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Chain rules for a mutual information based on Rényi zero-relative entropy
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Quantum Rényi relative entropies play a significant part in characterizing operational tasks in quantum
information theory. In this paper, we first give some fundamental properties of the zero-relative entropy, and
we find that the geometric Rényi relative entropy reduces to the zero-relative entropy in the limit case. Then, we
define a new mutual information via the zero-relative entropy, and it is the so-called zero-mutual information.
In particular, the zero-mutual information is a lower bound of the Petz-Rényi and geometric generalized
mutual information. We establish the chain rules for the unsmoothed and smoothed versions of the zero-mutual
information. As an application, we discuss generalized mutual information with the Petz-Rényi, sandwiched
Rényi, and geometric Rényi types, our result gives a uniform chain rule inequality for quantum generalized
mutual information.
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I. INTRODUCTION

von Neumann entropy, quantum conditional entropy, and
quantum mutual information are the fundamental quanti-
ties for analyzing nearly all quantum-information-processing
protocols. The von Neumann entropy has an operational
interpretation as the optimal rate of quantum data compres-
sion [1]. The quantum conditional entropy is of operational
significance in the context of randomness extraction and
quantum cryptography [2–6], and the quantum mutual infor-
mation works as a measure for the capacity of communication
channels [7–10]. It has also been successfully employed to
characterize classical-quantum-channel coding and error ex-
ponent analysis [11–19]. These three information measures
obey the chain rule (or chain relation), i.e.,

I (A; B) = S(A) − S(A|B). (1)

It is well known that they can be directly derived from quan-
tum relative entropy [5,6,20].

It is well-known that Rényi entropies [21] are powerful
tools in many information-theoretic tasks, and it is desirable
to construct quantum versions of these entropic quantities.
Since the noncommutative nature of quantum states, there
are at least three nonequivalent quantum Rényi relative en-
tropies, i.e., Petz-Rényi relative entropy [22,23], sandwiched
Rényi relative entropy [24–26], and geometric Rényi rela-
tive entropy [27–29]. They are meaningful for understanding
quantum information tasks and have already found many
applications. In particular, by taking different values at α,
one can obtain some important entropic measures, such as
quantum relative entropy [20], collision relative entropy [2],
Belavkin-Staszewski relative entropy [30,31], max-relative
entropy [32], min-relative entropy, and zero-relative entropy
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(also named alternative min-relative entropy) [2,32,33], and
the ways they relate to each other are depicted in Fig. 1.

The quantum relative entropy has an operational meaning
in terms of the task of quantum hypothesis testing in the
asymptotic regime of many use of independent and identically
distributed (i.i.d.) resources. However, we know that the i.i.d.
resources are not available in practical scenarios. This is to say
that the resources available are typically finite and operations
can be achieved only approximately, and so this makes it
necessary to consider the nonasymptotic setting. In particular,
we are interested in the amount of resource needed to perfect a
task just once if we allow for a small error in cryptography. A
key step in this direction is to construct the one-shot scenario;
thus, Renner and Wolf introduced the framework of smooth
entropy in Ref. [34]. After that, there was a lot of research
on smooth and nonsmooth quantum generalized Rényi en-
tropic measures (see Refs. [35–61]). There are four equivalent
definitions of the quantum mutual information based on the
quantum relative entropy, but for quantum Rényi relative en-
tropies, they will lead to multiple nonequivalent definitions
in use. Based on the one-shot setting, Ciganović et al. [62]
summarized several possible generalized mutual information
quantities, which can be defined as

Iε
gen(A; B) := H ε

min(A) − H ε
min(A|B)

or H ε
min(A) − H ε

max(A|B)

or H ε
max(A) − H ε

max(A|B)

or H ε
max(A) − H ε

min(A|B). (2)

They discussed smooth max-information, a generalization of
von Neumann mutual information derived from the max-
relative entropy, and gave their lower chain rules [62]. Onorati
explored the chain rules for min-information defined by the
min-relative entropy [63]. For the zero-relative entropy, Datta
and Leditzky claimed that it has a simple operational inter-
pretation in the problem of binary state discrimination; that
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FIG. 1. The diagram of quantum Rényi relative entropies.

