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The nonlocal set has received wide attention over recent years. Shortly before, Li and Wang arXiv:2202.09034
proposed the concept of a locally stable set: The only possible orthogonality preserving measurement on
each subsystem is trivial. Locally stable sets present stronger nonlocality than those sets that are just locally
indistinguishable. In this work, we focus on the constructions of locally stable sets in multipartite quantum
systems. First, two lemmas are put forward to prove that an orthogonality-preserving local measurement must be
trivial. Then we present the constructions of locally stable sets with minimum cardinality in bipartite quantum
systems Cd ⊗ Cd (d � 3) and Cd1 ⊗ Cd2 (3 � d1 � d2). Moreover, for the multipartite quantum systems
(Cd )⊗n (d � 2) and ⊗n

i=1C
di (3 � d1 � d2 � · · · � dn), we also obtain d + 1 and dn + 1 locally stable orthog-

onal states, respectively. Fortunately, our constructions reach the lower bound of the cardinality on the locally
stable sets, which provides a positive and complete answer to an open problem raised in arXiv:2202.09034.

DOI: 10.1103/PhysRevA.108.012418

I. INTRODUCTION

A set of orthogonal quantum states is locally indistin-
guishable if it is not possible to optimally distinguish the
states by any sequence of local operations and classical
communications (LOCC). In 1999, Bennett et al. [1] first
presented a set of locally indistinguishable orthogonal product
bases in C3 ⊗ C3, which shows the phenomenon of non-
locality without entanglement. With the increasing research
of nonlocality, there are many relevant references on locally
indistinguishable orthogonal entangled states [2–12]. Espe-
cially, the locally indistinguishable orthogonal product states
have attracted more attention [13–28]. Its closely related re-
search branch, entanglement-assisted discrimination protocol,
has also achieved fruitful results [29–31]. The local indistin-
guishability has wide applications in quantum cryptographic
protocols such as secret sharing and data hiding [32–37]. That
is the reason why so many scholars are engaged in the research
of local discrimination of quantum states.

In 2019, Rout et al. [38] proposed the concept of genuine
nonlocality based on local indistinguishability. Then many
interesting results spring up like mushrooms [38–40]. Re-
cently, Halder et al. [41] put forward the concept of strong
nonlocality based on locally irreducible quantum states. A set
of multipartite orthogonal product states is strongly nonlocal
if it is locally irreducible in every bipartition. Many people
began to engage in the research and a few strongly nonlocal
sets were obtained [41–46].

An important method was provided to verify the local
indistinguishability of orthogonal product states in Ref. [4],
which showed the fact that no matter which party goes first,
he (or she) can only perform a trivial measurement. Since
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2014, a great deal of research (see Refs. [15–27]) on the
locally indistinguishable sets of quantum states is based on
the aforementioned observation. Li et al. [46] concentrated
on the orthogonal sets of multipartite quantum states with
the property: The only possible orthogonality preserving mea-
surement on each subsystem is trivial. The set with such
property is called a locally stable set. Note that locally stable
sets are always locally indistinguishable. Hence they could be
used to show some particular form of distinguishability-based
nonlocality. Li et al. [46] also obtained a lower bound of the
cardinality on the locally stable set, i.e., if S is a locally stable
set of orthogonal pure states in H := ⊗N

i=1HAi , whose local di-
mension is dimC (HAi ) = di, then |S| � maxi{di + 1}. They
conjectured that this lower bound may be tight. That is, there
may exist some locally stable set S ⊆ H whose cardinality is
exactly the aforementioned lower bound maxi{di + 1}. In this
work, we will provide a positive answer to this conjecture.
Adding any orthogonal states to a locally stable set (nonlocal
set) forms a new set which is again locally stable (nonlo-
cal). Hence it is interesting to find the optimal locally stable
set in the sense that, removing any state from this set, it is
impossible to achieve local stability again. Therefore, those
locally stable sets in H with cardinality being maxi{di + 1}
are always optimal.

In the manuscript, we aim to construct locally stable sets
whose cardinality reach the lower bound indicated in Ref. [46]
for general multipartite quantum systems. Fortunately, we
prove that there exist d + 1 orthogonal states in Cd ⊗
Cd (d � 3) and d2 + 1 orthogonal states in Cd1 ⊗ Cd2 (3 �
d1 � d2) are locally stable. For the multipartite cases, we
present two constructions of locally stable sets in multipartite
quantum systems (Cd )⊗n (d � 2) and ⊗n

i=1C
di (3 � d1 �

d2 � · · · � dn), which contain d + 1 and dn + 1 orthogonal
states, respectively. All of the locally stable sets can reach
the minimum cardinality on the locally stable set proposed in
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Ref. [46]. In addition, we found another structure of the small-
est locally stable set in ⊗n

i=1C
di (3 � d1 � d2 � · · · � dn),

which is composed of genuine entangled states apart from one
full product state.

II. PRELIMINARIES

Throughout this paper, we only consider pure states
and we do not normalize states for simplicity. Here
we take the computational basis {|i〉}dk−1

i=0 for each
dk-dimensional subsystem. For simplicity, we denote the
state 1√

n
(|i1〉 ± |i2〉 ± · · · ± |in〉) as |i1 ± i2 ± · · · ± in〉,

Zdk = {0, 1, . . . , dk − 1}, (Cd )⊗n = Cd ⊗ Cd ⊗ · · · ⊗ Cd ,
and ⊗n

i=1C
di = Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn . In particular, it

should be pointed out that the stopper state has the expression

|S〉 = ⊗n
k=1

⎛
⎝ ∑

ik∈Zdk

|ik〉Ak

⎞
⎠. (1)

For each integer d � 2, we denote wd = e
2π

√−1
d , i.e., a primi-

tive dth root of unit.
All the participants perform positive operator-valued mea-

sures (POVM) on their local sites. Each kth subsystem’s
POVM element M†

k Mk can be represented by a dk × dk matrix
Ek = (mk

a,b)a,b∈Zdk
in the computational basis. A POVM is

called a trivial measurement if all its elements are proportional
to the identity operator. To ensure the local distinguishability
the postmeasurement states should remain orthogonal. We ob-
serve that in each locally distinguishable protocol, each local
measurement must preserve the orthogonality of the states.
Using this observation, there is a widely used method for
deducing the local indistinguishability of an orthogonal set:
To preserve the orthogonality of the states, each party could
only perform trivial measurement. This method motivates the
definition of locally stable.

