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Fisher information of sequential measurements and the optimization in composite systems
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In parameter estimation, the saturation of the quantum Cramér-Rao bound (QCRB) requests one to perform
projective measurements on the eigenvectors of the symmetric logarithmic derivative (SLD). However, it maybe
infeasible to saturate the QCRB in composite systems on account of the technological difficulties. In practice, it
is necessary to perform sequential measurements on different subsystems to obtain a precise estimation. In this
paper, we derive the expression of Fisher information (FI) for a sequential measurements scheme in composite
systems with N interacting subsystems. The result shows that the more subsystems used, the higher FI obtained
due to the nonnegative property of FI. We illustrate the optimal measurements for different conditional density
matrices in every subsystems are nonidentical, which depends on the previous outcomes. In addition, utilizing
the convexity property of the quantum FI, we prove that the optimal projective measurements on the eigenvectors
of the SLD of the subsystem reduced density matrix can be regarded as a trade off of the nonidentical optimal
measurements of the conditional density matrices in every subsystems. In addition, importantly, we show the
measurement sequence of the subsystem should be considered in the optimization to obtain a precise estimation
for the sequential measurements scheme. Finally, we apply the theory to a nuclear spins control model where
we concern the estimation of nuclear Larmor frequency. We should point out that the precision obtained by the
sequential measurements scheme is no better than the theoretical result in the global system limited by the QCRB
but more realistic, and better than the local measurements in one of the subsystems.
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I. INTRODUCTION

Metrology, a basic statistical task, started from the pioneer-
ing work of Fisher for estimating the unknown parameters
[1,2], which was advanced by quantum mechanics later. In
quantum metrology, the estimation precision is bounded by
the quantum Cramér-Rao bound (QCRB) [3–6], namely, the
variance of the estimation is at least as high as the inverse of
the quantum Fisher information (QFI).

A complete progress of quantum parameter estima-
tion includes three steps: preparation, parametrization, and
measurement. Achieving a high estimation precision is a sig-
nificant project in production and practice. Therefore, it is
necessary to optimize the above three steps. For preparation,
one could employ quantum advantages, such as squeezing [7]
and entanglement [8–10]. With an entangled quantum state,
the precision can be improved from the classical shot-noise
limit (scaling as N−1/2) to the Heisenberg limit (scaling as
N−1), and the more resources used, the higher the precision
obtained [11–13]. For parametrization, the unitary dynamic
is the main approach to encoding the unknown parameters
into a quantum states [14–18]. One can take the Hamiltonian
extension or subtraction to obtain a higher precision [18].
In addition, the optimization of measurement is also vital to
attain the QCRB.

It is known that if the quantum state is parameterized with
a single unknown parameter, one such measurement is the
projective measurements on the eigenvectors of the symmet-
ric logarithmic derivative (SLD) [4,5]. However, the optimal
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measurement may be physically possible but technologically
difficult in composite systems due to the multiformity and
complexity of the quantum systems, such as two entangled
particles with a long distance, thermodynamics [19–21], and
optomechanical [22] systems. Therefore, the optimal global
measurement is generally infeasible in composite systems
[22]. Fortunately, the interaction leads to the entanglement
above all the subsystems and the information of the unknown
parameter is imprinted in the states of all the subsystems, so
that the local measurements on the subsystems have attracted
a great deal of interest on account of their accessibility in
practice [23–25]. Recently, the authors of Ref. [26] showed
a sequential measurements scheme with a many-body probe
for estimating a local magnetic field upon its first qubit where
the measurement was performed on the last one, which could
reach the Heisenberg bound with a given measurement basis.
In such a scheme, the QFI of the global system is unachiev-
able. This gives rise to the following questions. What is the
expression of the FI if one performs the sequential measure-
ments scheme on different subsystems? How does one obtain
a high precision in this scheme if possible? Additionally,
should the sequence of the measurement on different subsys-
tems be considered in the optimization?

In this paper, we will answer the above issues and optimize
the sequential measurements scheme to obtain a precise esti-
mation in composite systems. We first derive the expression
of FI for sequential measurements with N interacting subsys-
tems. It shows that the FI is a sum of different subsystems FI
and the more subsystems used, the higher FI obtained due to
the nonnegative property of FI. In addition, the optimization of
the measurement on different subsystems is also considered.

