the formula [62]

〈S〉 = log2(M ) − M

2K
= 1 − 1

2N−1
, (6)

where M = 2 is the dimension of the density matrix of the
one qubit reduced state and MK = 2N represents the total
dimension of the pure state from which the reduced system is
obtained upon tracing out. Since 〈S〉 is the entropy of a single
qubit state, we can find the largest eigenvalue, say, (1 − x) by
solving

−x log2(x) − (1 − x) log2(1 − x) = 〈S〉. (7)

Then, the average GGM of the random state is, 〈G〉 = x.
In the limit of a large number of parties, i.e., N 	 1, we

can approximate Geq as

Geq = 1

2

(N − 2

N − 1

)
= 1

2

(
1 − 2

N

)(
1 − 1

N

)−1

≈ 1

2

(
1 − 1

N

)
, (8)

TABLE III. Actual maximum of G by varying number of qubits
for randomly generated and Dicke states.

N Random
∣∣ψ1

D

〉 ∣∣ψ2
D

〉 ∣∣ψ3
D

〉

3 0.429 0.33
4 0.435 0.246 0.45
5 0.449 0.194 0.397
6 0.453 0.154 0.325 0.485

where we have ignored terms of O( 1
N2 ) and lower. In the

same limit, since 〈S〉 → 1, we have x → 1/2 and thus, we

can consider x = ( 1
2 − 1

2K ) with K → ∞. Therefore Eq. (7)
becomes

〈S〉 ≈ 1 − 1

22K
= 1 − 1

2N−1
, (9)

which implies K = N − 1/2 and 〈G〉 = 1
2 (1 − 1

2N−1/2 ). Here,
we have used the identity log2(1 ± ε) ≈ ±ε when ε → 0.
Therefore the difference between the GGM of the Dicke state
and the random state for large N scales as

〈G〉 − Geq ≈ 1

2N
− 1

2
N+1

2

≈ 1

2N
, (10)

which becomes vanishingly small as N assumes larger and
larger values, with both 〈G〉 and Geq tending towards 0.5.
Hence the proof. �

We will discuss the distribution of localizable QCs in sub-
sequent sections, but before that, we shall be investigating the
connection between monogamy score and GGM of a multi-
party entangled state.

We assume the nodal party to be the first party. Hence,
a state is said to be monogamous with respect to Q if it
satisfies Q(ρ1:rest ) � ∑N

i=2 Q(ρ1:i ). This is evaluated via the
monogamy score, which for any power, α, of a given Q, is
defined as [57]

δQα = Qα
1:rest −

N∑
i=2

Qα
1:i, (11)

where Qα
1:rest ≡ Qα (ρ1:rest ) and Qα

1:i ≡ Qα (ρ1:i ). In this work,
the QC measures are considered to be negativity (N ), concur-
rence (C), and quantum discord (D).

A. Relationship between monogamy score and GGM

To establish a connection between monogamy scores in
Eq. (11) with respect to negativity, concurrence and quantum
discord for various values of the exponent α and GGM, we
address the following questions.

(i) Is there a pattern in the distribution of nonmonogamous
states in terms of their GGM content? How does that depend
on the exponent α?

(ii) Is it possible to find a critical value of GGM be-
yond which no nonmonogamous states are present [Eq. (13)]
and is it independent of the choice of QC measure for a
fixed exponent? An answer to this question can shed light
on the properties of the nonmonogamous nature of QC mea-
sures, thereby giving a sufficient condition on states satisfying
monogamy relation in terms of GME. As we know, qualita-
tively and in an extreme situation, bipartite quantum states
having maximal QCs follow the monogamy relation. A pos-
sible reason can be that the violation obtained is due to the
stringent bound that we put on

∑N
i=2 Q1i. Hence, it will also

be interesting to find the actual upper bound on the sum for
random states.

(iii) If the distribution of GGM with respect to monoga-
mous and nonmonogamous states is considered, depending on
the set of states, how does such distribution change?
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FIG. 3. Frequency distribution of both nonmonogamous and
monogamous states with GGM. Both discord and negativity
monogamy scores are studied with α = 1. All other specifications
are same as in Fig. 2.