Definition 1 (Locally indistinguishable) [1]. A set of or-
thogonal pure states in multipartite quantum systems is said to
be locally indistinguishable, if it is not possible to distinguish
the states by using LOCC.

Definition 2 (Locally irreducible) [41]. A set of orthogonal
quantum states on H = ⊗n

i=1Hi with n � 2 and dimHi � 2,
i = 1, 2, . . . , n is locally irreducible if it is not possible to
eliminate one or more states from the set by orthogonality-
preserving local measurements.

Definition 3 (Locally stable) [46]. An orthogonal set of
pure states in multipartite quantum systems is said to be
locally stable if the only possible orthogonality preserving
measurement on the subsystems is trivial.

In Ref. [46], it is shown that locally stable sets are always
locally irreducible and locally irreducible sets are always lo-
cally indistinguishable; the converse is not true. Therefore,
locally stable sets present the strongest form of quantum
nonlocality among the three classes: Locally indistinguishable
sets, locally irreducible sets, and locally stable sets.

Given an orthogonal set S = {|φi〉}N
i=1 of pure states in

⊗n
i=1C

di , if the kth party starts with the first orthogonality pre-
serving measurement whose measurement element is denoted

as Ek = (mk
a,b)a,b∈Zdk

, then we have

〈φi|I1 ⊗ I2 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φ j〉 = 0 (2)

for all different pairs |φi〉, |φ j〉 ∈ S. Now we put forward two
simple lemmas which are useful for deducing an orthogonality
preserving measurement Ek = (mk

a,b)a,b∈Zdk
to be a trivial one.

Lemma 1 (Zero entries). Fix k ∈ {1, 2, . . . , n}. Suppose
that

|φi〉 =
pi−1∑
t=0

ωt
pi

∣∣it1
〉
A1

∣∣it2
〉
A2

· · · ∣∣itn
〉
An

,

|φ j〉 =
p j−1∑
s=0

ωs
p j

∣∣ js
1

〉
A1

∣∣ js
2

〉
A2

· · · ∣∣ js
n

〉
An

,

where |it1〉A1 |it2〉A2 · · · |itn〉An and | js
1〉A1 | js

2〉A2 · · · | js
n〉An are mutu-

ally orthogonal and there is only one pair (t0, s0) ∈ Zpi × Zp j

such that ∏
� �=k

〈
it0�

∣∣ js0
�

〉
A�

�= 0.

Then the equation 〈φi|I1 ⊗ I2 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φ j〉 = 0
implies that mk

i
t0
k , j

s0
k

= 0.

Lemma 2 (Diagonal entries). Fix k ∈ {1, 2, . . . , n}. Let
|S〉 be the stopper state defined in Eq. (1) and |φi〉 =∑p−1

t=0 ωt
p|it1〉A1 |it2〉A2 · · · |itn〉An , where there exist only two dif-

ferent values among i0
k , i1

k , . . . , ip−1
k , say it0k and it1k . If all the

off-diagonal entries of the matrix Ek = (mk
a,b)a,b∈Zdk

are ze-
ros, then the equation 〈S|I1 ⊗ I2 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φi〉 =
0 implies that mk

i
t0
k ,i

t0
k

= mk
i
t1
k ,i

t1
k

.

The proofs of the above two Lemmas are given in
Appendix A.

III. CONSTRUCTIONS IN BIPARTITE
QUANTUM SYSTEMS

In this section, we propose the construction of locally sta-
ble sets with minimum cardinality in Cd ⊗ Cd (d � 3) and
Cd1 ⊗ Cd2 (3 � d1 � d2).

A. Locally stable set in Cd ⊗ Cd

Theorem 1. The following set S of d + 1 orthogonal states
is locally stable in Cd ⊗ Cd [see Fig. 1(a) for an intuition of
the example where d = 5]:

|φ0〉 = |00〉AB − |12〉AB,

|φi〉 = |i0〉AB − |0i〉AB,

|S〉 = |0 + · · · + (d − 1)〉A|0 + · · · + (d − 1)〉B, (3)

where i = 1, 2, . . . , d − 1, d � 3.
Proof. First, we assume that Alice starts with the first mea-

surement. Let E1 = (m1
a,b)a,b∈Zd represent an element of any

orthogonality-preserving measurement performed by Alice.
For each pair |ψ〉, |φ〉 ∈ S with |ψ〉 �= |φ〉, we have

〈ψ |E1 ⊗ I2|φ〉 = 0. (4)

For 1� i �= j� d − 1, considering Eq. (4) for the states
|φi〉 and |φ j〉, we obtain m1

i, j =m1
j,i =0 directly from Lemma 1.
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FIG. 1. Intuition of the structure of states we constructed in
Eq. (3) and Eq. (6). Figure (a) corresponds to the systems C5 ⊗ C5,
while (b) corresponds to systems C5 ⊗ C9. The squares indicated by
the same color represent a unique state and the numbers represent
the subscripts of the states. For example, the two orange squares
(4,0) and (0,4) with label “4” correspond to the state |φ4〉 = |40〉AB −
|04〉AB; the two pink squares (0,6) and (2,5) with label “6” in the right
side correspond to the state |φ6〉 = |06〉AB − |25〉AB.

