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Signature of quantumness in pure decoherence control
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We study a decoherence reduction scheme that involves an intermediate measurement on the qubit in an
equal superposition basis, in the general framework of all qubit-environment interactions that lead to qubit pure
decoherence. We show under what circumstances the scheme always leads to a gain of coherence on average,
regardless of the time at which the measurement is performed, demonstrating its wide range of applicability.
Furthermore, we find that observing an average loss of coherence is a highly quantum effect, resulting from
noncommutation of different terms in the Hamiltonian. We show the diversity of behavior of coherence as
effected by the application of the scheme, which is skewed towards gain rather than loss, on a variant of the
spin-boson model that does not fulfill the commutation condition.
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I. INTRODUCTION

The results of Ref. [1] show that if an excitonic qubit
confined in a quantum dot interacting with a bath of phonons
undergoes a procedure where the qubit is initialized in a su-
perposition state, decoheres for a time which is longer than the
few-picosecond timescale of the phonon-induced decoherence
[2–7], and then is measured in the equal-superposition basis of
qubit pointer states, the post-measurement decoherence is, on
average, smaller than the standard decoherence (the decoher-
ence one would observe if no measurement was performed).
The fact that the decoherence observed is different is reason-
ably easy to understand. The exciton-phonon interaction leads
to entanglement being formed for all thermal-equilibrium
phonon states at finite temperatures [8,9]. Since for pure-
decoherence the generation of entanglement is equivalent to
the generation of quantum discord [10], a measurement on one
subsystem will result in a discernible change of the state of
the other subsystem, and this change qualitatively depends on
the measurement outcome [11–13]. Why the effect should on
average be advantageous for retaining qubit coherence is not
so obvious, and we will explore it here in the general frame-
work of all interactions that lead to qubit pure decoherence
due to an interaction with some environment.

In the following we will answer the questions: What are
the conditions on the system for the procedure to counter the
decoherence on average? Is qubit-environment entanglement
necessary? What does average coherence loss signify?

The answers to these questions are important both from a
utilitarian point of view as well as from a purely theoretical
standpoint. On one hand, testing a simple procedure which
entails only straightforward operations and measurements
performed solely on the qubit which can reduce decoherence
is important, especially for understanding the conditions of its
applicability. From the theory side, it is important to under-
stand where the quantum nature of the decoherence [14,15]
is crucial, because these are the situations when the classical
description of noise is likely to yield wrong results.

We study pure decoherence (a class of decoherence pro-
cesses which leads only to the decay of the off-diagonal
elements of the qubit density matrix also known as coher-
ences, a subset of general decoherence which entails the loss
of qubit purity), because this is the broadest level of con-
siderations which allows to draw definite conclusions, while
still encompassing a large number of qualitatively different
environments. This includes decoherence which is the result
of entanglement [9,16,17] as well as sources of noise which do
not require the establishment of quantum correlations [18,19],
Markovian and non-Markovian [19–23] processes, as well
as pure and mixed initial environmental states. It is also the
dominating decoherence mechanism for many state-of-the-art
solid state qubit realizations [24–36] and, as such, methods for
pure decoherence control are of contemporary relevance.

We find that qubit-environment entanglement is in fact not
necessary for the operation of the scheme. It relies on the
memory of the environment which is affected by the joint
evolution with the qubit and on the transfer of information
about the qubit into the environment which is the outcome of
the qubit being measured. Similarly to the case of the spin
echo [37], the properties of the operators which determine the
evolution of the environment in the presence of the pointer
states of the qubit are critical. If these operators commute,
application of the decoherence control procedure will never
yield loss of coherence. Similarly, if the operators commute
with the initial state of the environment (but not necessarily
with each other), then the coherence will be increased or re-
main the same (depending on the time when the measurement
is applied).