2469-9926/2023/108(1)/012419(8) 012419-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7632-5555
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012419&domain=pdf&date_stamp=2023-07-17
https://doi.org/10.1103/PhysRevA.108.012419


JIANNING LI AND DIANZHEN CUI PHYSICAL REVIEW A 108, 012419 (2023)

While one performs the local measurements in one subsystem,
the density matrix collapses to the corresponding subspace,
which is dependent on the previous measurement. Therefore,
one needs to optimize the next measurement according to the
outcomes. More specifically, the optimization should be done
for different conditional density matrices in every subsystem
and these optimal measurements are generally nonidentical.
Then, utilizing the convexity property of the QFI, we prove
that the optimal projective measurements on the eigenvectors
of the SLD of the subsystem reduced density matrix can be
regarded as a trade off of the nonidentical optimal measure-
ments of the conditional density matrices in every subsystem.
Finally, we point out that it is necessary to optimize the mea-
surement sequence of the subsystems due to the fact that the
FI is dependent on the previous outcomes. To illustrate our
theory, we apply it to the nuclear spins control model where
we are concerned with the estimation of the nuclear Larmor
frequency.

This paper is organized as follows. We introduce the
theoretical background, derive the expression of FI for the se-
quential measurements scheme, and give the trade off for the
nonidentical optimal measurements of different conditional
density matrices in Sec. II. In Sec. III, we apply the theory
to the nuclear spins control model where we focus on the es-
timation of the nuclear Larmor frequency and compare the FI
for different measurement schemes. Finally, we conclude and
discuss the results in Sec. IV. The appendices are provided
as a supplement for the derivation and discussion in the main
text.

II. THEORETICAL FRAMEWORK

In this section, we first provide a summary of the neces-
sary notations for single parameter quantum metrology theory,
which will be used in the following. Then we give the general
framework to calculate the FI of the sequential measurements
scheme in composite systems with N interacting subsystems
and give the optimal measurements for every subsystem. Next,
we prove that the optimal projective measurements on the
eigenvectors of the SLD of the reduced density matrix can be
regarded as the trade off of the nonidentical optimal measure-
ments of the conditional density matrices in every subsystem
by means of the convexity property of the QFI. Finally, we
illustrate that the measurement sequence of the subsystems
should be considered in the optimization if we want to obtain
as precise an estimation as possible.

A. Background

We consider an unknown parameter θ which is encoded
into a parameterized density matrix ρθ and are concerned
about the estimation of it. We perform the positive-operator-
valued measurements (POVMs) {Mx} satisfying

∑
x Mx = I,

where x is the outcome of Mx and I is the identity oper-

ator, and the corresponding probability distribution of the
outcome x is pθ (x) = Tr(ρθMx ). For a statistical sample with
n outcomes Xn = {x1, . . . , xn}, we can construct an unbiased
estimator θ̂ (Xn), whose statistical average is E [θ̂ (Xn)] = θ , to
estimate the value of θ . The variance of the unbiased estimator
θ̂ is bounded by the Cramér-Rao bound as δθ̂2 � 1

nFc
, here

δθ̂2 = E (θ̂ − θ )2 is the variance of the unbiased estimator
and n is the number of repetitions for the procedure, which
is assumed to be asymptotically large. In addition, Fc is the
classical FI [1]

Fc =
∑

x

1

pθ (x)

[
∂ pθ (x)

∂θ

]2

. (1)

The ultimate bound can be obtained upon maximizing the
classical FI over the set of all possible POVMs. Then we get
the quantum Cramér-Rao bound (δθ̂ )2 � 1

nFQ
, where FQ =

Tr(ρθL2
θ ) is the QFI, Lθ is the SLD which obeys the operator

equation ∂ρθ

∂θ
= 1

2 (ρθLθ + Lθρθ ) [4,5]. With the spectral de-
composition of the density matrix ρθ = ∑

n μn|ψn〉〈ψn|, we
obtain the expression of the SLD, which can be expressed
as Lθ = ∑

n,m
2〈ψn|∂θ ρθ |ψm〉

μn+μm
|ψn〉〈ψm| where μn + μm �= 0. Ac-

cordingly, the optimal measurement Mx satisfies [4]

Im(Tr[ρθMxLθ ]) = 0,
√

Mx
√

ρθ

Tr[ρθMx]
=

√
MxLθ

√
ρθ

Tr[ρθMxLθ ]
,

(2)

where Im denotes the imaginary part. Equation (2) shows that
the optimal measurement Mx are the projective measurements
on the eigenvectors of the SLD. Next, we will give the ex-
pression of the FI for sequential measurements scheme in
composite systems with N interacting subsystems.

B. FI of sequential measurements scheme in composite systems
with N interacting subsystems

Consider a composite quantum system that consists of
N interacting subsystems and the general time-independent
Hamiltonian can be expressed as

HN (θ ) =
N∑

α=1

Hα + Hint, (3)

where Hα is the Hamiltonian of the αth subsystem and Hint

is the interaction Hamiltonian of the N subsystems. The un-
known Hamiltonian parameter θ is encoded into an initial
density matrix ρ0 by the unitary dynamic ρθ = Uρ0U †, here,
U = e−iHN (θ )t is the unitary operator, and we are concerned
about the estimation of θ in the following.