Now we consider Eq. (4) for the states |φ0〉 and |φi〉 for
i = 1, 2, . . . , d − 1. If i ∈ {1, 3, . . . , d − 1}, we can get
m1

0,i = m1
i,0 = 0 from Lemma 1. If i = 2, the corresponding

Eq. (4) is just (〈00| − 〈12|)E1 ⊗ I2(|20〉 − |02〉) = 0, i.e.,
〈0|E1|2〉〈0|I2|0〉 − 〈0|E1|0〉〈0|I2|2〉 − 〈1|E1|2〉〈2|I2|0〉 +
〈1|E1|0〉〈2|I2|2〉 = 0, which gives rise to m1

0,2 + m1
1,0 = 0.

Since m1
0,1 = m1

1,0 = 0, we can get m1
0,2 = 0. Thus m1

0,i =
m1

i,0 = 0 for 1 � i � d − 1. Therefore, the off-diagonal
entries of E1 are all zeros.

For 1 � i � d − 1, considering Eq. (4) for the states |S〉
and |φi〉, we get m1

0,0 = m1
i,i by Lemma 2. Therefore, E1 is

proportional to the identity matrix. Hence Alice can only start
with a trivial measurement.

Suppose that Bob starts with the first orthogonality-
preserving measurement whose elements are represented
as E2 = (m2

a,b)a,b∈Zd . Then for each pair |ψ〉, |φ〉 ∈ S with
|ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ E2|φ〉 = 0. (5)

In the same way, considering Eq. (5) for the states
|φi〉 and |φ j〉, we obtain m2

i, j = m2
j,i = 0 directly

from Lemma 1 for 1 � i �= j � d − 1. Now we consider
Eq. (5) for the states |φ0〉 and |φi〉 for 1 � i � d − 1. If
2 � i � d − 1, we have m2

0,i = m2
i,0 = 0 by Lemma 1.

If i = 1, we have (〈00| − 〈12|)I1 ⊗ E2(|10〉 − |01〉) = 0,
i.e., 〈0|I1|1〉〈0|E2|0〉 − 〈0|I1|0〉〈0|E2|1〉 − 〈1|I1|1〉〈2|E2|0〉 +
〈1|I1|0〉〈2|E2|1〉 = 0, which gives rise to m2

0,1 + m2
2,0 = 0.

Since m2
0,2 = m2

2,0 = 0, we can get m2
0,1 = 0. Thus m2

0,i =
m2

i,0 = 0 for 1 � i � d − 1. Therefore, the off-diagonal
entries of E2 are all zeros.

For 1 � i � d − 1, considering Eq. (5) for the states |S〉
and |φi〉, we get m2

0,0 = m2
i,i by Lemma 2. Therefore, E2 is

proportional to the identity matrix. Bob can only implement a
trivial orthogonality-preserving measurement also.

Thus the above d + 1 states are locally stable by definition.
This completes the proof. �

Specifically, the construction is not unique, where |φ0〉 =
|00〉AB − |12〉AB can be |φ0〉 = |00〉AB − |1k〉AB (2 � k � d −
1). This is true for other examples presented.

B. Locally stable set in Cd1 ⊗ Cd2

Theorem 2. Let 3 � d1 � d2. The following set S of
d2 + 1 orthogonal states is locally stable in Cd1 ⊗ Cd2 [see
Fig. 1(b) for an intuition of the example where d1 = 5 and
d2 = 9]:

|φ0〉 = |00〉AB − |12〉AB,

|φi〉 = |i0〉AB − |0i〉AB, 1 � i � d1 − 1,

|φ j〉 = |0 j〉AB − |2( j − 1)〉AB, d1 � j � d2 − 1,

|S〉 = |0 + · · · + (d1 − 1)〉A|0 + · · · + (d2 − 1)〉B. (6)

Proof. Obviously, Alice could only start with trivial
orthogonality-preserving measurement by the same argu-
ment as case Cd ⊗ Cd . We only need to show that
the orthogonality-preserving measurement Bob could per-
form is the trivial one. Suppose that Bob starts with the
first orthogonality-preserving measurement whose elements
are represented as E2 = (m2

a,b)a,b∈Zd2
. Then for each pair

|ψ〉, |φ〉 ∈ S with |ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ E2|φ〉 = 0. (7)

With a similar argument as the case Cd ⊗ Cd , we could
obtain that m2

i,i′ = m2
i′,i = 0 for all 0 � i �= i′ � d1 − 1. Con-

sidering Eq. (7) for the states |φ0〉 and |φ j〉, we directly
get m2

0, j = m2
j,0 = 0 for d1 � j � d2 − 1 by Lemma 1.

Now we consider Eq. (7) for the states |φi〉 and
|φ j〉 for 1 � i � d1 − 1 and d1 � j � d2 − 1. If i �=
2, we get m2

i, j = m2
j,i = 0 directly from Lemma 1. If

i = 2, we have 〈2|I1|0〉〈0|E2| j〉 − 〈2|I1|2〉〈0|E2| j − 1〉 −
〈0|I1|0〉〈2|E2| j〉 + 〈0|I1|2〉〈2|E2| j − 1〉 = 0, which deduces
that m2

0, j−1 + m2
2, j = 0. Since m2

0, j−1 = m2
j−1,0 = 0, we have

m2
2, j = 0. Therefore, we have m2

i, j = m2
j,i = 0 for all 1 � i �

d1 − 1, d1 � j � d2 − 1.
Then we consider Eq. (7) for the states |φ j〉 and

|φ j′ 〉 for d1 � j < j′ � d2 − 1. That is, we have the equa-
tion 〈0|IA|0〉〈 j|E2| j′〉 − 〈0|I1|2〉〈 j|E2| j′ − 1〉 − 〈2|I1|0〉〈 j −
1|E2| j′〉 + 〈2|I1|2〉〈 j − 1|E2| j′ − 1〉 = 0, which implies that
m2

j, j′ = −m2
( j−1),( j′−1). Therefore,

m2
j, j′ = −m2

( j−1),( j′−1) = · · · = (−1) j−d1+1m2
d1−1,( j′− j+d1−1),

which is equal to zero as the last term m2
d1−1,( j′− j+d1−1) = 0

has been obtained. Thus we get m2
j′, j = m2

j, j′ = 0 for d1 �
j < j′ � d2 − 1. Up to now, we have shown that the off-
diagonal entries of E2 are all zeros.