is, it is equal to the minimum probability of the type-II error
under the condition that the probability of the type-I error is
0 [33]. We also know that in perfect entanglement dilution,
the zero-relative entropy provided an explicit characterization
of the entanglement cost of a bipartite state in the one-shot
setting [64]. In addition, it was also employed in the trade-off
between the rate of the success probability and the compres-
sion rate in state compression [65]. Therefore, it is necessary
to discuss the entropy, conditional entropy and mutual infor-
mation defined by the zero-relative entropy. The conditional
max-entropies (defined by the min-entropies or zero-relative
entropies) have been studied in Refs. [40,42–44,47,66], and it
has been found that the zero-mutual information of a channel
is related to the feedback-assisted capacity with zero error
[67]. However, in addition to their applications, it is also very
important to study their basic properties and establish the
relationship between these generalized entropy measures.

In this paper, we give some fundamental properties of the
zero-relative entropy, and we also find that the zero-relative
entropy is a special case of the geometric Rényi relative en-
tropy in the limit α → 0. We then focus on a new mutual
information based on the zero-relative entropy, and we denote
the zero-mutual information. Since the zero-relative entropy
can be obtained from the Petz-Rényi and geometric relative
entropies in the limit α → 0, from the fact that the Petz-Rényi
and geometric relative entropies increase with respect to pa-
rameter α, it is easy to get that the zero-mutual information
is a lower bound of the Petz-Rényi and geometric generalized
mutual information. The chain rule of mutual information is of
central importance to the information theory [5,6,20,66,68];
however, it is almost impossible to establish an equal chain
rule for the zero-mutual information. Therefore, we provide
the upper and lower bounds of chain rules. In addition, we
define the smooth version of the zero-mutual information and
get its chain rule. Since the zero-mutual information is the
smallest measure of the Petz-Rényi and geometric general-
ized mutual information, its lower chain rule can be used
to constrain the latter two. Finally, we discuss generalized
mutual information with the Petz-Rényi, sandwiched Rényi,
and geometric Rényi types. Our result gives a uniform chain
rule bound for quantum generalized mutual information.

The remainder of this paper is organized as follows. In
Sec. II, we present formal notations and give some proper-
ties of the zero-relative entropy. In Sec. III, we consider the
(smooth) zero-mutual information and discuss its chain rules.
In Sec. IV, we try to discuss the chain rules for the quantum
generalized mutual information. Finally, in Sec. V, we con-
clude this study and present an outlook for future research.

II. NOTATION AND DEFINITIONS

A quantum system A is associated with a finite-
dimensional Hilbert space HA, with dA = dim(HA). The
composite system AB is associated with the Hilbert space
HAB = HA ⊗ HB. We use P (H) to denote the set of positive
semidefinite operators on H. We define the set of quantum
states by S=(H) := {ρ ∈ P (H) : Trρ = 1} and the set of sub-
normalized states by S�(H) := {ρ ∈ P (H) : 0 < Trρ � 1}.
The identity operator on HA is denoted by IA. Given an opera-
tor ρAB on a composite Hilbert space HAB, ρA = TrB(ρAB) is a
reduced operator on the subsystem. For every linear operator
ρ, the trace norm is defined as ‖ρ‖1 = Tr

√
ρ†ρ, and the ∞

norm is defined as ‖ρ‖∞ = λmax, where λmax is the largest
singular value of ρ. For any ρ ∈ S�(H), one can define the
ball of ε-close states around ρ as

Bε(ρ) = {ρ ′ ∈ S�(H) : P(ρ, ρ ′) � ε}. (3)

We write ρ ≈ε σ iff P(ρ, σ ) � ε. Here, P(ρ, σ ) is the purified
distance [69–72] and is defined as P(ρ, σ ) =

√
1 − F̄ (ρ, σ )2,

where F̄ (ρ, σ ) = F (ρ, σ ) +
√

(1 − Trρ)(1 − Trσ ) is the
generalized fidelity and F (ρ, σ ) = ‖ρ 1

2 σ
1
2 ‖1.

Then, we introduce three different quantum Rényi rela-
tive entropies, that is, the Petz-Rényi, sandwiched Rényi, and
geometric Rényi relative entropies, we refer the readers to
Refs. [3,5,6] for more discussions. The logarithm is base 2
throughout the paper.