While we perform the sequential measurements on the
subsystems one by one to estimate the unknown θ as the
schematic shown in Fig. 1, the FI is calculated as the following
(the details are shown in Appendix A):

F (ρθ ) = F (ρ1
θ |M1) +

∑
n1

i

pθ

(
n1

i

)
F

(
ρ

2|n1
i

θ

∣∣M2|n1
i
)

+ · · · +
∑

n1
i ,...,n

N−2
j ,nN−1

k

pθ

(
n1

i , . . . , nN−2
j , nN−1

k

)
F

(
ρ

N |n1
i ,...,n

N−2
j ,nN−1

k

θ

∣∣MN |n1
i ,...,n

N−2
j ,nN−1

k
)
, (4)
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where

ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ = Tr �=α

[(
M1

i ⊗ · · · ⊗ M
α−1|n1

i ,...,n
α−2
l

s ⊗ Iα ⊗ · · · ⊗ IN
)
ρθ

]
pθ

(
n1

i , . . . , nα−2
l , nα−1

s

) , α ∈ [1, N], (5)

is the conditional density matrix for the αth subsystem
with α − 1 outcomes n1

i , . . . , nα−2
l , nα−1

s [23], where
nα−1

s is the outcome in (α − 1)th subsystem with the

measurement M
α−1|n1

i ,...,n
α−2
l

s . The partial trace in Eq. (5)
is over the subsystems except the αth. While α = 1,
ρ1

θ = Tr �=1(ρθ ) is the reduced density matrix of the
first subsystem. pθ (n1

i , . . . , nα−2
l , nα−1

s ) = p1
θ (n1

i ) · · ·
pα−1

θ (nα−1
s |n1

i , . . . , nα−2
l ) is the joint probability for

the α − 1 outcomes, and pα−1
θ (nα−1

s |n1
i , . . . , nα−2

l ) =
Tr(ρ

α−1|n1
i ,...,n

α−2
l

θ M
α−1|n1

i ,...,n
α−2
l

s ) is the conditional probability

for the outcome nα−1
s . F (ρ1

θ |M1) = ∑
n1

i
p1

θ (n1
i )[ ∂lnp1

θ (n1
i )

∂θ
]
2

is

the FI of the reduced density matrix ρ1
θ for the first subsystem,

F (ρ2|n1
i

θ |M2|n1
i ) = ∑

n2
j

p2
θ (n2

j |n1
i )[

∂lnp2
θ (n2

j |n1
i )

∂θ
]
2

is the FI of the

conditional density matrix ρ
2|n1

i
θ for the second subsystem

with outcome n1
i in the first one, and so on. Equation (4)

shows that the FI of the sequential measurements is a sum of
different subsystems FI and the more subsystems used, the
higher the FI obtained on account of the nonnegative property
of FI.

To obtain as a high an FI as possible, one should
optimize the measurements performed on the subsystems
with different conditional density matrices to obtain a precise
estimation of the unknown parameter. According to Eq. (2),
it is necessary to perform the projective measurements

on the eigenvectors of SLD L
α|n1

i ,...,n
α−2
l ,nα−1

s

θ to obtain the

QFI of the conditional density matrices ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ

in every subsystem, where the corresponding SLD

satisfies ∂ρ
α|n1

i ,...,nα−2
l ,nα−1

s
θ

∂θ
= 1

2 (L
α|n1

i ,...,n
α−2
l ,nα−1

s

θ ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ +
ρ

α|n1
i ,...,n

α−2
l ,nα−1

s

θ L
α|n1

i ,...,n
α−2
l ,nα−1

s

θ ). Therefore, the optimal
measurements which are dependent on the previous outcomes
are generally nonidentical. Next, we will prove the optimal
projective measurements on the eigenvectors of the SLD of
the subsystem reduced density matrix can be regarded as the
trade off of the nonidentical optimal measurements of the
corresponding conditional density matrices, which allows

FIG. 1. A schematic of the sequential measurements scheme
with N interacting subsystems, where ρθ is the parameterized den-
sity matrix and θ is the unknown parameter to be estimated. The
measurements performed on different subsystems with conditional
density matrices are dependent on the previous outcomes as listed in
the schematic.

us to choose the identical measurement in every subsystems
regardless of the previous outcomes, but the precision is no
better than the nonidentical optimal measurement scheme.

