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Catalysis always degrades external quantum correlations
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Catalysts used in quantum resource theories need not be in isolation and, therefore, are possibly correlated
with external systems, which the agent does not have access to. Do such correlations help or hinder catalysis, and
does the classicality or quantumness of such correlations matter? To answer this question, we first focus on the
existence of a noninvasively measurable observable that yields the same outcomes for repeated measurements
since this signifies macrorealism, a key property distinguishing classical systems from quantum systems. We
show that a system quantumly correlated with an external system so that the joint state is necessarily perturbed
by any repeatable quantum measurement also has the same property against general quantum channels. Our
full characterization of such systems called totally quantum systems, solves the open problem of characterizing
tomographically sensitive systems raised in [Phys. Rev. Lett. 130, 020802 (2023)]. An immediate consequence is
that a totally quantum system cannot catalyze any quantum process, even when a measure of correlation with its
environment is arbitrarily low. It generalizes to a stronger result, that the mutual information of totally quantum
systems cannot be used as a catalyst either. These results culminate in the conclusion that, out of the correlations,
that a generic quantum catalyst has with its environment, only classical correlations allow for catalysis, and,
therefore, using a correlated catalyst is equivalent to using an ensemble of uncorrelated catalysts.
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I. INTRODUCTION

Catalysis in quantum resource theory, a concept inspired by
catalysis in chemistry, is a paradigm that utilizes some quan-
tum resources without altering or deteriorating it, whereas
expanding the set of accessible quantum states (or channel)
transformations [1]. Initially, catalysis was often studied under
the condition of being uncorrelated with the final state of the
system [2–7]. In recent years, however, a notable trend is the
investigation of how the power of catalysis, in enabling state
transitions, can be increased by allowing correlations to per-
sist between system and catalyst after the process [8–18]. The
relaxation of this constraint simplifies the conditions for state
transition significantly, and often leads to a characterization of
von Neumann quantities (e.g. entropy)—which have a strong
operational significance previously only in the asymptotic
independent and identically distributed regime—in one-shot
settings. It is argued that in certain scenarios, the resultant cor-
relation can be ignored, which assumes that only the marginal
state of catalyst is relevant when catalyst is separated from the
system.

However, this line of thought clashes with an often-used
concept of “catalyst bank” [19–21], a hypothetical entity that
lends quantum resource catalysts to (possibly many) agents
and retrieves thereafter. (See Fig. 1.) A catalyst could be only
a part of a large collection of quantum systems possessed by
the bank. In this case, it is operationally natural for the bank
to require the agent who borrows the catalyst to return it in
a fashion that the whole quantum system stays in the same
state, even though the agent used only a small portion. Even if
the catalyst is prepared uncorrelated with other systems after a
single round of correlated catalysis by some user, the catalyst
will form correlation. When the next user borrows the catalyst,

again, it is natural to require the correlations to be preserved
as nothing forbids the same user to borrow the same catalyst
twice, and not wasting any resource not possessed by oneself
is the prime premise of resource catalysis.

Some studies on correlating catalysis deal with such po-
tential problems, by showing that the amount of correlation
formed in catalysis can be made arbitrarily small, e.g.,
Refs. [9,14]. However, we will show that whenever the cor-
relation between the catalyst and the external systems is
of a quantum-mechanical nature (which we formally spec-
ify later), even arbitrarily small correlations forbid catalysis
in the sense that the joint state cannot be left unperturbed
(Theorem 2).

In doing so, we fully characterize multipartite states that
cannot be used as a catalyst when only local access is allowed.
We show that this characterization coincides with the descrip-
tion of quantum states that have no local classical observable
(Theorem 1). Here, classical observables mean those that can
be measured without perturbing the global quantum state,
in other words, they have noninvasive measurability of de-
terministically distinguishable states, i.e., obey macrorealism
[22–25]. It turns out that characterizing catalyst with local
access is equivalent to characterizing the property known as
(tomographical) sensitivity, which was an open problem in the
previous work [26].

The observation that quantum correlation that a catalyst
has with other systems only hinders catalysis leads to the
conclusion (Theorem 3) that only classical correlation in
the correlated catalyst allows for meaningful catalysis. It
yields a rather surprising consequence that utilizing a catalyst
correlated with an external system is functionally equiva-
lent to using an ensemble of uncorrelated catalysts. In other
words, considering a correlated catalyst does not introduce
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new types of nontrivial catalytic transformations, but it
only induces probabilistic mixtures of conventional catalytic
transformations.

II. BACKGROUND

Recall that a bipartite state ρAB is said to be classical-
quantum when there exists an orthonormal basis {|i〉} of A
such that the following expression is possible:

ρAB =
∑

i

pi|i〉〈i|A ⊗ ρ
(i)
B , (1)

with some probability distribution (pi ) and a set of states {ρ (i)
B }

on B. It is equivalent to the existence of a rank-1 projective
measurement {|i〉〈i|} on A that does not disturb the global state
ρAB after the measurement, i.e.,

ρAB =
∑

i

(|i〉〈i|A ⊗ 1B)ρAB(|i〉〈i|A ⊗ 1B). (2)

One can generalize this definition where the projective mea-
surement need not be rank 1 anymore, leading to the following
definition of partial classicality.

Definition 1. A bipartite state ρAB is said to be partially
classical-quantum (PC-Q) when there exists a projective mea-
surement {�k}n

k=1 with n > 1 on A that preserves ρAB, i.e.,

ρAB =
n∑

k=1

(�k ⊗ 1B)ρAB(�k ⊗ 1B). (3)

We will sometimes say that a single system is partially
classical (PC) when it is implicitly assumed to be correlated
with another system, and they are in a PC-Q state. When a
system is not PC, then we will say that it is totally quantum
(TQ) [18], so a non-PC-Q state is a TQ-Q state. Note that the
correlations in a TQ-Q state can be, in general, significantly
weaker compared to entanglement. For example, the follow-
ing evidently separable state is a TQ-Q state:

ρAB = 1

2

(
d−1∑
i=0

λi|i〉〈i|A
)

⊗ |0〉〈0|B + 1

2
|+〉〈+|A ⊗ |1〉〈1|B,

(4)

where
∑d−1

i=0 λi|i〉〈i|A is a nondegenerate quantum state on A
and |+〉A = d−1/2 ∑d−1

i=0 |i〉A is a maximally coherent state on
A. This definition of classicality can be further generalized
to input or output systems of quantum channels or com-
pletely positive (CP) maps: we say that the output system of a
quantum channel N is PC when there exists a projective mea-
surement P := ∑

k �k (·)�k that fixes N , i.e., P ◦ N = N .