For 1 � i � d1 − 1, considering Eq. (5) for the states |S〉
and |φi〉, we get m2

i,i = m2
0,0 by Lemma 2. Similarly, consid-

ering the states |S〉 and |φ j〉 for d1 � j � d2 − 1, we have
m2

j, j = m2
j−1, j−1, which implies that

m2
j, j = m2

j−1, j−1 = · · · = m2
d1−1,d1−1 = m2

0,0.

Therefore, E2 ∝ I. Bob cannot start with a nontrivial measure-
ment either.

In summary, both participants can only start with a triv-
ial orthogonality-preserving measurement. Thus the above
d2 + 1 states are locally stable. This completes the proof. �
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FIG. 2. Intuition of the structure of states we constructed in
Eq. (8) for the setting n = 3 and d = 5. Note that the cubic with
coordinate (0,0,0) should be labeled with “0”. The squares indicated
by the same color represent a unique state and the numbers repre-
sent the subscripts of the states. For example, the orange squares
(4,0,0), (0,4,0), and (0,0,4) with label “4” correspond to the state
|φ4〉 = |400〉ABC + ω3|040〉ABC + ω2

3|004〉ABC .

IV. CONSTRUCTIONS IN MULTIPARTITE
QUANTUM SYSTEMS

In this section, we put forward the constructions of the lo-
cally stable sets in multipartite quantum systems (Cd )⊗n (d �
2, n � 3) and ⊗n

i=1C
di (3 � d1 � d2 � · · · � dn, n � 3).

A. Locally stable set in (Cd )⊗n

Theorem 3. In (Cd )⊗n (d � 2, n � 3), the following set S
of d + 1 orthogonal states are locally stable [see Fig. 2 for an
intuition of the example where n = 3 and d = 5]:

|φ0〉 = |00 · · · 00〉A1A2···An − |11 · · · 11〉A1A2···An ,

|φi〉 = |i0 · · · 00〉A1A2···An + ωn|0i · · · 00〉A1A2···An + · · ·
+ ωn−1

n |00 · · · 0i〉A1A2···An ,

|S〉 = |0 + · · · + (d − 1)〉A1 |0 + · · · + (d − 1)〉A2 · · · |0
+ · · · + (d − 1)〉An , (8)

where 1 � i � d − 1, d � 2.
Proof. Since the states are symmetric, it is sufficient to

prove that the first party could only start with a trivial
orthogonality-preserving measurement. Let E1 = (m1

a,b)a,b∈Zd

represent an element of any orthogonality-preserving mea-
surement performed by Alice. For each pair |ψ〉, |φ〉 ∈ S with
|ψ〉 �= |φ〉, we have

〈ψ |E1 ⊗ I2 ⊗ · · · ⊗ In|φ〉 = 0. (9)

For 0 � i �= j � d − 1, considering Eq. (9) for the states
|φi〉 and |φ j〉, we obtain m1

i, j = m1
j,i = 0 by Lemma 1. There-

fore, the off-diagonal elements of E1 are all zeros. Considering
Eq. (9) for the states |S〉 and |φi〉, we directly get m1

i,i = m1
0,0

for 1 � i � d − 1 by Lemma 2. Therefore, E1 is proportional
to the identity matrix. So, the first party cannot start with a
nontrivial orthogonality-preserving measurement.

Therefore, the above d + 1 states are locally stable by
definition. This completes the proof. �
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FIG. 3. Intuition of the structure of states we constructed in
Eq. (10) for the setting d1 = 5, d2 = 7, and d3 = 10. Note that
the cubic with coordinate (0,0,0) should be labeled with “0”. The
squares indicated by the same color represent a unique state and
the numbers represent the subscripts of the states. For example, the
two pink squares (0,6,0) and (0,0,6) with label “6” correspond to
the state |φ6〉 = |060〉ABC − |006〉ABC ; the two white squares (0,0,9)
and (2,1,8) with label “9” correspond to the state |φ9〉 = |009〉ABC −
|218〉ABC .

Next, we consider the constructions of locally stable sets
in the general multipartite quantum systems. In order to be
better understood, we first show our construction in arbitrary
tripartite quantum systems.

B. Locally stable set in Cd1 ⊗ Cd2 ⊗ Cd3

Theorem 4. In Cd1 ⊗ Cd2 ⊗ Cd3 (3 � d1 � d2 � d3), the
following set of d3 + 1 orthogonal states is locally stable [see
Fig. 3 for an intuition of the example where d1 = 5, d2 = 7,
and d3 = 10]:

|φ0〉 = |000〉ABC − |111〉ABC,

|φi〉 = |i00〉ABC + ω3|0i0〉ABC + ω2
3|00i〉ABC,

1 � i � d1 − 1,

|φ j〉 = |0 j0〉ABC − |00 j〉ABC, d1 � j � d2 − 1,

|φk〉 = |00k〉ABC − |21(k − 1)〉ABC, d2 � k � d3 − 1,

|S〉 = |0 + · · · + (d1 − 1)〉A|0 + · · · + (d2 − 1)〉B|0 + · · ·
+ (d3 − 1)〉C . (10)

Proof. As far as Alice is concerned, it is the same as the
equal dimensional case. We only need to prove that Bob and
Charlie have to implement trivial measurement.

Suppose that Bob starts with the first orthogonality-
preserving measurement whose elements are represented as
E2 = (m2

a,b)a,b∈Zd2
. Then for each pair |ψ〉, |φ〉 ∈ S with

|ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ E2 ⊗ I3|φ〉 = 0. (11)
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TABLE I. Zero entries of the matrix E3 = (m3
a,b)a,b∈Zd3

.