We test our findings on the same system as in Ref. [1],
which is an asymmetric variant of solid-state realizations of
the spin-boson model, but we find that if the interval between
initialization and the measurement is small, the average out-
come of the procedure can be negative. This is because the
unitary operators responsible for the evolution of the environ-
ment do not commute. At large delay times only an increase
in mean coherence is possible because the environment is
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sufficiently large that the bosonic creation and annihilation
operators behave as if they would commute, and the nonclas-
sical phases that are the effect of the lack of commutation
cancel out. The effect is in agreement with the notion that with
growing system size one should expect more classical behav-
ior. This behavior is not observed for small environments, as
we demonstrate using an analogous qubit-environment system
with a discrete spectrum of few bosonic modes.

Average loss of coherence is therefore a signature of ob-
servable quantum behavior of the environment under the
influence of the qubit. Its occurrence is only possible when
specific terms in the Hamiltonian, which are observables
on the environment, do not commute. It corresponds to the
same situations when entanglement with the environment can
be observed by operations and measurements on the qubit
[9,38,39], when the spin echo is not a good way of countering
decoherence [37], and when different measurement outcomes
lead to a different degree of coherence of the teleported state in
repeated noisy teleportation [40], e.g., in a quantum network
scenario [41].

The paper is organized as follows. In Sec. II we specify
the class of Hamiltonians under study and describe the deco-
herence reduction scheme in detail. In Sec. III we present our
findings for this class of Hamiltonians, including the upper
and lower bounds on average coherence gain and the study of
conditions that guarantee that the gain is positive. Section IV
contains results for a system that can support coherence loss
with emphasis on effects connected with the size of the envi-
ronment. Section V concludes the article.

II. SCHEME FOR DECOHERENCE REDUCTION

A. Pure decoherence

We are investigating a general class of qubit-environment
Hamiltonians that lead to pure decoherence [21,42–44]. Such
Hamiltonians can always be written in the form

Ĥ =
∑
i=0,1

εi|i〉〈i| + ĤE +
∑
i=0,1

|i〉〈i| ⊗ V̂i, (1)

where the first term describes the free evolution of the qubit,
with εi denoting the energies of the qubit pointer states |0〉 and
|1〉, ĤE is the free Hamiltonian of the environment, and the last
term describes their interaction. In the context of pure deco-
herence, the pointer basis of the qubit is a set of qubit states
that do not evolve under the influence of the environment.
The environmental operators V̂i are responsible for the effect
that the qubit in pointer state |i〉 has on the environment. This
conditional effect of the qubit on the environment is the source
of pure decoherence, which for pure states is interpreted as the
result of information about the state of the qubit leaking into
the environment [45].

Any Hamiltonian of the form (1) yields a qubit-
environment evolution operator which can be written in the
form (h̄ = 1) [8]

Û (t ) =
∑
i=0,1

e−iεit |i〉〈i| ⊗ ŵi(t ), (2)

where the conditional operators acting on the environment are
given by

ŵi(t ) = e−i(ĤE +V̂i )t . (3)

B. The scheme

The protocol described in Ref. [1], used to decrease
phonon-induced decoherence of exciton qubits by decoher-
ence itself, involves first preparing the environment by a
controlled decoherence process on the qubit before the actual
undesirable decoherence process takes place. To this end, the
qubit is prepared in an equal superposition of its pointer states
(to maximize the effect that the qubit has on the environment),
|+〉 = 1√

2
(|0〉 + |1〉), and then it evolves in the presence of the

environment for time τ . At time τ the qubit is measured in
the equal-superposition basis, |±〉 = 1√

2
(|0〉 ± |1〉), yielding

a product of one of the two qubit states and a corresponding
new state of the environment. The qubit can now be trans-
formed to the desired initial state and the post-measurement
decoherence, which is still governed by the same exciton-
phonon Hamiltonian, is affected by the new “initial” state
of the environment. In Ref. [1] it has been shown that on
average (over the measurement outcomes), the pure decoher-
ence observed post-measurement is smaller or equal to the
decoherence which is usually obtained for an environment
initially at thermal equilibrium if the preparation time τ is
long enough to allow a steady state to be reached.

We will be studying exactly the same protocol, but in a
general pure decoherence scenario in order to understand the
range of applicability of the scheme of Ref. [1], as well as the
origins of the effect (why negative effects were not observed).