Similarly, we say that the input system of N is PC when
a projective measurement Q exists such that N ◦ Q = N .
Likewise, we say that the input or output system is TQ when
it is non-PC.

III. TOTALLY QUANTUMNESS AND SENSITIVITY

One could question the generality of the notion of totally
quantumnesssince allowing weaker measurements, such as

positive operator valued measures (POVM) instead of pro-
jective measurements in Definition 1 may give rise to a
qualitatively different characterization. Perhaps the most nat-
ural definition of totally quantumness could be as follows: A
of ρAB is said to be totally quantum* (TQ*), or ρAB is said to
be a TQ*-Q state, when any nontrivial quantum measurement
on A necessarily perturbs ρAB. However, by noting that every
quantum channel with Kraus operators {Ki} can be consid-
ered an implementation of the POVM {K†

i Ki}, we observe
that totally quantumness* defined above is equivalent to the
concept of (tomographical) sensitivity introduced in Ref. [26],
which characterizes a state’s ability to detect the action of any
nontrivial local channel.

Definition 2. A bipartite state ρAB is sensitive on A to a set
of quantum operations Q with id ∈ Q when for every S ∈ Q

where id denotes the identity channel,

(SA ⊗ idB)(ρAB) = ρAB ⇒ S = idA. (5)

When a quantum state is sensitive to the set of all quantum
channels, we simply say that it is sensitive, or equivalently,
TQ*-Q. Similarly, through the Choi-Jamiołkowski isomor-
phism, we say that a linear map N is sensitive to Q when
for every S ∈ Q,

S ◦ N = N ⇒ S = id. (6)

Our first main result shows that actually the more general def-
inition of totally quantumness is equivalent to the weaker one.
This result solves the open problem questioned in Ref. [18].

Theorem 1 (TQ*=TQ). A quantum channel is sensitive if
and only if its output system is TQ. Similarly, a bipartite state
ρAB is sensitive on A if and only if it is a TQ-Q state.

Theorem 1 can be shown using the structure result of fixed
points of quantum channels [27], which, in turn, follows from
the Artin-Wedderburn theorem [28,29]. Self-contained ele-
mentary proofs of these results are given in the Appendix B.
Theorem 1 says that there is no intermediate level of classi-
cality when it comes to noninvasive measurability; in other
words, sensitivity to projective measurements automatically
implies sensitivity to general quantum channels. This implies
that no classical value can be read from a non-PC system with-
out perturbing it globally,even through weak measurements
[30–32].

Theorem 1 yields an interesting property of totally quan-
tumness that it is contagious; if any system prepared in a pure
state unitarily interacts with a totally quantum system, then it
also becomes totally quantum.

Proposition 1. Let ρAB be a TQ-Q state. For any isom-
etry V : → AK such that the marginal state τE of τKAB =
(V ⊗ 1B)ρAB(V † ⊗ 1B) is full-rank, τKAB is a TQ-Q state with
respect to the bipartition K|AB.

An alternative interpretation of Proposition 1 is that any
subsystem of a totally quantum system is also totally quan-
tum. This result is analogous to that of Ref. [33] where
a local projective measurement on a Q-Q state inevitably
forms entanglement with a measurement device. Proposition
1 shows that this holds similarly even when one considers the
more general case of POVMs, and TQ-Q states (proof in the
Appendix C).

Proposition 1 shows that it is impossible to circumvent
Theorem 1 by unitarily extracting a macrorealistic part K from
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system A invasively. It means that there could be a nontriv-
ial quantum channel action R on A as a backaction of the
invasive measurement, and one can interpret V as the Stine-
spring dilation of the quantum channel R. It provides
additional motivation for the nomenclature totally quantum
system for non-PC systems as it has no classical property even
in the weakest sense, i.e., when classicality means macro-
realism and noninvasive measurability.

Theorem 1 offers another intuitive explanation of why
quantum key distribution is secure. A typical example of
TQ-Q state can be found in the BB84 protocol [34]. When
Alice wants to send her random bit (say) 0 to Bob through
a quantum channel that could be eavesdropped, she encodes
that bit in either of two random bases and records it in her
memory M,

ρAM = 1
2 |0〉〈0|A ⊗ |0〉〈0|M + 1

2 |+〉〈+|A ⊗ |1〉〈1|M . (7)

Since ρAM is a special case of (4), by Theorem 1, any eaves-
dropper interacting with the qubit A in a nontrivial fashion
must alter the global state ρAB, which results in detectable
statistical difference in the later steps of the protocol.

IV. LOCAL CATALYSIS OF THE BIPARTITE STATE

Theorem 1 has a significant consequence about catalysis
utilizing correlated states. In resource theories, conventionally
catalytic transformations mean processes described as

ρS → σS := TrC[�(ρS ⊗ τC )], (8)

with the catalytic constraint requiring that the catalyst remains
in its original state in the process,

TrS[�(ρS ⊗ τC )] = τC, (9)

where C is called the catalyst and � is a free operation on SC.
However, we do not limit ourselves to state transitions

between two fixed quantum states. In this paper, a catalytic
transformation means a general quantum channel �(ρ) given
as �(ρ) := TrC[�(ρS ⊗ τC )] regardless of whether the initial
state ρS is fixed or not. Note that sometimes it is required
that the final state of joint system SC has arbitrarily weak
correlation, i.e., ‖�(ρS ⊗ τC ) − σS ⊗ τC‖1 < ε. However, we
do not make such an assumption here for generality.

Now, using a correlated system CE in state τCE as a catalyst
when only access to C is given means the transformation of
the form in (8) (where τS is interpreted as TrEτCE) with the
modified constraint,

TrS[�SC ⊗ idE (ρS ⊗ τCE)] = τCE. (10)

A typical example of correlated catalyst τCE is the product
of a previous catalysis, i.e., τCE = �(ρE ⊗ τC ), here � is
same with that in (8) but acts on CE. (See Fig. 1.) In other
words, catalyst τC is “borrowed” by E for catalysis �, formed
correlation with E , and returned to be borrowed by S again for
another round of catalysis. As discussed in the Introduction,
the bipartite state τCE could be used as a resource whenever
two systems C and E are combined again, and any change
in τCE by S can alter its resourceful nature. Our second main
result then shows that the catalysis constraint Eq. (10) severely
limits the usability of the correlated catalyst.