To examine the relational properties of randomly generated
states, we define the following quantities. Firstly, we segregate
the random states into bins possessing definite ranges of GGM
values and compute the fraction of nonmonogamous states in
each bin, which, in turn, is computed as

f NM
Qα = Number of nonmonogamous states

Total number of states within GGM range
, (12)

for a fixed QC measure. Such a quantity is useful to address
the first and the last questions while we compute the content
of GGM above which all randomly generated states turn out to
be monogamous which we refer to as critical value of GGM,
given by

Gc = maximum GGM beyond which δα
Q � 0, (13)

to obtain the answer to the second one. Our aim is to find the
change occurred in the critical GGM depending on the choice
of the QC measure, Q and power α in monogamy score.

1. Random states

Let us first resolve the questions for random Haar uni-
formly generated states. As we will show, completely different
picture emerges for a specific class of states. If we first fo-
cus on the nonmonogamous states as they vary with their
respective GGM content, we observe that with increase in
the number of parties, nonmonogamous states cease to exist,
especially for entanglement. Also, at higher values of GGM,
such states decrease in number, especially in case of entan-
glement but for discord, δD1 stays negative for a larger GGM
range (see Fig. 3). With an increase in the number of parties,
the minimum monogamy score goes from being negative to
positive and the corresponding nonmonogamous states pos-
sess low amount of genuine multipartite entanglement. This
is possibly expected, since with more number of parties, the
inherent quantum correlations present in the system increase
and nonmonogamous states exist only at small values of mul-
tipartite entanglement as depicted in Fig. 4. Moreover, we find
that the gGHZ state provides an upper bound for three-qubit
pure states which we will prove analytically both for negativ-
ity and concurrence-monogamy score. Interestingly, as shown
in Fig. 4, the upper bound does not hold with an increase in
the number of parties.

FIG. 4. δN (red) (vertical axis) against GGM (horizontal axis).
Again negativity monogamy scores for random three- (bottom left),
four- (bottom right), five- (top left), and six-qubit (top right) states for
a given GGM are plotted. Blue solid line represents the generalized
GHZ state. Both the axes are in ebits.

Theorem 1. For random three-qubit pure states |ψ〉, which
have the same GGM as the generalized GHZ state |ψGG

3 〉, the
entanglement monogamy score is bounded above by that of
the gGHZ state.

Proof. The reduced density matrices of the gGHZ state,
|ψGG

3 〉 = β|000〉 + γ |111〉, are separable and hence the
monogamy score for negativity reduces to

δGG
N = NGG

1:23 =
√

β2(1 − β2), (14)

assuming β2 � 1/2 � γ 2, while its GGM is always given
by G(|ψ3

GG〉) = 1 − β2, since it is symmetric with respect to
the permutation of parties. On the other hand, suppose the
tripartite state has Schmidt coefficient, λ2

1 � 1/2 in 1 : rest bi-
partition and GGM comes from that bipartition. If the GGM of
gGHZ and arbitrary tripartite state coincide, we have λ2

1 = β2.
Moreover,

δN � N1:23 =
√

λ2
1

(
1 − λ2

1

) = δGG
N (15)

and hence the proof. In a similar fashion, one can get the proof
for concurrence as for pure states, negativity and concurrence
are different by a factor of 2.

Let us assume that the largest eigenvalue contributing to
the GGM of the random state comes from a party, other
than the nodal party, i.e., G(|ψ3

R〉) = 1 − λ2
2 with λ1 < λ2 and

λ2
2 � 1/2. Again, we find λ2

2 = β2 by equating GGM for the
gGHZ and arbitrary state. Thus, from Eq. (15), we have δN �√

λ2
1(1 − λ2

1) �
√

λ2
2(1 − λ2

2) =
√

β2(1 − β2) = δGG
N and the

second inequality is due to the fact that λ2
2 � 1/2. �

The relation between monogamy score and GGM changes
drastically when the power involved in monogamy is taken
less than unity [13]. Specifically, when α � 0.5, all states
violate monogamy relation, i.e., δQα�0.5 < 0 and states having
high genuine multipartite entanglement can also violate the
monogamy relation as depicted in Fig. 5. For 0.5 < α < 1.0,
fraction of such states decreases and again similar pattern as
described before for α = 1 emerges. For α > 1.0, almost all
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FIG. 5. f NM
Qα (vertical axis) vs. GGM (horizontal). δα

D and δα
N

are plotted for different α values, for five-qubit random states (red
and blue), and five-qubit Dicke states with one excitation (green and
black in the bottom row). The y axis is dimensionless while the x axis
is in ebits.

states are monogamous, especially for states with five or more
qubits, irrespective of QC measures (see Fig. 5) [31].