C. Trade off of the nonidentical optimal measurements of
different conditional density matrices

In the previous subsection, we showed the FI of the se-
quential measurements scheme is a sum of the subsystems
FI. To obtain a high FI in the subsystems, one should per-
form the projective measurements on the eigenvectors of the

SLD L
α|n1

i ,...,n
α−2
l ,nα−1

s

θ of different conditional density matrices

ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ , where the optimal measurements are depen-
dent on the previous outcomes and generally nonidentical.
Here, by means of the convexity property of the QFI, we show
the optimal projective measurements on the eigenvectors of
the SLD of the reduced density matrix ρα

θ (take the partial
trace on ρθ over the subsystems except αth) can be regarded
as the trade off of the nonidentical optimal measurements of
the conditional density matrices for every subsystem.

Notice the intrinsic relation between the conditional den-
sity matrices ρ

α|n1
i ,...,n

α−2
l ,nα−1

s

θ and the reduced density matrix
ρα

θ for the αth subsystem

ρα
θ ≡ Tr �=α (ρθ )

=
∑

n1
i ,...,n

α−2
l ,nα−1

s

pθ

(
n1

i , . . . , nα−2
l , nα−1

s

)
ρ

α|n1
i ,...,n

α−2
l ,nα−1

s

θ ,

(6)

where the partial trace is over all the subsystems except αth,∑
n1

i ,...,n
α−2
l ,nα−1

s
pθ (n1

i , . . . , nα−2
l , nα−1

s ) = 1, Eq. (6) shows that
the reduced density matrix ρα

θ of the αth subsystem is the

superposition of the conditional density matrix ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ

with the probability pθ (n1
i , . . . , nα−2

l , nα−1
s ). Utilizing the con-

vexity property of the QFI [27–30]

∑
j

c jFQ(ρ j
θ ) � FQ

(∑
j

c jρ
j
θ

)
, (7)

where c j is the weight of ρ
j
θ satisfying

∑
j c j = 1. Combining

Eq. (6), we can obtain∑
n1

i ,...,n
α−2
l ,nα−1

s

pθ

(
n1

i , . . . , nα−2
l , nα−1

s

)
FQ

(
ρ

α|n1
i ,...,n

α−2
l ,nα−1

s

θ

)

� FQ(ρα
θ ), (8)

where FQ(ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ ) = Tr[ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ

(L
α|n1

i ,···,nα−2
l ,nα−1

s

θ )2] and FQ(ρα
θ ) = Tr[ρα

θ (Lα
θ )2] are the

QFI of the conditional density matrices ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ

and the reduced density matrix ρα
θ in the αth subsystem,

respectively, Lα
θ is the corresponding SLD satisfying

012419-3



JIANNING LI AND DIANZHEN CUI PHYSICAL REVIEW A 108, 012419 (2023)

∂ρα
θ

∂θ
= 1

2 (Lα
θ ρα

θ + ρα
θ Lα

θ ). Equation (8) shows that the FI
obtained by performing the local optimal measurements
on the subsystems with reduced density matrix ρα

θ is no
higher than the nonidentical optimal measurements with
the different conditional density matrices. In addition, the

optimal measurements for saturating FQ(ρ
α|n1

i ,...,n
α−2
l ,nα−1

s

θ ) and

FQ(ρα
θ ) are the projective measurements on the eigenvectors

of L
α|n1

i ,...,n
α−2
l ,nα−1

s

θ and Lα
θ , respectively. Therefore, the optimal

projective measurements on the eigenvectors of the Lα
θ can

be regarded as the trade off of the nonidentical optimal
measurements of different conditional density matrices. With
this identical measurement, the FI in Eq. (4) can be rewritten
as

F̃ (ρθ ) = F (ρ1
θ |M1) +

∑
n1

i

pθ

(
n1

i

)
F

(
ρ

2|n1
i

θ

∣∣M2
) + · · · +

∑
n1

i ,...,n
N−2
j ,nN−1

k

pθ

(
n1

i , . . . , nN−2
j , nN−1

k

)
F

(
ρ

N |n1
i ,...,n

N−2
j ,nN−1

k

θ

∣∣MN
)
, (9)

where Mα denote the identical measurements for the condi-
tional density matrices ρ

α|n1
i ,...,n

α−2
l ,nα−1

s

θ in αth subsystem and
the optimal identical measurements are independent on the
previous outcomes only dependent on the subsystem reduced
density matrix. And we should point out that the FI F̃ (ρθ )
in Eq. (9) is no higher than F (ρθ ) given by Eq. (4) limited
by the convexity property of QFI shown in inequality (8).
In addition, we should point out that in order to obtain a
high FI in Eq. (4), the measurement sequence of the subsys-
tems should be considered in the optimization. In contrast,
if one choose the identical measurement on the subsystem
for different conditional density matrices no matter what the
outcomes are in the previous, the sequence of the subsystem
has no influence on the FI, and these will be shown in the next
section with numerical results.