FIG. 1. A quantum resource catalyst could be correlated with
external systems inaccessible to a user in many plausible scenarios.
First, a catalyst can be a part of multipartite collection of catalysts
of the bank. In this case, it is natural for the bank to demand the
multipartite state to remain intact after each catalysis. Second, even
for an initially uncorrelated catalyst, after a round of correlation-
forming catalysis, it remains correlated with its previous user. The
same user can borrow the catalyst again, and it is natural to expect
the relation with the catalyst to remain the same as the previous round
of catalysis.

Theorem 2. A TQ-Q state τCE cannot be used to catalyti-
cally implement a nontrivial transformation when only access
to C is given.

Proof. We focus on the fact that once the initial state ρS

and the interaction channel � on SC is fixed as in (8), then the
following channel on C is induced.


(ηC ) := TrS[�(ρS ⊗ ηC )]. (11)

It follows that a catalyst τCE must be a fixed point of 
C ⊗
idE . However, by Theorem 1, the only channel on C that can
fix a TQ-Q τCE is the identity channel idC . It follows that the
channel � on SC must be factorized into �SC = �S ⊗ idC . It
implies that there is no interaction between S and C, therefore,
the catalysis is trivial. �

We remark that our proofs did not assume that � is a free
operation, hence, the results are applicable to a framework of
catalysis much more general than the conventional one where
the interaction between system and catalyst should be a free
operation. If we assume that �SC is a free operation, �S must
be free too, if feeding into �SC a free state on C and discarding
it are all free operations. Therefore, the whole transformation
is of the form ρS → �S (ρS ), which is simply a transformation
through a free operation.

In principle, catalysts can be also used for nonfree opera-
tions to reduce the cost (or boost the rate) of transformation,
but Theorem 2 tells us that not even such generalized catalysis
is possible with totally quantum catalysts.

V. MUTUAL INFORMATION CATALYSIS

If preserving the whole state of τCE is too severe a con-
straint, one might want to preserve only one measure of its
correlation, the mutual information I (C:E )τ . In other words,
one might want to catalytically implement the transformation
ρS → σS := TrCE[�SC ⊗ idE (ρS ⊗ τCE)] with the constraint
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that I (C:E )τ = I (C:E )η, where

ηCE := TrS[�SC ⊗ idE (ρS ⊗ τCE)]. (12)

If the above holds, then we say that the transformation ρ → σ

is mutual information (MI)-catalytically implemented.
For this purpose, we first prove the following lemma: if one

is required to preserve the mutual information of a TQ-Q state
ρAB, then the only actions one can locally apply on system A
are unitary operations.

Lemma 1. If ρAB is a TQ-Q state, then for any quan-
tum channel N on A with σAB := (NA ⊗ idB)(ρAB) satisfying
I (A:B)ρ = I (A:B)σ must be a unitary operation.

Proof. By the data processing inequality, we have
I (A:B)ρ � I (A:B)σ . By the saturation condition of the data
processing inequality, there exists a recovery channel RN
acting on A such that [35]

[(RN ◦ N )A ⊗ idB](ρAB) = ρAB. (13)

Since ρAB is a TQ-Q state, it implies that RN ◦ N = idA. As
the dimensions of input and output systems of NA are same, it
follows that NA is a unitary operation [36]. �

By using a similar proof to that of Theorem 2, but substi-
tuting the usage of Theorem 1 with Lemma 1, we can show
that this type of catalysis grants us no additional power either.

Corollary 1. A TQ-Q state τCE cannot be used to
MI-catalytically implement a nontrivial transformation when
only access to C is given.

This technique provides an answer to the following ques-
tion: What if different parties try to utilize a multipartite state
as a catalyst at the same time? One might wonder if it is
possible for two local actions at different sites can cancel each
other to enable the recovery of the mutual information. The
following result shows that it is nevertheless impossible. In
other words, Corollary 1 explicitly shows that indeed quantum
correlation would be a hidden resource; whenever a catalyst
is quantumly correlated with an environment, no catalysis
is possible without destroying such quantum correlations as
quantified by the mutual information.

Proposition 2. For any TQ-Q state ρAB and two channels
NA and MB, if (NA ⊗ MB)(ρAB) = ρAB, then NA is a unitary
operation.

Proof. Let τAB := (NA ⊗ idB)(ρAB) and σAB := (NA ⊗
MB)(ρAB). By the data processing inequality, we have
I (A:B)ρ � I (A:B)τ � I (A:B)σ . However, as σAB = ρAB, we
have I (A:B)ρ = I (A:B)τ . By Lemma 1, it follows that N is
a unitary operation. �

VI. GENERAL CORRELATED CATALYSTS

One may get the impression that the results above only
have implications for a restricted class of bipartite states that
are TQ-Q. However, any non-TQ-Q state τCE is a PC-Q state.
In particular, as a consequence of the Koashi-Imoto theorem
[37], any bipartite state τCE can be decomposed into the fol-
lowing form:

τCE =
∑

i

piτCL
i

⊗ τCR
i E , (14)

where C = ⊕
i Ci is a direct sum of subspaces Ci := CL

i ⊗ CR
i

and each τCR
i E is either a TQ-Q state or |CR

i | = 1 (in which

case, τCR
i E is uncorrelated, but we include it for completeness).

See the Appendix B for a self-contained and elementary proof
of the Koashi-Imoto theorem based on that of Ref. [38].

This observation tells us how restricted the usage of a gen-
eral correlated catalyst with local access is. The subspaces Ci

of the decomposition above can be interpreted as the “classical
degrees of freedom” for C that can be read out without disturb-
ing τCE, and any quantum channel on C preserving τCE also
preserve these sectors. It naturally leads us to the following
conclusion. (See the Appendix for a detailed discussion.)

Theorem 3. If a transformation can be catalytically
achieved by using the catalyst τCE = ∑

i piτCL
i

⊗ τCR
i E with

access to C, such that τCE is preserved, then the same trans-
formation can be achieved by an ensemble {pi, τCL

i
} of local

catalysts.
Here, by the ensemble {pi, τCL

i
}, we mean the probabilistic

mixture of quantum states with the classical handle of index
i, distinguished from the mixed state

∑
i piτCL

i
. Intuitively,

using τCE on C goes as follows: First, one measures which
subspace Ci it is supported on without disturbing τCE. Since
no action can act on CR

i without disturbing τCR
i E , only τCL

i
can

be utilized as a catalyst. Naturally, it is equivalent to having a
local catalyst τCL

i
with probability pi. To summarize, quantum

correlations in a correlated catalyst only hinder catalysis, and
only the classical part of the correlation allows for catalysis
because the property of noninvasive measurability, which is
essential for recovering the catalyst state.