Definition 1. For any α ∈ [0, 1) ∪ (1, 2], ρ ∈ S=(H), and
σ ∈ S�(H), if supp(ρ) ⊆ supp(σ ), the Petz-Rényi relative
entropy is defined as

Dα (ρ‖σ ) = 1

α − 1
log2 Tr(ρασ 1−α ). (4)

Definition 2. For any α ∈ [ 1
2 , 1) ∪ (1,∞), ρ ∈ S=(H),

and σ ∈ S�(H), if supp(ρ) ⊆ supp(σ ), the sandwiched Rényi
relative entropy is defined as

D̃α (ρ‖σ ) = 1

α − 1
log2 Tr(σ

1−α
2α ρσ

1−α
2α )α. (5)

Definition 3. For any α ∈ [0, 1) ∪ (1,∞), ρ ∈ S=(H),
and σ ∈ S�(H), if supp(ρ) ⊆ supp(σ ), the geometric Rényi
relative entropy is defined as

D̂α (ρ‖σ ) = 1

α − 1
log2 Tr[σ (σ− 1

2 ρσ− 1
2 )α]. (6)

For the above three quantum Rényi relative entropies, for any
α ∈ [ 1

2 , 1) ∪ (1, 2], they satisfy the following order relations,
i.e.,

D̃α (ρ‖σ ) � Dα (ρ‖σ ) � D̂α (ρ‖σ ). (7)

We know that the Petz-Rényi and sandwiched Rényi rela-
tive entropies yield the quantum relative entropy in the limit
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α → 1, i.e.,

lim
α→1

Dα (ρ‖σ ) = lim
α→1

D̃α (ρ‖σ ) = D(ρ‖σ ). (8)

Here, D(ρ‖σ ) = Tr[ρ(log2 ρ − log2 σ )] is the quantum rela-
tive entropy [20,73].

Note that the limit of the geometric Rényi relative en-
tropy as α → 1 is the Belavkin-Staszewski relative entropy
[6]. Besides, one can evaluate other values at α ∈ {0, 1

2 ,∞}.
The sandwiched and geometric Rényi relative entropies are
monotonically increasing in α, by taking the limit α → ∞,
one can obtain the max-relative entropy [6,24,56], i.e.,

lim
α→∞ D̃α (ρ‖σ ) = lim

α→∞ D̂α (ρ‖σ ) = Dmax(ρ‖σ ), (9)

where Dmax(ρ‖σ ) = log2 inf{λ : ρ � λσ } is the max-relative
entropy.

One evaluates the value at α = 1
2 , then we can obtain

three different results for the above three generalized Rényi
relative entropies, and Tomamichel gives an example and
compares these relative entropies in Ref. [5]. In particular, the
sandwiched Rényi relative entropy is related to the fidelity,
i.e., D̃ 1

2
(ρ‖σ ) = −2 log2 F (ρ, σ ). Note that D̃ 1

2
(ρ‖σ ) is also

called the min-relative entropy, and it is also denoted by
Dmin(ρ‖σ ) [2,32,63].

Clearly, for α = 0, using the Petz-Rényi relative entropy,
we can obtain the zero-relative entropy [32,33], i.e.,

D0(ρ‖σ ) = − log2 Tr(�ρσ ), (10)

where �ρ is the projector onto the support of ρ. By taking
the limit α → 0 for the sandwiched Rényi relative entropy, if
supp(ρ) = supp(σ ), one can obtain

lim
α→0

D̃α (ρ‖σ ) = D0(ρ‖σ ). (11)

Note that the above identity does not necessarily hold if
supp(ρ) ⊆ supp(σ ) [33]. Another interesting property of the
zero-relative entropy is that it is equal to the limit of the
geometric Rényi relative entropy as α → 0.