III. EXAMPLE

In the previous section, we showed the general frame-
work for calculating the FI of the sequential measurements
scheme in composite systems with N interacting subsystems
and proved the trade off of the nonidentical optimal measure-
ments of the corresponding conditional density matrices are
the projective measurement on the SLD of the reduced density
matrices in every subsystem. Here, we apply the theory to the
nuclear spins control model where we are concerned with the
estimation of nuclear Larmor frequency, compare the FI for
the sequential measurements scheme and local measurements
scheme, and examine the trade off relation of the nonidentical
optimal measurements. In addition, considering that the FI
of the sequential measurements scheme is dependent on the
previous outcomes in Eq. (4), therefore, the measurement se-
quence of the subsystems should be considered if we want to
obtain a precise estimation, which is shown with the numerical
results in the following.

Control experiments of nuclei in solids are ubiquitous in
quantum technology setups. The nitrogen-vacancy (NV) cen-
ter in diamond has been found to be a powerful platform
for various sensing applications [31–34]. The Hamiltonian
of the NV center electronic spin and the nuclear spin with
dipole-dipole interaction under an on-resonance drive is given
by [35–38]

H (ωl ) = ωl

2
Iz + ω0

2
σz + gσzIx + 
1σxcos(ω0t ), (10)

where ωl is the Larmor frequency of the nuclear spin; ω0 is the
energy gap of the electronic spin; Ix, Iz, σx, and σz are the Pauli
operators of the nuclei and the electronic spin, respectively. g
is the electron-nucleus coupling strength and 
1 is the Rabi
frequency of the drive. We move to the interaction picture
to eliminate the time-dependence of the drive and make the
rotating-wave-approximation assuming ω0 	 
1 [38,39], we
obtain

HI (ωl ) = 
1

2
σx + ωl

2
Iz + gσzIx. (11)

Next, we employ Hamiltonian (11) to encode the concerned
parameter ωl into an initial density matrix ρ0 = |�(0)〉〈�(0)|,
here |�(0)〉 = sinφ|ge, en〉 + cosφ|ee, gn〉, where |gβ〉 and
|eβ〉, β ∈ {e, n} are the ground and excited states of the
electronic and nuclear spins, respectively. In addition, the
parameterized density matrix is

ρωl = Uρ0U
† = |�(ωl )〉〈�(ωl )|, (12)

where U = e−iHI (ωl )t is the unitary operator and

|�(ωl )〉 = 1
2 [e−iE1t (cosθ+ + sinθ+)|E1〉
+ e−iE2t (sinϕ+ − cosϕ+)|E2〉
+ e−iE3t (cosθ+ − sinθ−)|E3〉
+ e−iE4t (sinϕ− − cosϕ−)|E4〉], (13)

where tanθ+ = g

α+
√

α2+g2
, tanϕ+ = g

β+
√

β2+g2
, tanθ− =

g

α−
√

α2+g2
, and tanϕ− = g

β−
√

β2+g2
, here, α = ωl −
1

2 and

β = ωl +
1
2 , and we set φ = π

4 in Eq. (13) for simplicity. Ei

and |Ei〉 are the eigenvalues and eigenvectors of Hamiltonian
(11), respectively. The details for calculating |�(ωl )〉 are
shown in the Appendix B.

Then we consider the local measurement M1
i on the first

subsystem (the first subsystem could be either the electron or
nucleus subsystem, and we will show the numerical results of
different measurement sequences in the following), according
to Eq. (5), the corresponding conditional density matrix of
another subsystem can be expressed as

ρ
2|n1

i
ωl = Tr1

[(
M1

i ⊗ I2
)
ρωl

]
p1

ωl

(
n1

i

) , (14)

where p1
ωl

(n1
i ) = Tr[ρωl (M

1
i ⊗ I2)] is the probability of the

outcome n1
i in the first subsystem and I2 is the identity
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FIG. 2. (a) The FI of different measurement schemes with re-
spect to φ of different initial states. The red dotted and blue
dashed lines for F e→n and F n→e are the results of the sequential
measurements scheme with different measurement sequence of the
subsystems. The black solid line is the result of the trade off of
the nonidentical optimal measurements on the eigenvectors of the

conditional density matrix ρ
2|n1

i
ωl whatever the outcomes are in the first

subsystem and F̃ (ρωl ) is independent on the measurement sequence
of the subsystem. The green dash-dotted and the magenta dash-
dotted lines are the QFI with the local optimal measurements in one
of the subsystem with the reduced density matrices ρβ