2. W class

Among the states from the three-qubit W class, the range of
multipartite entanglement for which nonmonogamous states
exist is larger for a given QC measure, than the random states.
The fraction of such states is also larger for a particular GGM
interval. Thus the critical GGM is also higher in this case
compared to random states.

Considering negativity and concurrence, we see that when
α < 1, a significant percentage of states remains nonmonoga-
mous while with α � 1, the number of such states decreases
with G but nonmonogamous states exist for substantially high
values of the exponent, upto 1.9. In case of discord, however,
states violating the monogamy inequality exist for all values
of exponent upto α = 3, although the number is decreasing
with GGM for α > 1.0, provided the measurements are done
on the nodal party, i.e., the first party in our case.

3. Dicke states

As the number of excitations and parties increase, the sit-
uation is similar to the random states as already argued for
GGM. The nonmonogamous states fall in fraction more and
more sharply and with an increase in the number of parties,
the GGM range for the existence of such states also decreases.
For five and six qubits, all states become monogamous for two
or more excitations when α � 1. It indicates that multipartite
quantum correlations get enhanced with an increase in exci-
tations and they behave in a similar fashion to random states.
Similarly, Dicke states having high excitations and multipar-
tite entanglement content can violate monogamy score with
low α which does not remain true when α is increased. On
the other hand, Dicke states with a single or low excitations
show a large fraction of states to be nonmonogamous even for
a moderate α values (see Fig. 5).

B. Criticalities in GGM and monogamy power

An interesting feature in the relationship between GGM
and monogamy score is the existence of a critical value of
GGM, Gc as defined in Eq. (13). It means that if a random
state possess a GGM value above Gc, it is guaranteed to be
monogamous. We track the changes in the values of Gc with
the number of parties, N and the monogamy power α.

When the monogamy power is set to unity, i.e., α = 1, we
find that all QC measures show similar features, where the Gc

decreases with N , hitting zero for N = 5, see Fig. 6. For α

values different from unity, we get varying responses of Gc, as
seen in Fig. 6.

To associate Gc with α in monogamy score, for a fixed
multipartite entanglement content of a state, we find a criti-
cal exponent beyond which, the monogamy score is always
non-negative. We denote it by αC . To enunciate its variation
with GGM and its dependence on the number of parties, we
consider negativity and discord as the correlation measures.
Based on the observations from Fig. 7, we note the following
points.

(1) States which require a high value of α to satisfy the
monogamy inequality are present for low number of parties
and the number of such states decreases significantly for
N � 5.

(2) αC � 1 exist only for very low G. This is because,
states possessing significant genuine multipartite correlations
are monogamous over a large range of the exponent.

(3) Near the tail of the GGM spectrum, where states are
strongly quantum correlated, αC is low, even for low number
of qubits which is nicely depicted in Fig. 7 for three qubits.

(4) Nonmonogamous states are mostly observed for α � 1
for all multiqubit regimes, independent of the choice of QC
measures.

C. Maximum of the sum of bipartite QC measures

To understand the criticalities deeply, let us consider the
actual maximum of

∑N
i=2 Q1i and its difference with the al-

gebraic maximum. It is clear from previous investigation that
the monogamy-based bound is too stringent when α is small.
However, the sum of bipartite QCs is still lower than the sum
of the individual maxima, i.e.,

∑N
i=2 Q1i < (N − 1) for any

QC measure in a qubit scenario. Since the monogamy score
is negative for low values of α, the above quantity has a
substantial strength at those values and decreases sharply with
a rise in the exponent. With higher number of parties in the
parent multipartite state, it decreases for moderate to high α

and also drops down to zero much more rapidly. For negativ-
ity, it is lower than that of concurrence. Our observations are
illustrated in Fig. 8 for random states, and Dicke states.