Pair of states Zero entries Value range

|φ0〉, |φi〉 m3
0,i = m3

i,0 = 0 1 � i � d1 − 1

|φ0〉, |φ j〉 m3
0, j = m3

j,0 = 0 d1 � j � d2 − 1

|φ0〉, |φk〉 m3
0,k = m3

k,0 = 0 d2 � k � d3 − 1

|φi〉, |φi′ 〉 m3
i,i′ = m3

i′,i = 0 1 � i �= i′ � d1 − 1

|φ j〉, |φ j′ 〉 m3
j, j′ = m3

j′, j = 0 d1 � j �= j ′ � d2 − 1

|φi〉, |φ j〉 m3
i, j = m3

j,i = 0
1 � i � d1 − 1,

d1 � j � d2 − 1

|φi〉, |φk〉 m3
i,k = m3

k,i = 0
1 � i � d1 − 1
d2 � k � d3 − 1

|φ j〉, |φk〉 m3
j,k = m3

k, j = 0
d1 � j � d2 − 1
d2 � k � d3 − 1

Now we consider Eq. (11) for the states |φi〉 and |φ j〉
for 0 � i �= j � d2 − 1. Note that the AC parties of each
term of |φi〉 and |φ j〉 are orthogonal except the terms |0i0〉
(corresponding to |ψi〉) and |0 j0〉 (corresponding to |ψ j〉).
Therefore, by Lemma 1, we could obtain that m2

i, j = m2
j,i = 0.

Therefore, the off-diagonal entries of E2 are all zeros.
For 1 � i � d2 − 1, considering Eq. (11) for the states |S〉

and |φi〉, we get m2
i,i = m2

0,0 by Lemma 2. Therefore, E2 ∝ I.
Bob cannot start with a nontrivial measurement either.

Let us consider the third party Charlie. Suppose that Char-
lie starts with the first orthogonality-preserving measurement
whose elements are represented as E3 = (m3

a,b)a,b∈Zd3
. Then

for each pair |ψ〉, |φ〉 ∈ S with |ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ I2 ⊗ E3|φ〉 = 0. (12)

Considering Eq. (12) for the pair |φi〉 and |φ j〉, where
0 � i �= j � d3 − 1, by Lemma 1, we could obtain that the

TABLE II. Diagonal entries of E3 = (m3
a,b)a,b∈Zd3

.

Pair of states Diagonal entries Value range

|S〉, |φi〉 m3
0,0 = m3

i,i 1 � i � d1 − 1
|S〉, |φ j〉 m3

0,0 = m3
j, j d1 � j � d2 − 1

|S〉, |φk〉 m3
k,k = m3

(k−1),(k−1) d2 � k � d3 − 1

off-diagonal entry m3
i, j of the matrix E3 is zero except d2 �

i �= j � d3 − 1 (see Table I).
Now we consider Eq. (12) for the pair |φk〉 and |φk′ 〉, where

d2 � k < k′ � d3 − 1. That is,

[〈00k| − 〈21(k − 1)|]I1 ⊗ I2 ⊗ E3[|00k′〉 − |21(k′ − 1)〉]
= 0,

from which we deduce that m3
k,k′ = −m3

(k−1),(k′−1). Therefore,
we have

m3
k,k′ = −m3

(k−1),(k′−1) = · · · = (−1)k−d2+1m3
d2−1,(k′−k+d2−1),

which is equal to zero as the last term m3
d2−1,(k′−k+d2−1) = 0

has been obtained. Thus we get m3
k,k′ = m3

k′,k = 0.

By Lemma 2, all diagonal entries of the matrix E3 are
equal from Table II, i.e., E3 ∝ I. Charlie cannot start with a
nontrivial measurement.

In summary, all the subsystems can only start with a trivial
orthogonality-preserving measurement. Therefore, the above
d3 + 1 states form a locally stable set. This completes the
proof.

C. Locally stable set in ⊗n
i=1C

di

Theorem 5. The following set S of dn + 1 orthogonal
states are locally stable in ⊗n

i=1C
di for 3 � d1 � d2 � · · · �

dn and n � 3:

|φ0〉 = |00 · · · 00〉A1A2···An − |11 · · · 11〉A1A2···An ,∣∣φi1

〉 = |i10 · · · 00〉A1A2···An + ωn|0i10 · · · 00〉A1A2···An + · · · + ωn−2
n |00 · · · 0i10〉A1A2···An

+ ωn−1
n |00 · · · 0i1〉A1A2···An , 1 � i1 � d1 − 1,

∣∣φi2

〉 = |0i20 · · · 0〉A1A2···An + ωn−1|00i20 · · · 0〉A1A2···An + · · · + ωn−2
n−1|0 · · · 0i2〉A1A2···An , d1 � i2 � d2 − 1,

∣∣φi3

〉 = |00i30 · · · 0〉A1A2···An + ωn−2|000i30 · · · 0〉A1A2···An + · · · + ωn−3
n−2|0 · · · 0i3〉A1A2···An , d2 � i3 � d3 − 1

· · · · · · · · ·
∣∣φin−1

〉 = |00 · · · 0in−10〉A1A2···An − |00 · · · 0in−1〉A1A2···An , dn−2 � in−1 � dn−1 − 1,
∣∣φin

〉 = |00 · · · 0in〉A1A2···An − |21 · · · 1(in − 1)〉A1A2···An , dn−1 � in � dn − 1,

|S〉 = |0 + · · · + (d1 − 1)〉A1 |0 + · · · + (d2 − 1)〉A2 · · · |0 + · · · + (dn − 1)〉An . (13)

Proof. First, we show that each of the first (n − 1) parties
could only start with a trivial orthogonality-preserving mea-
surement. Suppose that the kth (1 � k � n − 1) party starts
with the first orthogonality-preserving measurement whose
elements are represented as Ek = (mk

a,b)a,b∈Zdk
. Then for each

pair |ψ〉, |φ〉 ∈ S with |ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φ〉 = 0. (14)

Now we consider Eq. (14) for the states |φi〉 and |φ j〉 for
0 � i �= j � dk − 1. Note that the parties except the kth of
each term of |φi〉 and |φ j〉 are orthogonal except the terms
|0 · · · 0i0 · · · 0〉 (corresponding to |ψi〉) and |0 · · · 0 j0 · · · 0〉
(corresponding to |ψ j〉), where i, j are in the kth position.
Therefore, by Lemma 1, we could obtain that mk

i, j = mk
j,i = 0.