Proposition 1. For any ρ ∈ S=(H) and σ ∈ S�(H), if they
are positive definite operators, then the geometric Rényi rela-
tive entropy converges to the zero-relative entropy in the limit
α → 0, i.e.,

D0(ρ‖σ ) = lim
α→0

D̂α (ρ‖σ ), (12)

Proof. Employing the equality in Eq. (4.6.5) in Ref. [6], for
any positive definite operators ρ and σ , and for all α ∈ R, we
have

σ
1
2 (σ− 1

2 ρσ− 1
2 )ασ

1
2 = ρ

1
2 (ρ− 1

2 σρ− 1
2 )1−αρ

1
2 .

Then, taking the limit α → 0, we obtain

Tr[σ (σ− 1
2 ρσ− 1

2 )0] = Tr(ρρ− 1
2 σρ− 1

2 ).

Therefore, we have

lim
α→0

D̂α (ρ‖σ ) = − log2 Tr(ρ
1
2 σρ− 1

2 ) = − log2 Tr(�ρσ ),

where �ρ is the projector onto the support of ρ and the
last equality holds from �ρ = ρ

1
2 ρ− 1

2 . Thus, we obtain the
desired result. �

Note that if ρ is positive semidefinite, we consider its
support space supp(ρ), then ρ−1 is defined to be the inverse
of ρ. Thus, if one takes the positive semidefinite σ ′ which has
the same rank as the operator ρ. In particular, if ρ = |ψ〉〈ψ |
is pure, using Proposition 4.41 in Ref. [6], we have

lim
α→0

D̂α (|ψ〉〈ψ |‖σ ) = − log2〈ψ |σ |ψ〉 = − log2 Tr(�ρσ ).

Here, we also give other interesting properties of the
zero-relative entropy.

Proposition 2. The zero-relative entropy satisfies the fol-
lowing properties.

(i) For σ, σ ′ ∈ S�(H), if σ � σ ′, then

D0(ρ‖σ ) � D0(ρ‖σ ′). (13)

(ii) For ρ, ρ ′ ∈ S=(H), if �ρ � �ρ ′ , then

D0(ρ‖σ ) � D0(ρ ′‖σ ). (14)

(iii) For every β ∈ (0,∞), then

D0(ρ‖βσ ) = D0(ρ‖βσ ) − log2 β. (15)

(iv) If ρ � σ , then

D0(ρ‖σ ) � 0. (16)

Proof. The first three can directly follow by the defini-
tion. To prove the last, consider that ρ � σ ; it implies that
σ − ρ � 0. From Proposition 4.33 in Ref. [6], we can take
ρ̂ = |0〉〈0| ⊗ ρ and σ̂ = |0〉〈0| ⊗ ρ + |1〉〈1| ⊗ σ − ρ. Since
the zero-relative entropy satisfies the data-processing inequal-
ity (Lemma 7 in Ref. [32]), then we have

D0(ρ‖σ ) � D0(ρ̂||σ̂ ) = D0(ρ||ρ) = 0. (17)

Thus, we obtain the desired result. �
For the above three quantum Rényi relative entropies, tak-

ing σ = I , they reduce to the Rényi entropy:

Hα (ρ) = 1

1 − α
log2 Trρα. (18)

Specially, from Eq. (18), one can obtain the unconditional
min-entropy when α → ∞, i.e.,

Hmin(A)ρ = − log2 ‖ρA‖∞. (19)

For the min-entropy Hmin(A)ρ , there are many in-
teresting applications in one-shot information theory
[19,32,40,42,54,63,74–79], we only list one of the properties
for future application.

Lemma 1. (Lemma 5 in Ref. [63]) For any ρ ∈ S�(HA)
and ε ∈ (0, 1), there exists an operator 0 � � � IA such that
ρ ≈ε/2 �ρ� and

H ε2/16
min (A)ρ � Hmin(A)�ρ�. (20)

On the other hand, we can also evaluate the Rényi entropy
value at α = 0 and define the unconditional zero-relative
entropy, i.e.,

H0(A)ρ = log2 rank(ρA). (21)

Clearly, we have D0(ρ‖I ) = −H0(A)ρ . In addition, we pro-
vide another related entropic quantity [80], i.e.,

HR(A)ρ = − sup log2{λ ∈ R : ρA � 2λ�A}, (22)
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where �A is the projector onto the support of ρA. Clearly, we
have HR(A)ρ � H0(A)ρ . We also list another property related
to this entropy quantity as follows.