D. Significance of the monogamy exponent α

Monogamy is a quantum property which can be demon-
strated by using certain quantum correlations as was initially
proposed by Coffman, Kundu, and Wootters [8]. At the same
time, δQα = Qα

1:rest − ∑N
i=2 Qα

1:i, which we refer to as the
monogamy score of Q, can be used to distinguish classes
of states. For example, δQα with squared concurrence (i.e.,
α = 2 and Q ≡ concurrence) vanishes for all states from the
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FIG. 6. The critical value of GGM above which all the states are monogamous for fixed QC measures, i.e., Gc (y axis) with respect to
N (x axis). As a QC measure, we consider negativity (left), concurrence (middle), and discord (right). Different exponents, α, involved in
monogamy are considered. The horizontal axis is dimensionless while the vertical one is in ebits.

W-class while it is nonvanishing for the GHZ-class states,
thereby differentiating between two SLOCC inequivalent
classes [56]. In this case, both classes satisfy the monogamy
inequality.

In the case of quantum discord [63], W-class states always
violate the inequality, and are thus referred to as nonmonog-
amous states in literature [64]. Moreover, we find that the
monogamy score shifts from being negative to positive with
an increase in the number of parties, independent of the corre-
lation measure chosen. This may be attributed to an increase
in inherent quantum correlations present in the states. Only
states with low value of genuine multipartite entanglement
(GME), possess a negative monogamy score when a large
number of parties are involved. This suggests that we can
gather an idea about the amount of correlation present in a
state by examining its monogamy score.

The monogamy inequality considered with the square of
the concurrence, i.e., α = 2. Thus it is important to extend
the idea to other powers of different quantum correlation
measures and study the behavior of states in terms of the
monogamy inequality. It was shown [35] that, for a given QC
measure, there always exists an exponent for which all states
satisfy the monogamy inequality. The work by Rethinasamy

FIG. 7. Critical exponent, αC (see text for definition) against
GGM both for discord (solid circles) and negativity (pluses)
monogamy scores. All other specifications are same as in Fig. 2.

et al. [13] found two such values of α, which provided bounds
on the exponent characterising monogamous and nonmonog-
amous states. This establishes the fact that the behavior of
states as well as correlations depends heavily on the exponent
considered in the monogamy inequality.

In our work, we try to explore the performance of states
in terms of the monogamy criterion, for α values differ-
ent from the bounds defined in the aforementioned article.
We observe a dependence of the monogamy inequality on the
exponent as well as on the number of parties comprising the
states. Thus, for a given class of states and a fixed quantum
correlation measure, the monogamy inequality also becomes
a function of the exponent. For example, we observe that for
Haar uniformly generated states, the monogamy inequality is
satisfied by almost all the states, whereas for states belonging
to the W class, a much higher value of α is required to satisfy
the same inequality. This feature shows that monogamy can
be well characterised by the exponent in the inequality.

III. INTERPLAY BETWEEN MEASUREMENT-,
GEOMETRY-, AND MONOGAMY-BASED QUANTUM

CORRELATIONS

Let us now move to relate measure-based QCs with both
the monogamy-based QC measures and geometric measure
of entanglement. The measurement-based measures as well
as geometric measures quantify QCs in an active way while
monogamy-based measures do the job in a passive way as
explained in the introduction. This is due to the fact that
instead of tracing out N − 2 parties and looking at algebraic
combinations of bipartite QCs, we now shift our attention
to quantum correlations which are obtained by employing
optimal local projective measurements on the N − 2 qubits of
the N-qubit state. These local measurements concentrate the
global correlations of the state into a particular bipartite pair
and are known as localizable correlations [10–12]. Therefore
the localized bipartite correlations have potential to capture
quantumness distributed in multipartite states [14,65].