The preparation of the environment starts with the envi-
ronment in state R̂(0) and qubit in state |+〉, so at time τ the
qubit-environment density matrix obtained using the evolu-
tion operators (2) is given by

σ̂ (τ ) = 1

2

(
R̂00(τ ) e−i�ετ R̂01(τ )

ei�ετ R̂10(τ ) R̂11(τ )

)
, (4)

where �ε = ε0 − ε1 and the matrices responsible for the de-
grees of freedom of the environment are given by

R̂i j (τ ) = ŵi(τ )R̂(0)ŵ†
j (τ ), (5)

i, j = 0, 1. In Eq. (4) the matrix form pertains to the qubit sub-
system, while the environmental degrees of freedom are taken
into account by the R̂i j (τ ) matrices. This notation is partic-
ularly convenient for qubit-environment systems undergoing
pure decoherence, since the qubit is the system of interest
and there is a large asymmetry in its size as compared to the
environment, which is of arbitrary dimension.

This form makes it particularly straightforward to trace
out environmental degrees of freedom to obtain the state of
the qubit, since the partial trace conserves the matrix form
of Eq. (4). Hence, the density matrix of the qubit ρ̂(τ ) =
TrE σ̂ (τ ) does not display any evolution of its diagonal el-
ements, since the matrices R̂00(τ ) and R̂11(τ ) are density
matrices (with unit trace), while the off-diagonal elements
evolve according to

ρ̂01(τ ) = 〈0|ρ̂(τ )|1〉 = 1
2 e−i�ετ Tr R̂01(τ ). (6)
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If the qubit did undergo decoherence due to the in-
teraction with the environment, so |ρ̂01(τ )| �= 1, then the
qubit-environment density matrix (4) cannot be written in
product form and some correlations between the two sub-
systems must have been formed. For pure initial states, these
correlations must be entanglement [45], but for mixed states
both classical and quantum correlations can be the source of
decoherence, depending on the nature of the interaction (1)
and the initial state of the environment, R̂(0). The if and only
if condition of separability is given by [8]

[R̂(0), ŵ†
0 (τ )ŵ1(τ )] = 0. (7)

Regardless of the nature of the decoherence, the effect of
the measurement on the qubit in the |±〉 = 1√

2
(|0〉 ± |1〉) basis

is described in the same way, and the post-measurement qubit-
environment state is given by

σ±(τ ) = |±〉〈±| ⊗ R̂±(τ ), (8)

where the index ± distinguishes between the two measure-
ment outcomes. The unnormalized post-measurement state of
the environment is given by

R̃±(τ ) = 1
4 [R̂00(τ )+ R̂11(τ ) ± (e−i�ετ R̂01(τ ) + ei�ετ R̂10(τ ))].

(9)

The probabilities of obtaining each measurement outcome are

p±(τ ) = Tr R̃±(τ ), (10)

and the normalized post-measurement density matrices of the
environment are given by R̂±(τ ) = R̃±(τ )/p±(τ ).

It is now relevant to note that although the post-
measurement state is of product form, so it does not contain
any correlations, neither quantum nor classical, the new state
of the environment now contains information about the pre-
measurement state of the qubit. This manifests itself by
the phase factors in the second line of Eq. (9) which are the
outcome of the free evolution of the qubit. Incidentally, if the
initial qubit state was not an equal superposition state, this
would also be visible in the post-measurement state of the
environment, which would contain a different mixture of the
four components in the matrix.