Lemma 2 (Lemma B.28 in Ref. [80]). For ε ∈ (0, 1)
and ρA ∈ S�(HA). Then there exists 0 � �A � IA such that
ρA ≈ε/2 �AρA�A and

H ε2/6
max (A)ρ � HR(A)�ρ� + 2 log2

ε2

6
. (23)

By the zero-relative entropy, the max-entropy of A con-
ditioned on B is given by Refs. [2,4,45], which is a
generalization of conditional entropy.

Definition 4. Let ρAB ∈ S=(HAB), the smooth conditional
max-entropy and the conditional max-entropy are defined as

Ĥ ε
max(A|B)ρ = min

ρ̃AB∈Bε (ρAB )
Ĥmax(A|B)ρ (24)

and

Ĥmax(A|B)ρ = max
σB∈S�(HB )

Ĥmax(A|B)ρ|σ , (25)

where Ĥmax(A|B)ρ|σ = −D0(ρAB‖IA ⊗ σB).
Tomamichel et al. showed that the conditional max-entropy

can be expressed as a conditional min-entropy of the purified
state [45]. The smooth conditional max-entropy gives the
amount of entanglement needed in one-shot state merging
[32] and it can also characterize source compression with
quantum side information [81].

III. LOWER AND UPPER BOUND OF THE ZERO-MUTUAL
INFORMATION

Quantum relative entropy is a special quantum generaliza-
tion of the classical relative entropy, which has operational
meaning in quantum hypothesis testing. Using the quantum
relative entropy, we can directly give four equivalent defini-
tions of the quantum mutual information, i.e.,

I (A; B) = D(ρAB‖ρA ⊗ ρB)

= min
σB∈S�(HB )

D(ρAB‖ρA ⊗ σB)

= min
σA∈S�(HA )

D(ρAB‖σA ⊗ ρB)

= min
σA∈S� (HA ),
σB∈S� (HB )

D(ρAB‖σA ⊗ σB). (26)

Similar to the quantum mutual information, we discuss the
zero-mutual information based on the zero-relative entropy as
follows.

Definition 5. Let ρAB ∈ S=(HAB), ρA ∈ S�(HA), and ρB ∈
S�(HB), four different versions of zero-mutual information
are defined as

I1
0 (A; B)ρ = D0(ρAB‖ρA ⊗ ρB), (27)

I2
0 (A; B)ρ = min

σB∈S�(HB )
D0(ρAB‖ρA ⊗ σB), (28)

I2′
0 (A; B)ρ = min

σA∈S�(HA )
D0(ρAB‖σA ⊗ ρB), (29)

and

I3
0 (A; B)ρ = min

σA∈S� (HA ),
σB∈S� (HB )

D0(ρAB‖σA ⊗ σB). (30)

Since I2
0 (A; B)ρ and I2′

0 (A; B)ρ are very similar, we just
consider one of them. Clearly, if ρB is optimal, then I2

0 (A; B)ρ
can be reduced to I1

0 (A; B)ρ . Thus, we immediately give the
following inequalities:

I3
0 (A; B)ρ � I2

0 (A; B)ρ � I1
0 (A; B)ρ. (31)

The chain rule of mutual information plays an important role
in many applications of information tasks. However, for the
generalized mutual information, it is difficult to establish the
same relationship with quantum mutual information. For ex-
ample, Berta et al. provided the upper and lower chain rule
bounds for max-information in Ref. [80], in which they extend
the upper chain rule bound to the smooth entropy framework.
Ciganović et al. established a lower chain rule bound for
smooth max-information in Ref. [62]. Fang et al. proved a
chain rule inequality for the quantum relative entropy, and
it can help to solve an open problem for asymptotic quan-
tum channel discrimination in Ref. [68]. For the zero-mutual
information, we discuss its lower and upper chain rules as
follows. We only consider I2

0 (A; B)ρ and I3
0 (A; B)ρ , the rest

of the definitions can be established in the same way.
Proposition 3. Let ρAB ∈ S=(HAB) and ρA ∈ S�(HA), then

we have

Hmin(A)ρ − Ĥmax(A|B)ρ � I2
0 (A; B)ρ

� HR(A)ρ − Ĥmax(A|B)ρ. (32)

Proof. Combining Eq. (10) with Eq. (27), we have

2−I2
0 (A;B)ρ = max

σB∈S�(HB )
Tr(�ρABρA ⊗ σB).