Since we want to relate measurement-based QC measures
with the monogamy-based one, we introduce a localized ver-
sion of QC measure, Q, with a power α, denoted by LQα ,
when the local measurements are performed in the all the par-
ties except first two parties 1 and 2, and for a multipartite pure
state, |ψN 〉 and given QC measure, Q, it can mathematically
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FIG. 8. (Left) Plot of
∑

i Q1:i (ordinate) for three- (solid points) and four-qubit (hollow points) Haar uniformly generated states against α

(abscissa) in case of negativity (red), discord (blue) and concurrence (black). Similar study has been carried out for random Dicke states with
a single excitation (middle) and two excitations (right). The vertical axis is in ebits in case of entanglement, in bits in case of discord while the
horizontal axis is dimensionless.

be represented as

LQα (|ψN 〉) = max
{�}

2N−2∑
k=1

pkQα (|φk〉), (16)

where {�} denotes the set of local rank-1 projective measure-
ments on the N − 2 qubits, the binary equivalent of k is a
particular outcome combination of the N − 2 qubit projectors,
and |φk〉 is the normalized post measurement state for the
kth outcome with pk being the corresponding probability. We
report the connection of LQα with G and δQα , as well as
the variation of LQα with the power, α. For concurrence,
negativity and discord as QC measures, the respective local-
ized versions are denoted by LCα (|ψN 〉), LN α (|ψN 〉), and
LDα (|ψN 〉).

Localizable entanglement and GGM seem to be two un-
related quantities by definition. For example, if we consider
|ψ〉 = |φ+〉 ⊗ |0〉, where |φ+〉 = (1/

√
2)(|00〉 + |11〉), then

a σz measurement on the third party and subsequent tracing
out, we obtain a maximally entangled state, even though the
GGM of |ψ〉 is zero. On the other hand, a σx measurement on
the third party of the three-qubit GHZ state, and subsequent
tracing out also furnishes a maximally entangled state and
the GGM of the GHZ state is also maximal having a value
of 0.5. Therefore, in case of both vanishing GGM as well
as very high GGM, it is possible to localise high amount of
entanglement. Thus there seems to be no relation between the
two quantities if we consider extreme situations. The main
idea of this section is to show that the situation is not so
despairing if one considers random states.

A. Relation of LQα with δQα and GGM

Frequency distribution of localizable QCs. Before perform-
ing this relational analysis in a systematic way, let us study
the frequency distribution of LQα=1 (see Ref. [14] for en-
tanglement of formation). We find that like monogamy score
and GGM, the shape of the distribution for random states is
bell-like and it shifts towards its algebraic maximum with
the increase of N and becomes sharper with N since the
average value of LQα=1 increases and SD decreases with
the increase of number of parties as shown in Fig. 9. The
observation is independent of the choice of QC measures
and for different values of α for Haar uniformly generated
random states. The opposite picture emerges for the Dicke

states with low excitations—〈LQα=1〉 decreases with N , i.e.,
the distribution shifts towards the low value of the respective
measure for high N although the width of the distribution
decreases with the increase of number of parties. However,
the increase of mean with N is much slower than the one
observed for GGM. For example, the average obtained for
negativity and discord for Haar uniformly generated states
are respectively 0.337, 0.378, 0.397 and 0.58, 0.714, 0.727
with N = 3, 4, 5 (compare them with Table I). With the
increase of α, mean decreases and SD increases both for
random and Dicke states.

Relation of measurement-based QCs with generalized geo-
metric measure as well as monogamy score. In stark contrast
to the relation of monogamy score and GGM, measurement-
based QCs behave differently with GGM and monogamy
score. Specifically, in (G(δN 1 ),LQα=1)-plane, random states
are scattered, thereby showing that states with low GGM
(monogamy score) can result with high amount of localiz-
able entanglement and at the same time, states with high
multipartite entanglement are able to localize small amount
of entanglement as depicted in Figs. 10 and 11, irrespective
of number of parties. Such a picture only changes when we
consider the Dicke state with a single excitation which only
displays a triangular structure, thereby showing a forbidden

FIG. 9. f (LQα=1)(ordinate) vs. localizable QC measures. The
QCs localized here are negativity (red), concurrence (blue), and
discord (black) for three- (bottom left), four- (bottom right), five- (top
left), and six-qubit (top right) random states. All other specifications
are same as in Fig. 2.
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FIG. 10. Scattered plot of localizable negativity, LN , (y axis)
against GGM (x axis) for random states (bottom left), random Dicke
states with a single excitation (bottom right), two excitations (top
left) and three excitations (top right) for three (red), four (blue), five
(green), and six qubits (black). Both the axes are in ebits.

region in that plane. It implies that although states having
low GGM can concentrate high localizable entanglement, a
state with high GGM can always produce moderate amount
of entanglement for Haar uniformly generated Dicke states.