Now that the environment has been prepared, it is time
to prepare the initial state of the qubit, |ψ〉 = α|0〉 + β|1〉,
yielding the qubit-environment state

σ ′
±(τ ) = |ψ〉〈ψ | ⊗ R̂±(τ ), (11)

depending on the measurement outcome.
The post-measurement evolution is governed by the same

Hamiltonian (1), but as a function of the post-measurement
time t and with a new initial state given by Eq. (11). Hence,
the t evolution mirrors the evolution in Eq. (4), but in the now
t-dependent environmental matrices (5), the initial state of the
environment, R̂(0), is now replaced by R̂+(τ ) for measure-
ment outcome |+〉 and by R̂−(τ ) for measurement outcome
|−〉, and the qubit state can be any superposition of pointer
states. The full system density matrix at time t is given by

σ̂±(τ, t ) =
( |α|2R̂±

00(τ, t ) αβ∗e−i�εt R̂±
01(τ, t )

α∗βei�εt R̂±
10(τ, t ) |β|2R̂±

11(τ, t )

)
, (12)

where

R̂±
i j (τ, t ) = ŵi(t )R̂±(τ )ŵ†

j (t ). (13)

As before, the qubit decoherence resulting from the joint
QE evolution given by Eq. (12) is pure dephasing, so trac-
ing out of the environmental degrees of freedom leaves
the qubit occupations constant, while the coherences evolve
according to

ρ01
± (τ, t ) = αβ∗e−i�εt Tr R̂±

01(τ, t ). (14)

III. GAIN OF COHERENCE

To quantify how the application of the scheme can help
preserve qubit coherence, we will be studying the degree of
coherence, defined as the absolute value of the off-diagonal
element of the density matrix of the qubit divided by its initial
value,

D±(τ, t ) = |ρ01
± (τ, t )|/|αβ| = |TrR̂±

01(τ, t )|. (15)

This quantity differs depending on the measurement
outcome and may also be used to quantify the amount of co-
herence present in the qubit when no decoherence-reduction
scheme was applied (standard decoherence) by simply setting
the initial decoherence time τ to zero,

D(t ) = D+(0, t ) = D−(0, t ). (16)

It is often convenient to study the degree of coherence relative
to the amount of coherence that would be present at time t
with the environmental state given by R̂(0),

g±(τ, t ) = D±(τ, t ) − D(t ). (17)

We will call this quantity the coherence gain following
Ref. [1]. Positive values of the gain mean that coherence at
time t is grater than for standard decoherence, but situations
when this quantity is negative are also possible (and common).

As the most interesting effect found in Ref. [1] and the
one we wish to explore is the fact that asymptotic gains of
coherence for the exciton-phonon system are non-negative on
average, we will also be using coherence gain averaged over
the two measurement outcomes,

gav (τ, t ) = p+(τ )g+(τ, t ) + p−(τ )g−(τ, t ). (18)

Using Eqs. (9), (10), and (13) it is straightforward to find
the explicit formulas for the above quantities. Especially rele-
vant are

p±(τ )D±(τ, t ) = |A(τ, t ) ± B(τ, t )|, (19)

where

A(τ, t ) = 1
4 Tr[ŵ0(t )(R̂00(τ ) + R̂11(τ ))ŵ†

1 (t ))], (20a)

B(τ, t ) = 1
4 Tr[ŵ0(t )(e−i�ετ R̂01(τ ) + H.c.)ŵ†

1 (t ))]. (20b)

This is because one can write the average gain of coherence
as

gav (τ, t ) = Dav (τ, t ) − D(t ), (21)

where the average degree of coherence is given by

Dav (τ, t ) = p+(τ )D+(τ, t ) + p−(τ )D−(τ, t ). (22)
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This form, together with Eqs. (19) and (20a), allows one to
analyze the possibility for gav (τ, t ) to have negative values on
a more general level, due to the evident symmetry between the
terms in Eq. (22), which results in the following inequality:

Dav (τ, t ) � 2 max{|A(τ, t )|, |B(τ, t )|}. (23)

This means that the study of the occurrence of negative values
in the evolution of gav (τ, t ) can be reduced to the comparison
of the greater of the functions |A(τ, t )| and |B(τ, t )| and the
degree of coherence in the standard evolution, D(t ).