Let λmax = ‖ρA‖∞, it implies that ρA � λmaxIA, and we have

2−I2
0 (A;B)ρ = max

σB∈S�(HB )
λmaxTr(�ρAB IA ⊗ σB)

= 2−Hmin (A)ρ+Ĥmax(A|B)ρ .

Hence, we obtain the lower bound.
For the upper bound, let λ∗ be such that it optimizes

HR(A)ρ ; i.e., we have ρA � λ∗�A. Therefore, we have

2−I2
0 (A;B)ρ � max

σB∈S�(HB )
λ∗Tr(�ρAB�A ⊗ σB)

= max
σB∈S�(HB )

λ∗Tr(�ρAB IA ⊗ σB)

= 2−HR (A)ρ+Ĥmax(A|B)ρ ,

where the second equality comes from the fact that multipli-
cation of �A ⊗ IB does not affect �ρAB , since supp(ρAB) ⊆
supp(ρA) ⊗ HB [2,63]. Thus, we obtain the desired result. �

Note that we can extend the above form to zero-mutual
information I3

0 (A; B)ρ . If we consider the optimal on A and
B, we do not obtain the desired chain rule. Thus, we restrict
the optimization by the max-relative entropy, and then we can
give a new chain rule as follows.

Proposition 4. Let ρAB ∈ S=(HAB) and ρA ∈ S�(HA), we
have

I3
0 (A; B)ρ � Hmin(A)ρ − Ĥmax(A|B)ρ

− min
σA∈S�(HA )

Dmax(σA||ρA). (33)
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Proof. Without loss of generality, for given σA, we as-
sume that Dmax(σA||ρA) = log2 λσA , and this implies that
σA � λσAρA.

Then, we have

2−I3
0 (A;B)ρ = max

σA∈S� (HA ),
σB∈S� (HB )

Tr(�ρABσA ⊗ σB)

� max
σA∈S� (HA ),
σB∈S� (HB )

Tr(�ρABλσAρA ⊗ σB)

= max
σA∈S� (HA ),
σB∈S� (HB )

λσA Tr(�ρABρA ⊗ σB)

� max
σA∈S�(HA )

λσA 2−Hmin (A)ρ+Ĥmax(A|B)ρ .

Then, by simply algebraic operation, we obtain the desired
result. �

On the other hand, if we restrict the operator σA by
Dmax(ρA||σA), we can give an upper bound as follows.

Corollary 1. Let ρAB ∈ S=(HAB) and ρA ∈ S=(HA), then
we have

I3
0 (A; B)ρ � HR(A)ρ − Ĥmax(A|B)ρ

+ min
σA∈S�(HA )

Dmax(ρA||σA). (34)

From the above results, we restrict the field for operators
ρA and σA by the max-relative entropy. This just accords
with the smooth entropy framework. Therefore, we consider a
smoothed version of the zero-mutual information.

Definition 6. For ρAB ∈ S=(HAB) and ε ∈ (0, 1), the
smooth zero-mutual information is defined as

I i,ε
0 (A; B)ρ = max

ρ ′∈Bε (ρ)
I i
0(A; B)ρ ′ , (35)

where i = 1, 2, 2′, and 3.
Similar to the nonsmooth case, we only consider

I2,ε
0 (A; B)ρ and I3,ε

0 (A; B)ρ . Then, the following results will
give chain rules for the smooth zero-mutual information.

Proposition 5. Let ρAB ∈ S=(HAB) and ε ∈ (0, 1), then

H ε2/32
min (A)ρ − Ĥ ε2/32

max (A|B)ρ �I2,ε
0 (A; B)ρ. (36)

Proof. From Proposition 3, we have

I2,ε
0 (A; B)ρ

� max
ρ ′∈Bε (ρ)

[Hmin(A)ρ ′ − Ĥmax(A|B)ρ ′ ]

� max
ω∈Bε2/32(ρ)

{max
�A

[Hmin(A)�Aω�A − Ĥmax(A|B)�Aω�A ]},

where the maximum ranges run over all 0 � �A � IA with
�Aω�A ≈ε/2 ω. Then, combining Proposition 2 and the defi-
nition of the smooth conditional max-entropy (24), we have

Ĥmax(A|B)�Aω�A = − min
σB∈S�(HB )

D0(�AωAB�A‖IA ⊗ σB)

� − min
σB∈S�(HB )

D0(ωAB‖IA ⊗ σB)

= Ĥmax(A|B)ω.