VII. CONCLUSION

We inspect the extent to which external correlations that
a catalyst might have with its environment (inaccessible to
agent) would be affected, when the catalyst is used to facilitate
a process. We find that correlations of a quantum-mechanical
nature, i.e., contained in TQ-Q states, necessarily degrade in
the process of utilizing the catalyst to perform nontrivial trans-
formations. This cautions against potential embezzlement via
the consumption of correlations as resources unaccounted for.
Alternatively, from a more constructive viewpoint, our paper
also shows that there is no advantage of a catalyst bank in
creating quantumly correlated states and loaning parts of the
states out for catalytic purposes—they might as well prepare
classical ensembles of various independent ancillas.

We emphasize again that the “classicality” here means the
noninvasive measurability, which means that one can measure
a system without altering the state. Hence, our results are not
in conflict with previous results on quantum catalysis, where
classicality indicates other properties, e.g., nonentangled [39],
noncoherent [40], nonimaginary [41], etc. In other words,
even when quantum properties of catalyst are utilized, the
state should be classically known to its user.
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APPENDIX A: NOTATIONS

In this Appendix, we provide mathematical proofs of the
results given in the main text. Throughout the Appendix, we
will use the following notations. First, every Hilbert space
associated with a quantum system is assumed to be finite
dimensional, and |H| denotes the dimension of a vector space
H. The operator space over a Hilbert space H is denoted by
B(H). We slightly abuse the notation and denote the identity
map on B(H) by idH. Also, we will sometimes say that a
linear map � defined on B(H) is a linear map on H, in the
sense we identify the operator space associated with a physical
system with the system itself. The identity operator in B(H),
on the other hand, is denoted by 1H. A linear map � on B(H)
is called CP when � ⊗ idK is positive for any Hilbert space
K. A linear map � on B(H) is unital if �(1H) = 1H.

For any subspace K of a Hilbert space H and a linear map
� on B(H), we define its limitation �|K as � whose domain
is limited to B(K) without limiting its image. A “quantum
channel on K” means a quantum channel defined on B(K)
whose image is also in B(K). We will also identify matrices
with operators; the term “matrix” will be used to emphasize
its algebraic properties. Especially, a “full matrix algebra”
is a full operator set over a finite-dimensional Hilbert space,
emphasizing that operation composition, i.e., matrix multipli-
cation is well defined. For any M ∈ B(H), the linear map AdM

is given as AdM (ρ) := MρM†. For any Q ∈ B(H) such that
Q � 0, supp(Q) where (supp) means support is used to denote
the support of Q, the sum of eigenspaces corresponding to
strictly positive eigenvalues of Q.

APPENDIX B: STRUCTURE THEOREM FOR FIXED
POINTS OF THE QUANTUM CHANNEL

This Appendix contains the proof of our first main result,
i.e., Theorem 1 in the main text. We first provide the proof
of a technical result, known in literature [27] as the structure
theorem, and use it, subsequently, to prove Theorem 1.

1. Block-diagonal structure

Of central importance for this Appendix is the structure
theorem for the fixed point set of a quantum channel, which
we state as Theorem 5. Many proofs of this theorem rely on
the Artin-Wedderburn theorem, where the proof often requires
mathematically advanced tools, such as ring theory [42,43],
functional analysis [27,38], or lengthy linear algebraic ar-
guments [37]. In this section, we give an elementary and
self-contained proof by focusing on the more concrete case
of our interest.

We begin with the following.
Lemma 2. For a unital CP map �, if �(ρ) = ρ when ρ

is a Hermitian operator with the spectral decomposition ρ =∑n
i=1 λi�i, we have �(�i ) = �i for all i.
Proof. Without loss of generality, we let λi > λi+1 for all

i. Let ri := Tr[�i] and πi := �i/ri, then we get that qi :=
Tr[πn�(�i )] is a probability distribution. With respect to this
distribution,

〈λi〉 =
∑

i

qiλi = Tr[πn�(ρ)] = Tr[πnρ] = λn. (B1)

Since the left-hand side is a mean of {λi} and the right-
hand side is the smallest element of the set being averaged,
it follows that the probability distribution {qi} must satisfy
that qn = 1 and qi = 0 for any 1 � i � n − 1. It implies that
�(�n) = �n, however, since � is unital, we also have that

�

(
n−1∑
i=1

�i

)
=

n−1∑
i=1

�i. (B2)

By limiting � onto the support of
∑n−1

i=1 �i, we can repeat the
same argument and conclude that �(�n−1) = �n−1. Repeat-
ing this process n times gives us the desired result. �

Lemma 3. For a unital CP map � with Kraus operators
{Ki}, � fixes ρ if and only if [Ki, ρ] = [K†

i , ρ] = 0 for all i.
Proof. Showing the ifpart is trivial; �(ρ) = ∑

i KiρK†
i =

ρ
∑

i KiK
†
i = ρ. For the other direction, first let us assume that

ρ is Hermitian with the spectral decomposition ρ = ∑
j λ j� j .

If �(ρ) = ρ, then by Lemma 2 we get that �(� j ) = � j for
all j. Next, by conjugating � j on �(�k ) = ∑

i Ki�kK†
i =

�k , we get ∑
i

T i
jkT i†

jk = δ jk�k, (B3)

where T i
jk := � jKi�k . From the positivity of each T i

jkT i†
jk , we

get that T i
jk = � jKi�k = 0 for all i, whenever j 
= k. It means

that every Ki is block diagonal with respect to {� j},

Ki� j = Ki

⎛
⎝1 −

∑
k 
= j

�k

⎞
⎠ = Ki −

∑
k 
= j

�kKi�k = � jKi.

(B4)

Hence, [Ki,� j] = 0 for all i and j. Finally, this also then im-
plies that [Ki, ρ] = 0. By using the fact that a general matrix
can be decomposed into Hermitian and anti-Hermitian parts,
and a similar analysis for the anti-Hermitian part, we get the
desired result. �

As a side note to complement Lemma 3, we remark that for
any set of matrices {Ki}, the centralizer of {Ki, K†

i } is the set of
fixed points of a unital CP map. This can be shown by down-
scaling Ki → cKi by some constant c such that

∑
i KiK

†
i � 1

holds, and using {Ki} ∪ {
√
1 − ∑

i KiK
†
i } as Kraus operators

to construct a unital CP map.
Our main point of interest for this section involves the

set of fix points for a unital map � for which we denote
as F�. By Lemma 3, we know that if ρ1, ρ2 ∈ F�, then
their product ρ1ρ2 ∈ F� also. We remark that because of
Hermitian-preserving property of �, if X ∈ F� then X † ∈ F�.
Furthermore, let us also define min F� as the set of minimal,
nonzero central projectors in F�. Here, a minimal projector
means that it is not a sum of two nonzero projectors, and being
central means that it commutes with every element in F�.