Equality in (23) is realized when the phases of A(τ, t ) and
B(τ, t ) align, meaning that eiφA(τ,t ) = ±eiφB (τ,t ) in

A(τ, t ) = eiφA(τ,t )|A(τ, t )|, (24a)

B(τ, t ) = eiφB (τ,t )|B(τ, t )|. (24b)

Incidentally the maximum average degree of coherence is
limited by

Dav (τ, t ) � 2
√

|A(τ, t )|2 + |B(τ, t )|2. (25)

Equality is obtained when eiφA(τ,t ) = ±ieiφB (τ,t ).

A. Fast free qubit evolution

A reasonable assumption in the study of qubit decoherence
is that the energy difference between the qubit states is much
larger than the energy scales responsible for the interaction
with the environment, which means that the free evolution of
the qubit is much faster than any evolution resulting from the
decoherence process. This means that the phase factors e±i�ετ

in Eq. (20b) drive the τ dependence in the average gain and
degree of coherence, while the rest of the τ dependence and
t dependence in Eqs. (20a), (20b), and (16) are comparatively
slow. In this situation, one can assume that the fast evolution
yields all possible values of the phase factor while all other
factors remain constant. This means that the minimum and
maximum values of the average quantities corresponding to
a given preparation time τ and decoherence time t will be
realized and one can limit the study to the envelope functions
of the average gain and degree of coherence.

The conditions for the envelope functions of the gain of
coherence can be written as

sin [φB(τ, t ) − φA(τ, t )] = 0, (26a)

cos [φB(τ, t ) − φA(τ, t )] = 0, (26b)

where the first guarantees equality in Eq. (23) and the second
in Eq. (25). As the quantity A(τ, t ) has no dependence on the
free qubit evolution, we will be taking into account only the
evolution of B(τ, t ), which is explicitly given in Eq. (20b), to
find the fast τ dependence of φB(τ, t ).

We define the components in Eq. (20b) as

Bi j (τ, t ) = 1
4 Tr[ŵ0(t )R̂i j (τ )ŵ†

1 (t ))] (27)

and their internal phases exp[iφi j (τ, t )] = Bi j (τ, t )/
|Bi j (τ, t )|. Using this notation, we get conditions equivalent
to (26) in the form

B+ sin [(φ+) − φA] cos [(φ−) − �ετ ] (28a)

+B− sin [(φ−) − �ετ ] = 0,

B+ cos [(φ+) − φA] cos [(φ−) − �ετ ] = 0. (28b)

Here, we have suppressed the explicit time dependence in all
factors except for the �ετ dependence for conciseness. We
also denoted the sum and difference of the Bi j terms, B± =
B10 ± B01, and of the intrinsic phases in Bi j , φ± = φ10 ± φ01.

Although the conditions (28) are always applicable, they
are primarily useful in the situation under study. Equa-
tion (28a) signifies when the lower bound of the average
degree of coherence (and hence, coherence gain) is reached.
Even though it has two terms, it is obvious that the function
on the left-hand side must cross zero during its evolution with
�ετ . The same is true for Eq. (28b), which is responsible for
the average degree and gain of coherence reaching its upper
bound. Hence, for all times τ and t there exist phase values
which guarantee equality in inequalities (23) and (25), so the
functions on their right sides are in fact the envelope functions
and not just arbitrary bounds.

B. Commutation relations that guarantee coherence gain

For pure decoherence, a special class of Hamiltonians is
distinguished by the fact that the conditional evolution opera-
tors of the environment (3) commute at all times,

[ŵ0(t ), ŵ1(t ′)] = 0. (29)

The simplest situation when Eq. (29) is fulfilled is when all
environmental terms in the full Hamiltonian (1) commute with
each other, meaning that

[V̂0, V̂1] = [V̂0, ĤE ] = [V̂1, ĤE ] = 0, (30)

but this is not the only one.
Note that commuting environmental operators are a sign

of certain type of classicality, as there is no equivalent of
noncommutation for observables in classical physics. Hence,
such environments lead to decoherence that will behave dif-
ferently than in the situation when the commutation criterion
(29) is not fulfilled. For example, even though in this case
decoherence can be accompanied by the generation of qubit-
environment entanglement [8], schemes for the detection of
this type of entanglement by operations and measurements on
the qubit alone will not work [9,38]. Entanglement means that
decoherence is accompanied by the transfer of information
about the qubit state into the environment [46], but for com-
muting environmental operators this information would have
to be read out directly from the state of the environment, as it
does not manifest itself due to back action in the evolution of
the qubit.