Therefore, the off-diagonal entries of Ek are all zeros.
For 1 � i � dk − 1, considering Eq. (14) for the states |S〉

and |φi〉, we get mk
i,i = mk

0,0 by Lemma 2. Therefore, Ek ∝ I.
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TABLE III. Zero entries of the matrix En = (mn
a,b)a,b∈Zdn

.

Pair of states Zero entries Value range

|φ0〉, |φi1〉 mn
0,i1

= mn
i1,0 = 0 1 � i1 � d1 − 1

...
...

...

|φ0〉, |φin−1〉 mn
0,in−1

= mn
in−1,0 = 0 dn−2 � in−1 � dn−1 − 1

|φ0〉, |φin 〉 mn
0,in

= mn
in,0 = 0 dn−1 � in � dn − 1

|φi1〉, |φ′
i1
〉 mn

i1,i′1
= mn

i′1,i1
= 0 1 � i1 �= i′1 � d1 − 1

...
...

...

|φin−2 〉, |φ′
in−2

〉 mn
in−2,i′n−2

= mn
i′n−2,in−2

= 0 dn−3 � in−2 �= i′n−2 � dn−2 − 1

|φin−1〉, |φ′
in−1

〉 mn
in−1,i′n−1

= mn
i′n−1,in−1

= 0 dn−2 � in−1 �= i′n−1 � dn−1 − 1

|φi1〉, |φi2 〉 mn
i1,i2

= mn
i2,i1

= 0 1 � i1 � d1 − 1, d1 � i2 � d2 − 1
...

...
...

|φi1〉, |φin−1〉 mn
i1,in−1

= mn
in−1,i1

= 0 1 � i1 � d1 − 1, dn−2 � in−1 � dn−1 − 1
|φi1〉, |φin 〉 mn

i1,in
= mn

in,i1
= 0 1 � i1 � d1 − 1, dn−1 � in � dn − 1

|φi2 〉, |φi3 〉 mn
i2,i3

= mn
i3,i2

= 0 d1 � i2 � d2 − 1, d2 � i3 � d3 − 1
...

...
...

|φi2 〉, |φin−1〉 mn
i2,in−1

= mn
in−1,i2

= 0 d1 � i2 � d2 − 1, dn−2 � in−1 � dn−1 − 1
|φi2 〉, |φin 〉 mn

i2,in
= mn

in,i2
= 0 d1 � i2 � d2 − 1, dn−1 � in � dn − 1

...
...

...

|φin−1〉, |φin 〉 mn
in−1,in

= mn
in,in−1

= 0 dn−2 � in−1 � dn−1 − 1, dn−1 � in � dn − 1

So the kth party cannot start with a nontrivial orthogonality-
preserving measurement.

Let us consider the last party, i.e., the nth party. Sup-
pose that the nth party starts with the first orthogonality-
preserving measurement whose elements are represented as
En = (mn

a,b)a,b∈Zdn
. Then for each pair |ψ〉, |φ〉 ∈ S with

|ψ〉 �= |φ〉, we have

〈ψ |I1 ⊗ I2 ⊗ · · · ⊗ In−1 ⊗ En|φ〉 = 0. (15)

Considering Eq. (15) for the pair |φi〉 and |φ j〉 where
0 � i �= j � dn − 1, by Lemma 1, we could obtain that the
off-diagonal entries mn

i, j of the matrix En are zero except
dn−1 � i �= j � dn − 1 (see Table III). Now we only consider
the remaining off-diagonal entries of the matrix En.

For dn−1 � in < i′n � dn − 1, we consider Eq. (15) for
the pair |φin〉 and |φi′n〉. That is, [〈00 · · · 0in| − 〈21 · · · 1(in −
1)|]I1 ⊗ I2 ⊗ · · · ⊗ En[|00 · · · 0i′n〉 − |21 · · · 1(i′n − 1)〉] = 0
from which we deduce that mn

in,i′n
= −mn

in−1,i′n−1. Therefore,
we have

mn
in,i′n

= (−1)in−dn−1+1mn
dn−1−1,(i′n−in+dn−1−1) = 0,

where the last equality has been deduced previously. Thus we
get mn

in,i′n
= mn

i′n,in
= 0. Hence we have that the off-diagonal

entries of the matrix En are zeros.
By Lemma 2, all diagonal entries of the matrix En are equal

from Table IV.
Therefore, all parties can only start with a trivial orthogo-

nality preserving measurement. The set of dn + 1 orthogonal
states is locally stable. �

Moreover, we put forward a new construction of the locally
stable set in ⊗n

i=1C
di (3 � d1 � d2 � · · · � dn, n � 3), which

is composed of genuine entangled states apart from one full
product state and also reach the minimum cardinality of the

locally stable set proposed in Ref. [46]; see Appendix B for
the details.

Many efforts have been made to reduce the cardinality of
locally indistinguishable sets. Here we list the cardinalities
of locally indistinguishable sets that have been known before
(see Table V). As locally stable sets are always locally indis-
tinguishable, there exists some locally indistinguishable sets
with cardinality dn + 1 in Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn (where we
assume d1 � · · · � dn). Thus our work has made a significant
improvement towards addressing this issue.