We start with a quick observation on the relation between
minimal projectors. Note that for any minimal projector S,
SMS = cS for some complex number c (we assume that M
is Hermitian without loss of generality). Otherwise SMS has
a nontrivial spectral decomposition, and a projector onto an
eigenspace of SMS will be smaller than S, which violates that
S is minimal.
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Lemma 4. If two minimal projectors S and T commute
either S = T or ST = 0.

Proof. This follows from the fact that if ST 
= 0 and S 
=
T , then ST is a projector smaller than S, which contradicts
that S is minimal. �

The next theorem, known as a variant of the
Artin-Wedderburn theorem, states that for unital CP maps �,
the structure of F� always admits a particular decomposition,
i.e., a direct sum according to projections unto min F�. This
particular approach focusing on finding matrix basis elements
is inspired by Ref. [43].

Theorem 4 (Artin-Wedderburn [28]). For any unital CP
map �,

F� =
⊕

P∈min F�

F�P. (B5)

Moreover, there exists a tensor product structure for each
supp(P) = HP ⊗ LP and F�P factorizes into B(HP ) ⊗ 1LP ,
where B(HP ) is the full matrix algebra on HP.

Proof. We start by noting that every two different projec-
tors P1, P2 ∈ min F� are orthogonal to each other by Lemma
4. Otherwise, P1 cannot be minimal since P1 = P1P2 + P1P⊥

2
as both P1P2 and P1P⊥

2 are central projectors. Next, one can
observe that by definition, every central projector in F� is a
sum of minimal central projections. Especially, the identity
operator, which is in F� since �, if it is nonminimal, is then
also the sum of all projectors in min F�. Finally, each F�P is
an algebra with P as its unity.

Now, let us focus on each algebra FP := F�P. Although
P is a minimal central projector, there could in general be
minimal projectors Q in FP such that Q < P, even though
they are not central, otherwise P would not be in min F�.
In particular, there exists a decomposition of P into minimal
projectors

P =
∑

i

Qi. (B6)

By Lemma 4, we also know that all the Qi’s in the decompo-
sition of P are mutually orthogonal.

Consider the following relation between Qi: Qi ∼ Qj if
there exists X ∈ FP such that QiXQj 
= 0. We claim that this
relation is an equivalence relation—the fact that it is reflexive
and symmetric is straightforward, whereas, transitivity is also
true: if there exists X and Y in FP such that QiXQj 
= 0 and
QjY Qk 
= 0, then

Z := QiXQjY Qk 
= 0. (B7)

This follows from the fact that

QjY QkY
†Qj = c jkQj, (B8)

with c jk = ‖QjY Qk‖2
2/Tr[Qj], which is nonzero and sim-

ilarly, QiXQjX †Qi =ci jQi with ci j =‖QiXQj‖2
2/Tr[Qi] 
=0

so that ZZ† = ci jc jkQi 
= 0. Therefore, the equivalence re-
lation ∼ splits {Qi} into equivalence classes. Moreover,
there exists only one equivalence class; Suppose we have
two distinct equivalent classes I and J with QI := ∑

I =∑
i:Qi∈I Qi (similarly for J ), we then have

QIFPQJ = 0. (B9)

It follows that for any X ∈ FP, QIX (P − QI ) = 0, hence, QI
becomes central in FP, which contradicts that P is a minimal
central projector. As a result, for any two Qi and Qj , we have
Qi ∼ Qj , i.e., there exists X ∈ FP such that QiXQj 
= 0.

Now, we let E11 := Q1 and E1 j := Q1XjQj for some
Xj , which is guaranteed to exist, such that ‖Q1 j‖2 =
Tr[Q1XjQjX

†
j ] = Tr[Q1]. By letting X1 := Q1, we can inter-

pret E11 as a special case of E1i. Then, we define Ei1 := E†
1i =

QiX
†
j Q1 and Ei j := Ei1E1 j = QiXi jQ j where Xi j := X †

i Q1Xj

for all i, j > 1. Because of the property,

QiXQi = (Tr[QiX ]/Tr[Qi])Qi, (B10)

for all i and X ∈ FP, we have E1iE j1 = Q1XiQiQjX
†
j Q1 =

δi j (Tr[Q1XiQiX
†
i ]/Tr[Q1])Q1 = δi jQ1. Therefore,

Ei jEkl = Ei1(E1 jEk1)E1l = δ jkEil , (B11)

and that Tr[E†
i jEkl ] = δikδ jl so that ‖Ei j‖2

2 = Tr[Q1] for all i

and j. Especially, E2
ii = Eii. Because Eii = Qi(X

†
i Q1Xi )Qi =

rQi for some positive number r, we have r = 1 so that Eii =
Qi. It follows that Tr[Qi] = Tr[Ei1E1i] = Tr[E1iEi1] = Tr[Q1]
for all i, i.e., every minimal projector Qi has the same rank.

Next, note that for any Z ∈ FP, we have QiZQjEji =
Qi(ZQjXji )Qi = cQi for some complex number c, and by
taking the trace of both hands we get c = (Tr[EjiZ]/Tr[Q1])
because QjEjiQi = Eji and Tr[Qi] = Tr[Q1]. Therefore,

QiZQj = (Tr[E†
i jZ]/Tr[Q1])Ei j, (B12)

and it follows that for any Z ∈ FP, Z = PZP = ∑
i, j QiZQj =∑

i, j (Tr[E†
i jZ]/Tr[Q1])Ei j , so {Ei j} is an orthonormal

basis of FP.
Now, we define a linear map � given as for the basis

elements {Ei j},
�(Ei j ) := |i〉〈 j|HP ⊗ 1LP , (B13)

with some Hilbert spaces HP and LP such that |LP| =
Tr[Q1]. We can see that it is an isomorphism from the
fact that �(Ei j )�(Ekl ) = δ jk�(Eil ) and Tr[�(Ekl )†�(Ei j )] =
δikδ jlTr[Q1] = Tr[E†

klEi j]. Therefore, one can see that FP =
F�P is isomorphic to B(HP ) ⊗ 1LP . �

For any ρAB � 0, if TrB(ρAB) = c|ψ〉〈ψ |A for some pure
state |ψ〉A on A, then we necessarily have ρAB = |ψ〉〈ψ |A ⊗
ρB. Thus, by considering the Choi matrix of each limitation
�|supp(P), we have the following result.