Next we will argue that the localizable entanglement (mea-
sured either by concurrence or negativity) can have substantial
value for sufficiently small GGM in case of random three-
qubit states as well as three-qubit |ψ1

D〉.
Proposition 2. For arbitrary three-qubit pure states, local-

izable entanglement can have a moderately high value even
when the genuine multipartite entanglement content of the
state is small.

Proof. The Schmidt decomposition for a tripartite pure
state is given by [66]

|ψ3〉 = a1|000〉 + a2 expiφ |100〉 + a3|101〉
+ a4|110〉 + a5|111〉, (17)

FIG. 11. LN (vertical) vs δN 1 (horizontal). All other specifica-
tions are similar to Fig. 10.

where all parameters are real and positive semidefinite
with 0 � φ � 2π and

∑
i a2

i = 1. By performing projective
measurement on the third qubit of |ψ3〉, the localizable con-
currence of the remaining two qubits is given by 2

√
det(ρ1),

where ρ1 = Tr2,3|ψ〉M〈ψ |, with |ψ〉M denoting the postmea-
surement state. Suppose that LC achieves its optimum value
due to measurements along the X , Y , or Z direction, i.e., in
the eigenvectors of σi, i = x, y, z. Incidentally, for all three
cases, the localizable concurrence is given by

LCσ = 2a1a4. (18)

The actual LC can be higher than LCσ , i.e., LCσ � LC.
To obtain G(|ψ〉), we note the eigenvalues of the single

qubit reduced density matrices corresponding to the state in
Eq. (17) to be

λ±
1 = 1

2

(
1 ±

√
1 − 4LCσ − f1(ai )

)
, (19)

λ±
2 = 1

2

(
1 ±

√
1 − LC2

σ − f2(ai )
)
, (20)

λ±
3 = 1

2

(
1 ±

√
1 − LC2

σ − f3(ai )
)
, (21)

where we have clubbed all the terms which cannot be written
in terms of LC into fi(ai ). Hence, the GGM is G(|ψ〉) = 1 −
λ+

i = λ−
i . Depending on the values of the coefficients, any one

λ+
i can give be maximum and that contributes to the GGM.

By ignoring fi(ai ) which are typically a very small numbers,
the relationship between the modified GGM and localizable
concurrence is found to be

LCσ =
√

1 − (1 − 2G1(|ψ3〉))2 if λ+
2,3 is maximum,

LCσ = (1 − (1 − 2G1(|ψ3〉))2)

2
if λ+

1 is maximum,

(22)

where G1(|ψ3〉) � G(|ψ3〉). Analysing the above relations ge-
ometrically, we observe, that even for values of G1(|ψ3〉) �
0.1, the LC with restricted set of measurement can be 0.6
or even higher. Since the original LC can be higher while
the GGM can also take a lower value than the actual one,
the above argument shows that sizeable correlations can be
localized even if the original state possesses insignificant mul-
tipartite entanglement. �

Remark. The similar argument can be given to have the
relation between localizable negativity and GGM. Since we
have already established a relationship between GGM and
monogamy score, the above results also imply that it is pos-
sible to find states having low monogamy score which can
produce corresponding high localizable quantum correlations
(see Fig. 11).

Like arbitrary three-qubit states, the three-qubit Dicke state
with a single excitation having low genuine multipartite entan-
glement can produce high localizable entanglement as shown
in Fig. 10. To show that, let us consider the three-qubit Dicke
state, |ψ1

D〉 = a1|100〉 + a2|010〉 + a3|001〉 with
∑

i ai = 1.
In this case, by assuming a1, a2 � a3, we have

G
(∣∣ψ1

D

〉) = a2
3 = 1 − a2

1 − a2
2, (23)

LCσ

(∣∣ψ1
D

〉) = 2a1a2. (24)
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FIG. 12. For a fixed N , we study the minimum localizable QC
(red) that can be obtained and its corresponding GGM (blue) are
plotted. Gx, x = C,N ,D denote the GGMs when minimum localiz-
able concurrence, localizable negativity, and localizable discord are
achieved. The y axis is in ebits and the x axis is dimensionless.