V. CONCLUSION

We studied the construction of locally stable sets for
the given multipartite systems. It is interesting to note that
the structures reach the lower bound of the cardinality on the
locally stable sets. In fact, we presented the constructions of
locally stable sets with minimum cardinality in bipartite quan-
tum systems Cd ⊗ Cd and Cd1 ⊗ Cd2 . Then we presented a
construction of d + 1 orthogonal states in (Cd )⊗n and proved
that the set is locally stable. Furthermore, we generalized
our construction to more general cases and put forward two
structures of dn + 1 orthogonal states for arbitrary multipar-
tite quantum systems. Our results give a complete answer

TABLE IV. Diagonal entries of En = (mn
a,b)a,b∈Zdk

.

Pair of states Diagonal entries Value range

|S〉, |φi1 〉 mn
0,0 = mn

i1,i1
1 � i1 � d1 − 1

|S〉, |φi2 〉 mn
0,0 = mn

i2,i2
d1 � i2 � d2 − 1

...
...

...

|S〉, |φin−1〉 mn
0,0 = mn

in−1,in−1
dn−2 � in−1 � dn−1 − 1

|S〉, |φin 〉 mn
in,in

= mn
in−1,in−1 dn−1 � in � dn − 1
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TABLE V. Incomplete list of the cardinalities of locally indistin-
guishable sets that are known before.

Reference System Cardinality

[10] Cd ⊗ Cd 2d − 1
[24] (Cd )⊗n 2n(d + 1)
[28] (Cd )⊗n n(d − 1) + 1
[16] Cm ⊗ Cn 3(m + n) − 9
[20] Cm ⊗ Cn 2n − 1
[26] Cm ⊗ Cn 2(m + n) − 4
[22] Cn1 ⊗ Cn2 ⊗ Cn3 2(n2 + n3) − 3
[25] Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn

∑n
i=1(2di − 3) + 1

[28] Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn
∑n−1

i=2 di + 2dn − n + 1

to the open problem raised in Ref. [46]. Moreover, all of
our constructed locally stable sets are optimal in the sense
that removing any state from this set makes it impossible to
achieve local stability again.

Here we have considered the constructions of the smallest
locally stable sets by utilizing entangled states and a stopper
state. However, there are two very important questions that
deserve further research. Can we construct the strongest non-
local sets that reach the corresponding lower bound? How do
we quantify the strength of quantum nonlocality?
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APPENDIX A: PROOFS OF LEMMA 1 AND LEMMA 2

Proof of Lemma 1. Substituting the expressions

|φi〉 =
pi−1∑
t=0

ωt
pi

∣∣it1
〉
A1

∣∣it2
〉
A2

· · · ∣∣itn
〉
An

,

|φ j〉 =
p j−1∑
s=0

ωs
p j

∣∣ js
1

〉
A1

∣∣ js
2

〉
A2

· · · ∣∣ js
n

〉
An

into

〈φi|I1 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φ j〉 = 0,

we obtain
⎛
⎝

pi−1∑
t=0

ω−t
pi

〈
it1

∣∣〈it2
∣∣ · · · 〈itn

∣∣
⎞
⎠I1 ⊗ · · · ⊗ Ek ⊗ · · ·

⊗ In

⎛
⎝

p j−1∑
s=0

ωs
p j

∣∣ js
1

〉∣∣ js
2

〉 · · · ∣∣ js
n

〉
⎞
⎠ = 0.

Further,

p j−1∑
s=0

pi−1∑
t=0

ω−t
pi

ωs
p j

〈
itk

∣∣Ek

∣∣ js
k

〉
Ak

∏
� �=k

〈
it�
∣∣ js

�

〉
A�

= 0.

Since there is only one pair (t0, s0) ∈ Zpi × Zp j

such that
∏

� �=k〈it0� | js0
� 〉A�

�= 0, therefore we can get
ω−t0

pi
ωs0

p j
〈it0k |Ek| js0

k 〉Ak

∏
� �=k〈it0� | js0

� 〉A�
= 0. Then 〈it0k |Ek| js0

k 〉 =
0, which means that mk

i
t0
k , j

s0
k

= 0. �
Proof of Lemma 2. Substituting the expressions

|S〉 = ⊗n
k=1

⎛
⎝ ∑

ik∈Zdk

|ik〉Ak

⎞
⎠,

|φi〉 =
p−1∑
t=0

ωt
p

∣∣it1
〉
A1

∣∣it2
〉
A2

· · · ∣∣itn
〉
An

into

〈S|I1 ⊗ · · · ⊗ Ek ⊗ · · · ⊗ In|φi〉 = 0,

we obtain
⎡
⎣⊗n

k=1

⎛
⎝ ∑

ik∈Zdk

〈ik|
⎞
⎠

⎤
⎦I1 ⊗ · · · ⊗ Ek ⊗ · · ·

⊗ In

⎛
⎝

p−1∑
t=0

ωt
p

∣∣it1
〉∣∣it2

〉 · · · ∣∣itn
〉
⎞
⎠ = 0.

Further,

p−1∑
t=0

ωt
p〈0 + · · · + (d1 − 1)

∣∣it1
〉 · · · 〈0 + · · · + (dk − 1)|Ek

∣∣itk
〉

· · · 〈0 + · · · + (dn − 1)
∣∣itn

〉 = 0.

Moreover,

p−1∑
t=0

ωt
p〈0 + · · · + (dk − 1)|Ek

∣∣itk
〉 = 0.

Since all mk
a,b = 0 with 0 � a �= b � dk − 1, this means that

mk
i0
k ,i

0
k
+ ωpmk

i1
k ,i

1
k
+ ω2

pmk
i2
k ,i

2
k
+ · · · + ωp−1

p mk
ip−1
k ,ip−1

k
= 0.