Corollary 2. For a unital CP map � with the fixed point
set F� with the decomposition (B5), each limitation �|supp(P)

decomposes into

�|supp(P) = idHP ⊗ �LP , (B14)

for some unital CP map �LP on LP with 1LP as the unique
fixed point.

Proof. The set of fixed points of the limitation �|supp(P) is
M(HP ) ⊗ 1LP . Therefore, every Kraus operator of �|supp(P)

commutes with every matrix of the form AHP ⊗ 1LP , which
implies that every Kraus operator is in the form of 1HP ⊗ Ki,
hence, �|supp(P) = idHP ⊗ �LP . �

Corollary 2 is a key tool that is necessary for our goal of
proving the structure theorem. Additionally, we need a few
technical lemmata. We present Lemma 6 and 8 from Ref. [44]
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with an alternative proof based on elementary linear algebra.
The proofs of Lemma 5 and 7 are taken from Ref. [27] and
presented here for completeness.

Lemma 5 (Proposition 6.8, [27]). If a quantum channel
preserves an operator, then it also preserves the Hermitian
and anti-Hermitian part of the operator. Moreover, the chan-
nel also preserves the positive and negative parts of the
(anti-)Hermitian part.

Proof. Let � be a quantum channel and �(X ) = X . If X =
H + iA where both H and A are Hermitian, then �(H ) − H =
i[A − �(A)]. Since the only operator that is both Hermitian
and anti-Hermitian is 0, we have �(H ) = H and �(A) = A.
Moreover, if H = P − N where P, N � 0 and PN = 0, then
by letting �P be the projector onto supp(P) and similarly for
N , we have

Tr[P] = Tr[�P(P − N )] = Tr[�P�(P − N )]

� Tr[�(P)] = Tr[P]. (B15)

�
Lemma 6. If λ is an eigenvalue of A ∈ B(H), then the

complex conjugate λ∗ is an eigenvalue of A†. Moreover,
the geometric multiplicity of λ for A is same with that of
λ∗ for A†.

Proof. The first part immediately follows from that
det[A − λ1] = 0 is equivalent to det[A† − λ∗1] = 0. For the
second part, recall that the geometric multiplicity of λ for
A is equal to |H| − r(A − λ1) where r(X ) is the rank of
an operator X . Because rank is invariant under the adjoint
transformation, we have

|H| − r(A − λ1) = |H| − r(A† − λ∗1), (B16)

and, thus, we get the wanted result. �
Lemma 7 (Proposition 6.10, [27]). For any fixed point ρ �

0 of a quantum channel �, if Q is the projector onto the
support of ρ, then Tr[(1 − Q)�(Q)] = 0 and

σ � Q ⇒ �(σ ) � Q. (B17)

Moreover, for projectors Q, the condition (B17) is equivalent
to

�†(Q) � Q. (B18)

A similar argument can be given for N , too.
Proof. For minimal and maximal positive eigenvalues λm

and λM of ρ, we have λmQ � ρ � λMQ, hence,

0 � λmTr[(1 − Q)�(Q)]

� Tr[(1 − Q)�(ρ)]

= Tr[(1 − Q)ρ]

� λMTr[(1 − Q)Q] = 0.

For the second part,
(⇒) Let Q⊥ := 1 − Q. Then,

Tr[Q⊥�(Q)] = Tr[�†(Q⊥)Q] = 0, (B19)

hence, Q⊥�†(Q⊥)Q⊥ = �†(Q⊥). Using �(1) = 1, we get

�†(Q) = Q + Q⊥�†(Q)Q⊥ � Q. (B20)

( ⇐� ) For any σ � Q, we have that

Tr[σ ] = Tr[σQ] = Tr[σ�†(Q)]

= Tr[�(σ )Q]

� Tr[�(σ )] = Tr[σ ].

Therefore, Tr[�(σ )Q] � Tr[�(σ )], which implies that
�(σ ) � Q. �

Lemma 8 (Theorem 2, [44]). For any quantum channel �

on A, if every fixed point of �† is proportional to 1A, then, �

also has a unique fixed density matrix ρ.
Proof. As a linear map on B(A) (by identifying A with its

associated Hilbert space), fixed points of � are equivalent
to eigenvectors corresponding to the eigenvalue 1. If every
fixed point of �† is proportional to 1A, then, it means that
the geometric multiplicity, or the dimension of the eigenspace
of eigenvalue 1 of �† is 1. By Lemma 6, a linear map and
its adjoint have the same eigenvalues and the same geometric
multiplicities, the geometric multiplicity of 1 as an eigenvalue
of � is also 1. It means that there is a unique operator ρ in
B(A) such that �(ρ) = ρ. This ρ has to be Hermitian because
of the Hermitian-preserving property of � and, moreover,
ρ � 0 because if a Hermitian operator is fixed by a quantum
channel, then both of its positive and negative parts should be
fixed by the channel by Lemma 5, which makes the geometric
multiplicity of 1 larger than 1. After the normalization, it
follows that there is only a single quantum state fixed by �.�

Theorem 5 (Structure theorem for fixed points of quantum
channel, [27]). For any quantum channel � on A, the set F�

of all fixed points of � have the decomposition of the form

F� =
⊕

i

B(Hi) ⊗ ρi. (B21)

Here, for any vector space K, K ⊗ ρi := {v ⊗ ρi: v ∈ K}.
Proof. By the previous lemmata, F�† has the decomposi-

tion Eq. (B5) and for any P ∈ min F�† , �†|supp(P) = idHP ⊗
�

†
LP

. Moreover, since �†(P) = P, by Lemma 7, the im-
age of �|supp(P) is also contained in B[supp(P)], so that
(�|supp(P) )† = �†|supp(P). It follows that each �LP := �

††
LP

is
a quantum channel on LP and has the unique fixed point,
say ρP by Corollary 2 and Lemma 8. It follows that, for any
X ∈ B(HP ),

�(XHP ⊗ ρP ) = �|HP⊗LP (XHP ⊗ ρP )

= idHP (X ) ⊗ �LP (ρP ) = XHP ⊗ ρP.

In other words, B(HP ) ⊗ ρP ⊆ F�. Therefore, the following
direct sum,

G� :=
⊕

P∈min F †
�

B(HP ) ⊗ ρP (B22)

is a subspace of F� as a vector space over the complex number
field because each summand is fixed by �.