Some algebra then allows us to end up with the relation be-
tween G and the localizable concurrence as LCσ = G(|ψ1

D〉) +
(2a1a2) − a2

3. The above relation shows the linear dependence
of LCσ on G as depicted in Fig. 10. Since a1, a2 � a3, we have
(2a1a2) − a2

3 � 0 and thus, the dependence of LCσ � LC on
G also shows that the localizable concurrence easily exceeds
the GGM.

As discussed qualitatively and also in proposition 2, the
connection between GGM (monogamy score) and LQ does
not have any definite structure. To make their comparison
more quantitative, we consider two situations—1. For a fixed
N , we find minimum and maximum localizable QC that can
be achieved and the corresponding genuine multipartite en-
tanglement content of a state; 2. for a given range of GGM
values, minimum and maximum QC that can be localized are
focused on. In particular, we report that the GGM at which the
minimum of the correlation occurs increases with number of
parties for random states, as shown in Fig. 12. It is due to the
fact that among random states, average GGM also increases
with N . As seen from Table IV, to localize nonvanishing
QC, a very small amount of GGM is required. Moreover, we
observe that to localize minimum amount of QC in the first
and the second qubits, the GGM required is always higher
than the amount of LQC, i.e., LQmin < G. Secondly, if we
fix GGM in a certain range, the minimum localizable QC can
also follow the similar trend, i.e., to localize QC minimally,
the corresponding GGM required for that is substantial. On
the other hand, for a fixed GGM value, the localizable QCs
can always reach their corresponding maximum value.

TABLE IV. G for the corresponding minimum localizable QCs.

N LC LN LD

3 0.083 0.198441 0.149041
4 0.237 0.256076 0.292371
5 0.33 0.259891 0.330505
6 0.36 0.27 0.328931

FIG. 13. Scattered diagram of localizable discord against δDα

(black) and GGM (green). The choices of α are 0.1 (bottom left),
0.5 (bottom right), 1.1 (top left), and 1.5 (top right) where four-qubit
Haar uniformly simulated random states are considered.

Effects of exponents on QCs in localizable quantity. We
now investigate the effect of varying α introduced in the
localizable QCs and we consider the same α in monogamy
score. The trend that we observed in Proposition for arbitrary
states or Dicke state remains same by varying α. In particular,
when we have low α < 1, highly localizable entangled states
are generated for varying GGM and monogamy score while
for high α, low amount of entanglement can be localized.
Such observation is possibly artifact of the functional form
of the QC measures as also the case of monogamy scores (see
Fig. 13).

Similar to Fig. 7, we now ask a question: for a given
localizable QC, what is critical exponent above which, the
monogamy score is always nonnegative? We find that unlike
GGM, no such universal picture emerges as we hinted by
the relation between localizable QC and GGM. In this case,
states with high localizable QC can require high α to make
the states monogamous (see Fig. 14). Only low α is required
for high N in case of δQ, which one expects from the behavior

FIG. 14. Critical exponent αC is plotted against LN (blue cir-
cles) and LD (red crosses) for three-, four-, five-, and six-qubit
random states. All other coordinates are same as in Fig. 2.
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TABLE V. Maximum of
∑N

i=2 LQ1i.

∑N
i=2 LN 1i

∑N
i=2 LC1i

∑N
i=2 LD1i

Random ψ1
D ψ2

D ψ3
D Random ψ1

D ψ2
D ψ3

D Random ψ1
D ψ2

D ψ3
D

3 0.997 0.707 1.993 1.414 1.995 1.563
4 1.481 0.866 1.47 2.973 1.732 2.94 2.946 1.654 2.22
5 1.944 1.1 1.917 3.94 2 3.83 3.845 1.939 2.465
6 2.34 1.398 2.104 2.22 4.52 2.58 4.17 4.3 4.14 2.435 2.94 4.247

of monogamy score itself. This observation possibly indicates
that localizable QC measure has some component which are
due to multipartite state but is qualitatively different than mul-
tipartite entanglement monotones (cf. Ref. [65]). Notice also
that such conclusion may be changed if we alter the definition
of localizable QC (cf. Ref. [67] and references thereto).