Hence, we have

I2,ε
0 (A; B)ρ

� max
ω∈Bε2/32(ρ)

[max
�A

[Hmin(A)�Aω�A ] − Ĥmax(A|B)ω].

Without loss of generality, let ω̃ ∈ Bε2/32(ρ) and
Ĥ ε2/32

max (A|B)ρ = Ĥmax(A|B)ω̃, we then obtain

I2,ε
0 (A; B)ρ � max

�A

[Hmin(A)�Aω̃�A ] − Ĥ ε2/32
max (A|B)ρ

� H ε2/16
min (A)ω̃ − Ĥ ε2/32

max (A|B)ρ

� H ε2/32
min (A)ρ − Ĥ ε2/32

max (A|B)ρ.

Here, the second inequality comes from Lemma 1, and we
have

max
�A

[Hmin(A)�Aω̃�A ] � Hmin(A)�Aω̃�A � H ε2/16
min (A)ω̃.

Thus, we obtain the desired result. �
Proposition 6. Let ρAB ∈ S=(HAB) and ε ∈ (0, 1), then

I2,ε
0 (A; B)ρ � H ε

max(A)ρ − Ĥ4
√

3ε
max (A|B)ρ − log2 4ε2. (37)

Proof. Without loss of generality, we have

Ĥ ε
max(A|B)ρ

� min
ρ ′∈Bε (ρ)

[HR(A)ρ ′ − I2
0 (A; B)ρ ′ ]

� min
ω∈Bε2/48(ρ)

[
min
�A

[HR(A)�Aω�A − I2
0 (A; B)�Aω�A ]

]
,

where the minimum ranges over all 0 � �A � IA such that
�AωAB�A ≈ε/2 ωAB.

By the definition of the zero-mutual information, we have

I2
0 (A; B)�Aω�A = min

σB∈S�(HB )
D0(�AωAB�A‖ρA ⊗ σB)

� min
σB∈S�(HB )

D0(ωAB‖ρA ⊗ σB)

=I2
0 (A; B)ω,

where the inequality follows from ω � �Aω�A.
Therefore, we have

Ĥ ε
max(A|B)ρ

� min
ω∈Bε2/48(ρ)

[
min
�A

[HR(A)�Aω�A ] − I2
0 (A; B)ω

]
.

We know that there exists a state ω̃ ∈ Bε2/48(ρ) such that
I2,ε2/48
0 (A; B)ρ = I2

0 (A; B)ω̃, and thus we can obtain

Ĥ ε
max(A|B)ρ � min

�A

[HR(A)�Aω̃�A ] − I2,ε2/48
0 (A; B)ρ,

where the minimum ranges over all 0 � �A � IA such that
�Aω̃AB�A ≈ε/2 ω̃AB.
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Further, employing Lemma 2, we choose 0 � �A � IA

with �Aω̃AB�A ≈ε/2 ω̃AB such that

HR(A)�Aω̃AB�A � H ε2/24
max (A)ω̃ − 2 log2

ε2

24
.

Then, we have

Ĥ ε
max(A|B)ρ � H ε2/24

max (A)ω̃ − I2,ε2/48
0 (A; B)ρ − 2 log2

ε2

24

� H ε2/48
max (A)ρ − I2,ε2/48

0 (A; B)ρ − 2 log2
ε2

24
.

Finally, one can relabel ε2/48 → ε, and then we obtain the
desired result. �

Due to the fact that the max-relative entropy cannot in-
crease under the projector, we have

Dmax(�ρ�‖�σ�) � Dmax(ρ‖σ ).

Therefore, from Propositions 5 and 6, we can get the upper
and lower chain rules of the smooth zero-mutual information
I3,ε
0 (A; B)ρ as follows.