Now, we count the dimension of each space. Recall that the
dimension of a direct sum of vector spaces is the sum of the
dimension of all the individual summand. Because |B(HP ) ⊗
ρP| = |B(H)|| span{ρP}| = |B(H)| as ρP is understood as a
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single-point set, and the span of it is one dimensional, we have

|G�| =
∑

P∈min F
�†

|B(HP )| =
∑

P∈min F
�†

|HP|2. (B23)

On the other hand, similarly, |B(HP ) ⊗ 1LP | = |B(HP )|,
therefore, it follows that

|F�† | =
∑

P∈min F
�†

|B(HP )| =
∑

P∈min F
�†

|HP|2. (B24)

Finally, note that |F�| = |F�† | by Lemma 6 because they
correspond to the geometric multiplicities of 1 for � and �†,
respectively. It follows that G� = F� because their dimen-
sions are the same. �

2. Proof of Theorem 1

Proof. The first part of the theorem is straightforward by
looking at the contrapositive: if a quantum channel N has
an output system that is not totally quantum, i.e., PC, then
by Eq. (6) there exists a nontrivial projective measurement,
which is a quantum channel that fixes N , hence,N cannot be
sensitive.

We show the other direction. Let the output system of N
be TQ, and let us say that a quantum channel S fixes N , i.e.,
S ◦ N = N . This means that the image of N is a subset of
fixed points of S . By Theorem 5, the space of all fixed points
FS of S must have the following unique decomposition:

FS =
⊕

i

Mdi ⊗ σi, (B25)

with respect to an appropriate basis and for some fixed full-
rank quantum states σi and the full matrix algebras Mdi .

If there is more than one term in the direct sum of
Eq. (B25), we will call the set of projectors onto their supports
{�i}. Note that the projective measurement described by {�i}
fixes all the states in FS , and, therefore, all the output states
of N . This contradicts the assumption that the output system
of N is TQ. Hence, there should be only one term in the
direct sum of Eq. (B25) so that FS should have the form of
FS = Md ⊗ σ for some full matrix algebra Md and a fixed
quantum state σ . However, suppose that there are more than
one distinct eigenvalue for σ so that there are, at least, two
terms in the spectral decomposition of σ = ∑

j λ jPj , where
Pj is the projector onto the eigenspace corresponding to the
eigenvalue λ j . Then, we can now identify a projective mea-
surement that fixes FS , i.e., {1d ⊗ Pj} where 1d is the identity
matrix in Md . It also violates the output system of N being
non-PC, hence, σ should be a one-dimensional state so that
FS is isomorphic to a full matrix algebra, i.e., S fixes every
operator. This means that S = id and, hence, N is sensitive.

The statement for bipartite states follows the proof above
by applying the Choi-Jamiołkowski isomorphism to S . �

APPENDIX C: PROOF OF PROPOSITION 1

Proof. Let us start by noting that for any isometry V : A →
AK , there exists a unitary operator U on AK such that V =
U (|φ〉K ⊗ 1A) for some state |φ〉K . Additionally, consider a
measurement operation PK (·) = ∑

i �i · �i with more than
one mutually orthogonal projector {�i} on K that fixes τKAB.

Consider an induced quantum channel on A defined as

Q(·) := TrK [U† ◦ PK ◦ U (|φ〉〈φ|K ⊗ ·A)], (C1)

where U is the unitary channel describing the action of U on
AK . Since PE fixes τKAB, QA fixes ρAB. Since it is a TQ-Q
state, it implies that Q is the identity channel. Since unitary
operations cannot form correlation with other systems, (or by
the Schrödinger-Hughston- Jozsa-Wootters theorem [45,46])
that U† ◦ PK ◦ U (|φ〉〈φ|K ⊗ idA) = σK ⊗ idA for some state
σK . Applying this channel to ρAB on A, we get

U†
KA ◦ PE ◦ UKA(|φ〉〈φ|K ⊗ ρAB) = σK ⊗ ρAB. (C2)

Note that UKA(|φ〉〈φ|K ⊗ ρAB) = τKAB and PK does not al-
ter τKAB. Hence, the left-hand side is U†

KA ◦ UKA(|φ〉〈φ|K ⊗
ρAB) = |φ〉〈φ|K ⊗ ρAB. It follows that σK = |φ〉〈φ|K .

Now, a quantum state η is fixed by measurement operation
P (·) = ∑

i �i · �i if and only if �iη�i = η for only one i.
Moreover, PK ⊗ idA is also a measurement operation. Con-
sidering the Choi matrix, it follows that there exists a unique
�i such that (�i ⊗ 1A)U (|φ〉K ⊗ 1A) = U (|φ〉K ⊗ 1A) and
(� j ⊗ 1A)U (|φ〉K ⊗ 1A) = 0 for any other � j . By conjugat-
ing the operator above to ρAB on A and tracing out B, we get
that � jτK� j = 0, which contradicts τA being full rank. �

APPENDIX D: PROOF OF THEOREM 3

1. The Koashi-Imoto theorem and decomposition
of the PC-Q state

Here, we prove that arbitrary bipartite state τCE can be
decomposed into the from

τCE =
⊕

i

piτCL
i

⊗ τCR
i E , (D1)

where C = ⊕
i CL

i ⊗ CR
i and each τCR

i E is a TQ-Q state. Equiv-
alently, through the Choi-Jamiołkowski isomorphism for any
quantum channel T : E → C, one has the following unique
decomposition.

T (ρ) =
⊕

i

τCL
i

⊗ TCR
i
(ρ). (D2)

with respect to the same C above for any input state ρ, where
τCL

i
is a quantum state on CL

i and TCR
i
: E → CR

i is a sensi-
tive, trace nonincreasing [47]. CP map (or a trivial map with
|CR

i | = 1, which we simply count as a special case of sensitive
map for simplicity). This result can be attained by using the
Koashi-Imoto theorem [37] as a lemma. Here, we provide
a concise statement and proof of the Koashi-Imoto theorem
that mainly follows that of Ref. [38] without using the result
of Ref. [48] directly by using the tools that facilitated the
structure theorem (Theorem 5) we developed earlier.

Lemma 9 (Koashi-Imoto [37,38]). For any set of quan-
tum states {ρk} on a Hilbert space H, there exists a
unique decomposition of H = ⊕

i HiL ⊗ HiR that satisfies the
following:

(1) Each ρk decomposes as

ρk =
⊕

i

qi|k ωiL ⊗ ρiR|k, (D3)

012417-8



CATALYSIS ALWAYS DEGRADES EXTERNAL QUANTUM … PHYSICAL REVIEW A 108, 012417 (2023)

where (qi|k ) is a probability distribution over i and ρiR|k is
a quantum state on HiR depending on k, whereas, ωiL is a
quantum state on HiL independent of k.