ωl
, β ∈ {e, n},

of different subsystems. (b) The probability pβ
ωl

(nβ

i ), of the mea-
surement in the first subsystem for different measurement sequence
where the dashed lines and solid lines correspond to F e→n and F n→e,
respectively, performing projective measurement Mβ

i , on SLD of the
corresponding reduced density matrices ρβ

ωl
with outcomes nβ

i . The
system parameters are chosen as 
1 = 3, ωl = 2, g = 2, and t = 10.

operator of another subsystem. Next, we perform another

local measurement M2|n1
i

j and the joint probability distribution
pωl (n

1
i , n2

j ) of the sequential measurements with outcomes n1
i

and n2
j is decomposed as

pωl

(
n1

i , n2
j

) = p1
ωl

(
n1

i

)
p2

ωl

(
n2

j |n1
i

)
, (15)

where p2
ωl

(n2
j |n1

i ) = Tr(ρ2|n1
i

ωl M2|n1
i

j ) is the conditional proba-
bility of the outcome n2

j . Submitting Eq. (15) into Eq. (4), we
obtain the FI

F (ρωl ) = F
(
ρ1

ωl

∣∣M1
) +

∑
n1

i

p1
ωl

(
n1

i

)
F

(
ρ

2|n1
i

ωl

∣∣M2|n1
i
)
, (16)

where ρ1
ωl

= Tr2(ρωl ) is the reduced density matrix of the first
subsystem. Equation (16) includes two parts, one is the FI by
performing the local measurement on the first subsystem with
reduced density matrix ρ1

ωl
and the other is the superposition

of the FI with the conditional density matrices ρ
2|n1

i
ωl where

the corresponding probability is p1
ωl

(n1
i ). Obviously, the FI

obtained by the sequential measurements scheme is higher
than the local measurements on one subsystem due to the
nonnegative of FI.

We show the numerical results of FI with the parameter-
ized density matrix ρωl of Eq. (12) in Fig. 2(a) for different
measurement schemes, where the measurements for the first
subsystem are performed on the eigenvectors of the SLD of
the reduced density matrix ρ1

ωl
= Tr2(ρωl ). The subsequent

measurements are performed on the eigenvectors of SLDs of

the conditional density matrix ρ
2|n1

i
ωl and the reduced density

matrix ρ2
ωl

= Tr1(ρωl ) for nonidentical and identical measure-
ments schemes, respectively. In the following, let us illustrate
the results in Fig. 2(a) in detail, the red dotted and blue
dashed lines are the results of the sequential measurement
F e→n and F n→e with different measurement sequence of the
two subsystems, respectively. The numerical results show that
the FI in Eq. (4) is indeed dependent on the sequence of the
subsystems. For comparison, we also give the result with the
trade off of nonidentical optimal measurements, where the
identical measurements are performed on the eigenvectors of
SLD of the reduced density matrix in the second subsystem
using the black solid line. The result is no higher than F e→n

and F n→e limited by the convexity property of the QFI and
independent on the measurement sequence of the subsystem.
In addition, we show the QFI Fβ = Tr[ρβ

ωl
(Lβ

ωl
)2], β ∈ {e, n},

with the local measurements performed on the SLD of the
reduced density matrices ρβ

ωl
for different subsystems, which

is always below the results of the sequential measurements
scheme on account of the QFI of the reduced density matrix
is just the maximum of the first term in Eq. (16) and the
second term is always nonnegative due to the nonnegative
property of FI. Finally, we give the probabilities of different
projective measurements Mβ

i on the eigenvectors of the SLD
of corresponding reduced density matrixes in the first sub-
system and the results are shown in Fig. 2(b), which satisfies∑

i pβ
ωl

(nβ
i ) = 1 implied by

∑
i Mβ

i = Iβ .

IV. CONCLUSION

In this paper, to obtain a precise estimation of the unknown
parameter while the optimal global projective measurement
is technologically difficult in composite systems, we derived
the expression of FI for sequential measurements scheme in
composite systems with N interacting subsystems. The result
shows that the FI is a sum of different subsystems FI and
the more subsystems used for the estimation, the higher FI
obtained due to the nonnegative property of FI. We should
point out that the precision shown here is no better than the
theoretical result in the global system limited by the QCRB,
but more realistic and better than the local measurements in
one of the subsystems. Then we proved that the projective
measurements on the eigenvectors of the SLD of subsystem
reduced density matrix can be regarded as a trade off of the
nonidentical optimal measurements of different conditional
density matrices in every subsystem by means of the convexity
property of the QFI. Importantly, we illustrated the measure-
ment sequence of the subsystems in such that the sequential
measurements scheme should be considered in the optimiza-
tion to obtain a precise estimation. Finally, we applied our
theory to the nuclear spins control model to estimate the
nuclear Larmor frequency and the results showed the theory is
applicative.
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APPENDIX A: DERIVATION OF THE FI OF SEQUENTIAL MEASUREMENTS SCHEME IN EQ. (4)

In the Appendix, we give the derivation of the FI of sequential measurements scheme with three subsystems for the estimation
of the unknown parameter θ and the FI of N subsystems could be concluded from this simple case.