If there exist only two different values it0k and it1k for
i0
k , i1

k , . . . , ip−1
k , this means that p elements are divided into

two groups. There may be p − 1 elements equal, p − 2 ele-
ments that are equal and other 2 elements are equal, p − 3
elements that are equal and the remaining 3 elements are
equal, etc. Here we only consider the following two cases;
the others can be proved in a similar way.

(1) Suppose i0
k = it0k , i1

k = · · · = ip−1
k = it1k , then

mk
i
t0
k ,i

t0
k

= −(
ωp + ω2

p + · · · + ωp−1
p

)
mk

i
t1
k ,i

t1
k
.

(2) Suppose i0
k = i1

k = it0k , i2
k = · · · = ip−1

k = it1k , then

(1 + ωp)mk
i
t0
k ,i

t0
k

= −(
ω2

p + · · · + ωp−1
p

)
mk

i
t1
k ,i

t1
k
.

We know that 1 + ωp + ω2
p + · · · + ω

p−1
p = 0; hence mk

i
t0
k ,i

t0
k

=
mk

i
t1
k ,i

t1
k

. �
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APPENDIX B: ANOTHER STRUCTURE IN ⊗n
i=1C

di

Theorem 6. The following set S of dn orthogonal genuine entangled states and one full product state are locally stable in
⊗n

i=1C
di for 3 � d1 � d2 � · · · � dn, n � 3:

|φ0〉 = |00 · · · 00〉A1A2···An − |11 · · · 11〉A1A2···An ,∣∣φi1

〉 = |i10 · · · 00〉A1A2···An + ωn|0i10 · · · 00〉A1A2···An + · · · + ωn−2
n |00 · · · 0i10〉A1A2···An

+ ωn−1
n |00 · · · 0i1〉A1A2···An , 1 � i1 � d1 − 1,

∣∣φi2

〉 = |0i20 · · · 00〉A1A2···An + ωn|00i20 · · · 00〉A1A2···An + · · · + ωn−2
n |00 · · · 0i2〉A1A2···An

+ ωn−1
n |10 · · · 0i2〉A1A2···An , d1 � i2 � d2 − 1,

∣∣φi3

〉 = |00i30 · · · 00〉A1A2···An + ωn−1|000i30 · · · 00〉A1A2···An + · · · + ωn−3
n−1|00 · · · 0i3〉A1A2···An

+ ωn−2
n−1|110 · · · 0i3〉A1A2···An , d2 � i3 � d3 − 1,

∣∣φi4

〉 = |000i40 · · · 0〉A1A2···An + ωn−2|0000i40 · · · 0〉A1A2···An + · · · + ωn−4
n−2|00 · · · 0i4〉A1A2···An

+ ωn−3
n−2|1110 · · · 0i4〉A1A2···An , d3 � i4 � d4 − 1

· · · · · · · · ·
∣∣φin−1

〉 = |0 · · · 0in−10〉A1A2···An + ω3|0 · · · 0in−1〉A1A2···An + ω2
3|1 · · · 10in−1〉A1A2···An , dn−2 � in−1 � dn−1 − 1,

∣∣φin

〉 = |00 · · · 0in〉A1A2···An − |21 · · · 1(in − 1)〉A1A2···An , dn−1 � in � dn − 1,

|S〉 = |0 + · · · + (d1 − 1)〉A1 |0 + · · · + (d2 − 1)〉A2 · · · |0 + · · · + (dn − 1)〉An . (B1)

Proof. Comparing with Eq. (13), in Eq. (B1),
we only made some slight adjustments such that
|φi1〉 ∼ |φin〉 are genuinely entangled states. Thus we
only need to consider some special entries of the
matrix En.

For the states |φi2〉 and |φi′2〉, where d1 � i2 �= i′2 �
d2 − 1, we have (〈0i2 · · · 0| + · · · + ω2−n

n 〈0 · · · 0i2| +
ω1−n

n 〈10 · · · 0i2|)I1 ⊗ I2 ⊗ · · · ⊗ En(|0i′2 · · · 0〉 + · · · + ωn−2
n

|00 · · · 0i′2〉 + ωn−1
n |10 · · · 0i′2〉) = 0. Because of the fact that

only |00 · · · 0i2〉A1···An and |00 · · · 0i′2〉A1···An , |100 · · · 0i2〉A1···An

and |100 · · · 0i′2〉A1···An are not orthogonal on n − 1 subsystems
except the nth subsystem, so 〈i2|En|i′2〉 + 〈i2|En|i′2〉 = 0; thus
mn

i2,i′2
= mn

i′2,i2
= 0 for d1 � i2 �= i′2 � d2 − 1.

Similarly, from the states |φin−1〉 and |φi′n−1
〉, we can get

mn
in−1,i′n−1

= mn
i′n−1,in−1

= 0 for dn−2 � in−1 �= i′n−1 � dn−1 − 1.
From the states |φ1〉 and |φi2〉, we have (〈10 · · · 0| +

· · · + ω2−n
n 〈00 · · · 010| + ω1−n

n 〈00 · · · 01|)I1 ⊗ I2 ⊗ · · · ⊗
En(|0i20 · · · 0〉 + · · · + ωn−2

n |00 · · · 0i2〉+ωn−1
n |10 · · · 0i2〉) =

0. Because only |10 · · · 0〉A1···An and |10 · · · 0i2〉A1···An ,
|00 · · · 01〉A1···An and |00 · · · 0i2〉A1···An are not orthogonal
on n − 1 subsystems except the nth subsystem, then
ωn−1

n 〈0|En|i2〉 + ω−1
n 〈1|En|i2〉 = 0; i.e., ωn−1

n mn
0,i2

+
ω−1

n mn
1,i2

= 0, since mn
0,i2

= mn
i2,0 = 0, and we can get

mn
1,i2

= mn
i2,1 = 0 for d1 � i2 � d2 − 1.

Therefore, all parties can only start with a trivial orthogo-
nality preserving measurement. The set of dn + 1 orthogonal
states is locally stable. �
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