Corollary 2. Let ρAB ∈ S=(HAB) and ε ∈ (0, 1), then

I3,ε
0 (A; B)ρ � H ε2/32

min (A)ρ − Ĥ ε2/32
max (A|B)ρ

− min
σA∈S�(HA )

Dε2/32
max (σA||ρA) (38)

and

I3,ε
0 (A; B)ρ � H ε

max(A)ρ − Ĥ4
√

3ε
max (A|B)ρ

+ min
σA∈S�(HA )

Dε
max(ρA||σA) − log2 4ε2. (39)

IV. QUANTUM GENERALIZED MUTUAL INFORMATION

Similar to the definitions of quantum mutual information,
we can consider the generalized mutual information derived
from the Petz-Rényi, sandwiched Rényi, and geometric Rényi
relative entropies. In this section, we are particularly inter-
ested in their chain rule.

Let ρAB ∈ S=(HAB) and ρA = TrB(ρAB), then the general-
ized mutual information is defined as

I�
α (A; B) = min

σB∈S�(HB )
D�

α (ρAB‖ρA ⊗ σB), (40)

and the generalized conditional entropy is defined as

H �
α (A|B) = − min

σB∈S�(HB )
D�

α (ρAB‖IA ⊗ σB), (41)

where the superscript � takes the Petz-Rényi, sandwiched
Rényi, and geometric Rényi types, respectively. We refer the
readers to Sec. 4.11 of Ref. [6] and its references for a detailed
explanation.

Since these three quantum Rényi relative entropies are
non-negative, the generalized mutual information is also non-
negative. Now, we begin to build their chain rule.

Proposition 7. Let ρAB ∈ S=(HAB) and ρA = TrB(ρAB),
then

Hmin(A)ρ − H �
α (A|B)ρ � I�

α (A; B)

� HR(A)ρ − H �
α (A|B)ρ. (42)

Proof. We only prove the Petz-Rényi type, the proofs of the
other two are analogous to the Petz-Rényi type. Let λmax =
‖ρA‖∞; it implies that ρA � λmaxIA. For the Petz-Rényi mu-
tual information, we have

Iα (A; B) = min
σB∈S�(HB )

Dα (ρAB‖ρA ⊗ σB)

� min
σB∈S�(HB )

Dα (ρAB‖λmaxIA ⊗ σB)

= − log2 λmax + min
σB∈S�(HB )

Dα (ρAB‖IA⊗σB)

= Hmin(A)ρ − Hα (A|B)ρ. (43)

Here, the inequality follows from the monotonicity; i.e., if
σ ′ � σ , then one can have Dα (ρ‖σ ) � Dα (ρ‖σ ′).

On the other hand, let λ∗ be optimal for HR(A)ρ , then we
have ρA � λ∗�A. Then, we have

Iα (A; B) = min
σB∈S�(HB )

Dα (ρAB‖ρA ⊗ σB)

� min
σB∈S�(HB )

Dα (ρAB‖λ∗�A ⊗ σB)

= − log2 λ∗ + min
σB∈S�(HB )

Dα (ρAB‖IA ⊗ σB)

= HR(A)ρ − Hα (A|B)ρ. (44)

Just as with the Petz-Rényi type, we can give the chain rules
for the sandwiched and geometric Rényi types. Thus, we
obtain the desired result. �

V. CONCLUSION

In this paper, we provided some fundamental properties for
the zero-relative entropy and found that the geometric Rényi
relative entropy reduces to the zero-relative entropy in the
limit α → 0. We gave the lower and upper chain rule bounds
of the (smooth and nonsmooth) zero-mutual information. We
also gave a uniform chain rule bound for quantum generalized
mutual information of the Petz-Rényi, sandwiched Rényi, and
geometric Rényi types. As an application, our result can es-
tablish a chain rule for Belavkin-Staszewski information for
any quantum system in Ref. [82]. Finally, we mainly consid-
ered the chain rules of the zero-mutual information and the
generalized mutual information, and we will try to discuss the
asymptotic relationship between their different definitions in
future work. We hope that our results can be applied in error
exponent analysis and channel capacity estimation.
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