For a parametrized density matrix ρθ , we consider sequential measurements with M1
i , M2|n1

i
j , and M

3|n1
i ,n

2
j

k for three arbitrary
subsystems where n1

i and n2
j are the outcomes for the first and second subsystems, respectively. The subsequent measurements are

dependent on the previous outcomes, for example, M2|n1
i

j denotes the measurement in the second subsystem which is dependent
on the outcome n1

i in the first subsystem. The joint probability distribution pθ (n1
i , n2

j , n3
k ) is

pθ

(
n1

i , n2
j , n3

k

) = p1
θ

(
n1

i

)
p2

θ

(
n2

j

∣∣n1
i

)
p3

θ

(
n3

k

∣∣n1
i , n2

j

)
, (A1)

where p1
θ (n1

i ) = Tr(ρ1
θ M1

i ), p2
θ (n2

j |n1
i ) = Tr(ρ2|n1

i
θ M2|n1

i
j ), and p3

θ (n3
k |n1

i , n2
j ) = Tr(ρ

3|n1
i ,n

2
j

θ M
3|n1

i ,n
2
j

k ) are the probability with the

above three measurements M1
i , M2|n1

i
j , and M

3|n1
i ,n

2
j

k , respectively. Then submitting Eq. (A1) into the expression of FI in Eq. (1),
we obtain

F (ρθ ) =
∑

n1
i ,n

2
j ,n

3
k

1

pθ

(
n1

i , n2
j , n3

k

)
[

∂ pθ

(
n1

i , n2
j , n3

k

)
∂θ

]2

=
∑

n1
i ,n

2
j ,n

3
k

[ ∂ p1
θ (n1

i )
∂θ

p2
θ

(
n2

j |n1
i

)
p3

θ

(
n3

k

∣∣n1
i , n2

j

) + p1
θ

(
n1

i

) ∂ p2
θ (n2

j |n1
i )

∂θ
p3

θ

(
n3

k |n1
i , n2

j

) + p1
θ

(
n1

i

)
p2

θ

(
n2

j |n1
i

) ∂ p3
θ (n3

k |n1
i ,n

2
j )

∂θ

]2

pθ

(
n1

i , n2
j , n3

k

)

=
∑

n1
i ,n

2
j ,n

3
k

p2
θ

(
n2

j

∣∣n1
i

)
p3

θ

(
n3

k

∣∣n1
i , n2

j

)
p1

θ

(
n1

i

)
[

∂ p1
θ

(
n1

i

)
∂θ

]2

+ p1
θ

(
n1

i

)
p3

θ

(
n3

k

∣∣n1
i , n2

j

)
p2

θ

(
n2

j

∣∣n1
i

)
[

∂ p2
θ

(
n2

j

∣∣n1
i

)
∂θ

]2

+ p1
θ

(
n1

i

)
p2

θ

(
n2

j

∣∣n1
i

)
p3

θ

(
n3

k

∣∣n1
i , n2

j

)
[

∂ p3
θ

(
n3

k

∣∣n1
i , n2

j

)
∂θ

]2

=
∑

n1
i

[ ∂ p1
θ (n1

i )
∂θ

]2

p1
θ

(
n1

i

) +
∑

n1
i

p1
θ

(
n1

i

)∑
n2

j

[ ∂ p2
θ (n2

j |n1
i )

∂θ

]2

p2
θ

(
n2

j

∣∣n1
i

) +
∑
n1

i ,n
2
j

p1
θ

(
n1

i

)
p2

θ

(
n2

j

∣∣n1
i

) ∑
n3

k

[ ∂ p3
θ (n3

k |n1
i ,n

2
j )

∂θ

]2

p3
θ

(
n3

k

∣∣n1
i , n2

j

)
= F (ρ1

θ |M1) +
∑

n1
i

pθ

(
n1

i

)
F

(
ρ

2|n1
i

θ

∣∣M2|n1
i
) +

∑
n1

i ,n
2
j

pθ

(
n1

i , n2
j

)
F

(
ρ

3|n1
i ,n

2
j

θ

∣∣M3|n1
i ,n

2
j
)
, (A2)

where pθ (n1
i ) = p1

θ (n1
i ), pθ (n1

i , n2
j ) = p1

θ (n1
i )p2

θ (n2
j |n1

i ), F (ρ1
θ |M1) = ∑

n1
i

1
p1

θ (n1
i )