(2) Any quantum channel C on H that fixes all ρk is a
quantum channel on each subspace HiL ⊗ HiR and

C|HiL ⊗HiR
= CHiL

⊗ idHiR
, ∀ i, (D4)

where each CHiL
fixes ωiL , i.e., CHiL

(ωiL ) = ωiL .
Proof. Let F := {F :F (ρk ) = ρk,∀ k} be the set of all

quantum channels that fixes each {ρk}. Then, when FC is the
set of all fixed points of a linear map C, we let

F0 :=
⋂
F∈F

FF† . (D5)

Since every FF† is finite dimensional, F0 can be actually
expressed as a finite intersection,

F0 = FF†
1
∩ FF†

2
∩ · · · ∩ FF†

M
, (D6)

for some F1, . . . ,FM ∈ F. To see this, observe that inter-
secting one more FF can never increase the dimension of
the intersection, hence, because of the finite dimensionality,
only a finite number of FF†

i
nontrivially affect the interaction⋂

F∈F FF† . Let us consider the quantum channel F0 given as

F0 := 1

M

M∑
n=1

Fn. (D7)

The Kraus operators of F†
0 are simply the union of scalar

multiples of those of F†
i . Suppose now, that we have a state

ρ ∈ FF†
0
. Then, by Lemma 3, ρ commutes with all the Kraus

operators of each F†
i . Therefore, again by Lemma 3, ρ is fixed

by all of F†
i , i.e., ρ ∈ FF†

1
∩ FF†

2
∩ · · · ∩ FF†

M
. Hence, ρ ∈ F0.

It shows that FF†
0

⊆ F0, and, therefore, F0 = FF†
0
. It follows

that there exists the decomposition of the form (B5),

FF†
0

=
⊕

i

1HiL
⊗ B(HiR ), (D8)

with respect to a decomposition H = ⊕
i HiL ⊗ HiR . Define

Qi := 1HiL
⊗ 1HiR

to be the projector onto the subspace
HiL ⊗ HiR of H. Then, we can observe from the block-
diagonal structure (D8) that

Qi ∈ FF†
0

=
⋂
G∈F

FG† ⊆ FF† (D9)

for any F ∈ F. It means that F†(Qi ) = Qi and, thus,
F†(Qi ) � Qi and F†(1 − Qi ) � 1 − Qi for any F ∈ F and
i because F†(1) = 1. By Lemma 7, it follows that for all i
and F ∈ F, F |HiL ⊗HiR

is a quantum channel on HiL ⊗ HiR and
(F |HiL ⊗HiR

)† = F†|HiL ⊗HiR
.

Especially for F0, from (D8) it follows that

F†
0 |HiL ⊗HiR

= G0HiL
⊗ idHiR

, (D10)

with some unital CP map G0HiL
on HiL with the one-

dimensional fixed point set {c1}. By Lemma 8,

F0|HiL ⊗HiR
= F0HiL

⊗ idHiR
, (D11)

with some quantum channel F0HiL
on HiL with a unique fixed

quantum state, say, ωiL . Therefore,

FF0 =
⊕

i

ωiL ⊗ B(HiR ). (D12)

It follows that every ρk as a fixed point of F0 indeed has the
expression of the form (D3).

Now we prove (ii). For any F ∈ F, again, F†|HiL ⊗HiR
=

F†
HiL

⊗ idHiR
for some quantum channel FHiL

on HiL because
F0 = FF†

0
⊆ FF† , so F |HiL ⊗HiR

= FHiL
⊗ idHiR

. Since {ρk} ⊆
FF , it must be that ωiL ⊗ ρiR|k is a fixed point of FHiL

⊗ idHiR

for all i. Thus, every FHiL
must have ωiL as a fixed state. It

proves (ii). �
We apply this result on the image of the quantum channel

T , {T (ρ)} so that the input state ρ functions as the index k
in the statement of the Koashi-Imoto theorem above. Hence,
according to (i) above for any ρ, T (ρ) decomposes as

T (ρ) =
⊕

i

ωiL ⊗ TiR (ρ). (D13)

Since ωiL is independent of ρ, it follows that each TiR is
linear in ρ. Moreover, it is immediate that they are CP. Now
we claim that each TiR is sensitive because otherwise, there
exists a nonidentity quantum channel NiR on HiR such that
NiR ◦ TiR = TiR , and it contradicts (ii) of Lemma 9.

Once we have the decomposition of arbitrary quantum
channel (D2), by using the Choi-Jamiołkowski isomorphism
again for each CP map TiR , one can find the corresponding
bipartite quantum state ρCR

i E and normalization factor qi :=
Tr[TiR (1H)]/|H| to get (D1), which should sum up to 1 due
to the trace-preserving property of T . In this case, for any
quantum channel C on C such that CC ⊗ idE (ρCE) = ρCE, C
should satisfy (D4).

2. Proof of Theorem 3

We follow the logic of the proof of Theorem 1 above. Con-
sider any interaction � on SC that implements the catalytic
transformation of a state ρS on S using τCE with access to C.
We consider the channel S on S, defined as

S (ρ) := TrCE[�SC ⊗ idE (ρS ⊗ τCE)]. (D14)

Recall the statement of the theorem presumes the following
decomposition of the catalyst with its environment,

τCE =
∑

i

piτCL
i

⊗ τCR
i E . (D15)

Let P = ∑
j � j� j be the pinching map on C where each

� j is the projector onto the subspace CL
j ⊗ CR

j . This models
the process that acts locally on the system after a projective
measurement process. Note that PC ⊗ idE fixes τCE, i.e.,

PC ⊗ idE (τCE) = τCE. (D16)

Thus, one can perform the pinching operation before applying
�SC without changing S ,

TrCE[�SC ⊗ idE (ρS ⊗ τCE)]

= TrCE[�SC ◦ (idSE ⊗ PC )(ρS ⊗ τCE)]

= TrC[�SC ◦ (idS ⊗ PC )(ρS ⊗ τC )]. (D17)
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Hence, from the discussion of the previous section, we get the
factorization,

�SC (ρS ⊗ � jτC� j ) = p j�SCL
j

(
ρS ⊗ τCL

j

) ⊗ τCR
j
, (D18)

with the limitation �SCL
j

of �SC onto SCL
j , which is by itself a

quantum channel on SCL
j . The resultant transformation of ρS

is, therefore, of the form

S (ρ) =
∑

j

p jTrC
[
�SCL

j

(
ρS ⊗ τCL

j

)]
. (D19)

Therefore, one can see that S can be implemented with the
ensemble {pi, τCL

i
}.

Conversely, any catalysis possible with the ensemble
{pi, τCL

i
} is also possible with τCE through the protocol ex-

plained in the main text after Theorem 3.
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