B. Deviation from algebraic maximum

Let us now investigate the behavior of
∑N

i=2 LQ1i for an
N-partite state. The algebraic maximum of this quantity is
(N − 1) which can be achieved by the GHZ state. However,
the actual bound turns out to be quite different for Haar uni-
formly generated states. We observe that the sum falls short of
its algebraic value for all classes of states, especially for high
N (see Table V).

For random three-qubit states, the actual upper bound is
close to its algebraic maximum, i.e., 2 although the differ-
ence between algebraic maxima and the maximum obtained
numerically increases with the number of parties. For ex-
ample, if we consider concurrence as a quantum correlation
measure, the gap is 0.007 for three-qubit random states while
it rises to 0.48 in case of six-qubits (see Fig. 15). In case of
Dicke state, the gap turns out to be significant, i.e., it fails to

FIG. 15. f (
∑N

i=2(LC)i ) (ordinate) against
∑N

i=2(LC)i (abscissa)
for three-(red), four- (blue), five- (green) and six- qubit (black) ran-
dom states. It also shows that although for three-qubits, sum is close
to the algebraic maximum, the gap between algebraic maxima and
the maximum of the sum obtained via random states increases with
the increase of the number of parties. The ordinate is dimensionless
while the abscissa is in ebits.

attain the algebraic threshold by a big margin. In this instance
too, the difference increases with the number of constituent
qubits. For example, the sum reaches only about half of the
algebraic maximum for |ψ1

D〉. However, with more number of
excitations in Dicke states, picture similar to random states
develops.

IV. CONCLUSION

In a multipartite domain, quantum correlations (QC) even
for pure states cannot be characterized in a unique way.
Over the years, several quantifications from different ori-
gins have been proposed which elucidate specific features
of quantum states, important for building quantum technolo-
gies. In this work, we provide a connection between three
such independent quantum correlation measures, defined from
different perspectives, thereby bringing them under a sin-
gle umbrella. In particular, we choose a geometry-based
entanglement measure quantifying genuine multipartite en-
tanglement, monogamy-based quantum correlation measures
with different exponents and measurement-based measures.
Both monogamy- and measurement-based measures are
constructed by considering both entanglement and other quan-
tum correlation measures.

We reported that there exists a critical content of genuine
multipartite entanglement above which no multipartite states
violate monogamy inequality. Typically, monogamy relations
for a quantum correlation are considered with an exponent
that can be thought of as “ad hoc” [39]. We find that for a
fixed genuine multipartite entanglement, there always exists a
critical exponent above which all measures satisfy monogamy
relation. For Haar uniformly generated states, such a critical
exponent decreases with the increase of number of parties.
We also proved that if an arbitrary three-qubit state and gen-
eralized Greenberger-Horne-Zeilinger states (gGHZ) possess
the same amount of genuine multipartite entanglement, then
the entanglement monogamy score of the former is bounded
above by that of the latter. Such a hierarchy between random
states and gGHZ states does not hold for states with a higher
number of parties. The back of the envelope calculations
also reveals that average genuine multipartite entanglement
content of random states with arbitrary number of parties
coincides with the Dicke states having half of the sites
excited.

On the other hand, we showed that a state having low
multipartite entanglement content can localize a high amount
of quantum correlations in two parties and vice-versa. This
result indicates that localizable quantum correlations can
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have some components carrying multipartite characteristics of
states although it also highlights the difference between gen-
uine multipartite entanglement and localizable entanglement.
Notice that a different process of sweeping entanglement to-
wards two parties than the one considered in this work may
show different characteristics. Interestingly, we observe that
the monogamy score of QCs behaves more like multipartite
measures than localizable QCs. Specifically, we observed that
states having high localizable entanglement may require a
high critical exponent to satisfy the corresponding monogamy
inequality, thereby showing its different nature from genuine
multipartite entanglement. Moreover, we found that the sum
of bipartite localizable entanglement of multipartite random
states are bounded above by a quantity which is close to
its algebraic maximum and the gap between algebraic and
the actual bounds increases with the number of parties for
random states while the difference is substantial for Dicke
states.

Since all the quantum correlation quantifiers have different
kinds of importance in quantum information science, the con-
nection established in this paper possibly gives a hint towards
choosing the QC measure, depending on their tasks, instead
of their amount.
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