[ ∂ p1
θ (n1

i )
∂θ

]2, F (ρ2|n1
i

θ |M2|n1
i ) =∑

n2
j

1
p2

θ (n2
j |n1

i )
[
∂ p2

θ (n2
j |n1

i )
∂θ

]2, and F (ρ
3|n1

i ,n
2
j

θ |M3|n1
i ,n

2
j ) = ∑

n3
k

1
p3

θ (n3
k |n1

i ,n
2
j )

[
∂ p3

θ (n3
k |n1

i ,n
2
j )

∂θ
]2. In addition,

∑
n2

j

∂ p2
θ (n2

j |n1
i )

∂θ
= 0 and∑

n3
k

∂ p3
θ (n3

k |n1
i ,n

2
j )

∂θ
= 0 were used in the derivation, which is implied by

∑
n2

j
p2

θ (n2
j |n1

i ) = 1 and
∑

n3
k

p3
θ (n3

k |n1
i , n2

j ) = 1. Then
the FI of the sequential measurements for N subsystems could be concluded as

F (ρθ ) = F (ρ1
θ |M1) +

∑
n1

i

pθ

(
n1

i

)
F

(
ρ

2|n1
i

θ

∣∣M2|n1
i
) + · · · +

∑
n1

i ,...,n
N−2
j ,nN−1

k

pθ

(
n1

i , . . . , nN−2
j , nN−1

k

)
F

(
ρ

N |n1
i ,...,n

N−2
j ,nN−1

k

θ

∣∣MN |n1
i ,...,n

N−2
j ,nN−1

k
)
,

(A3)

where pθ (n1
i , . . . , nN−2

j , nN−1
k ) = p1

θ (n1
i )p2

θ (n2
j |n1

i ) · · · pN−1
θ (nN−1

k |n1
i , . . . , nN−2

j ). Also
∑

nα
q

∂ pα
θ (nα

q |n1
i ,...,n

α−2
l ,nα−1

s )
∂θ

= 0, α ∈ [2, N]

were used implied by
∑

nα
q

pα
θ (nα

q |n1
i , . . . , nα−2

l , nα−1
s ) = 1.

APPENDIX B: SOLVE THE EIGENVALUES AND EIGENVECTORS FOR HAMILTONIAN (11)

Here, we solve the eigenvalues and eigenvectors of the Hamiltonian in Eq. (11) used for encoding the nuclear Larmor
frequency ωl . We obtain the matrix form of the Hamiltonian (11) in the basis |ee, gn〉, |ee, en〉, |ge, gn〉, and |ge, en〉,

HI =

⎛
⎜⎜⎝

−A g B 0
g A 0 B
B 0 −A −g
0 B −g A

⎞
⎟⎟⎠, (B1)
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where A = ωl
2 , B = 
1

2 . The normalized eigenvectors are

|E1〉 =
√

2

2

⎛
⎜⎜⎝

cosθ+
−sinθ+
cosθ+
sinθ+

⎞
⎟⎟⎠, |E2〉 =

√
2

2

⎛
⎜⎜⎝

−cosϕ+
sinϕ+
cosϕ+
sinϕ+

⎞
⎟⎟⎠,

|E3〉 =
√

2

2

⎛
⎜⎜⎝

cosθ−
−sinθ−
cosθ−
sinθ−

⎞
⎟⎟⎠, |E4〉 =

√
2

2

⎛
⎜⎜⎝

−cosϕ−
sinϕ−
cosϕ−
sinϕ−

⎞
⎟⎟⎠,

(B2)

where

tanθ+ = g

α +
√

α2 + g2
, tanϕ+ = g

β +
√

β2 + g2
, tanθ− = g

α −
√

α2 + g2
tanϕ− = g

β −
√

β2 + g2
, (B3)

and α = A − B and β = A + B. In addition, θ+, ϕ+, θ−, and ϕ− satisfy

cosθ+cosθ− + sinθ+sinθ− = 0, cosϕ+cosϕ− + sinϕ+sinϕ− = 0. (B4)

The corresponding eigenvalues are

E1 = −
√

α2 + g2, E2 = −
√

β2 + g2, E3 =
√

α2 + g2, E4 =
√

β2 + g2. (B5)

Now, we have given all the eigenvalues and eigenvectors of the Hamiltonian (11). Therefore, we could obtain the parameterized
state by projecting the initial state onto the eigenvectors in Eq. (B2). After some derivations and substitutions, we obtain the
encoded states |�(ωl )〉 in Eq. (13).
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