For the scheme under study, commutation (29) guarantees
that for all times t and τ , the quantity defined in Eq. (20a)
has no τ dependence and is proportional to the standard
decoherence,

A(τ, t ) = 1
2 Tr[ŵ0(t )R̂(0)ŵ†

1 (t )]. (31)

This means that the average degree of coherence is always
greater or equal to the degree at time t when the scheme
was not applied, Dav (τ, t ) � D(t ), and consequently the gain
in coherence is always non-negative (coherence on aver-
age is always increased by the application of the scheme),
gav (τ, t ) � 0.

This situation is optimal when using the scheme to counter
decoherence, because in the worst-case scenario no effect will
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be obtained; but, as we will show in the example in the fol-
lowing section, the fast oscillations of the τ dependent phase
factor in the quantity of Eq. (20b) lead to fast oscillations in
the average coherence gain as a function of preparation time
τ , so that most values of τ yield an actual gain.

Note that, for commuting environmental evolution oper-
ators, the other term which enters the average degree of
coherence (20b) also takes a simpler form,

B(τ, t ) = 1
4 {e−i�ετ Tr[ŵ0(t + τ )R̂(0)ŵ†

1 (t + τ )]

+ ei�ετ Tr[ŵ0(t − τ )R̂(0)ŵ†
1 (t − τ )]}. (32)

Now, the term is constructed from terms which are easily
interpreted as decoherence factors corresponding to a later
time and an earlier time, shifted by the preparation time τ .

It is relevant to note here that the commutation of envi-
ronmental evolution operators is not the only situation when
gav (τ, t ) � 0 for all times τ and t and the operation of the
scheme for decoherence control works optimally. Another
situation is when both operators commute with the initial state
of the environment,

[ŵ0(t ), R̂(0)] = [ŵ1(t ), R̂(0)] = 0, (33)

so that

R̂00(τ ) = R̂11(τ ) = R̂(0). (34)

This does not necessarily require the commutation of the
evolution operators (29) and may be the consequence of
the form of the state of the environment, as in the case of
an infinite-temperature density matrix which commutes with
any operators. Incidentally, contrarily to the situation when
commutation criterion (29) is fulfilled, criterion (33) being
met directly implies that there is no entanglement generated
between the qubit and the environment during the initial evo-
lution till time τ .

C. Average coherence loss

Here we would like to comment on the situation when
average coherence gain is negative for certain times t and
τ . This is possible only when the commutation relation (29)
is not fulfilled at some time instants. Since the conditional
evolution operators on the environment ŵi(t ) in Eq. (29) are
explicit functions of parts of the Hamiltonian Ĥi = ĤE + V̂i

for i = 0, 1, and their commutation is a direct result of the
commutation of Ĥi, observed average loss of coherence can
be interpreted as a signature of a certain type of quantumness
within the Hamiltonian.

The pure decoherence Hamiltonian (1) can be understood
in the following manner from the point of view of the envi-
ronment: if the qubit is in state |0〉 then the evolution of the
environment is governed by Hamiltonian Ĥ0 and analogously
qubit state |1〉 leads to the effective environmental Hamilto-
nian Ĥ1. Since both Ĥi are Hermitian, they are in principle
observables on the environment. Observables which do not
commute are always bound by an uncertainty principle and as
such can be regarded as more quantum in their nature.

Noncommuting conditional evolution operators on the en-
vironment ŵi(t ) were proved to be relevant in recent studies,
as they can lead to observable signatures in qubit evolution

[9,17,37–39]. This quality of the evolution operator is
also a relevant parameter in the study of classicality (or
quantumness) of multitime statistics probed by projective
measurements [14,15]. The Hamiltonian is therefore more
quantum because it leads to an evolution which in some situ-
ations cannot be reproduced with the help of classical means.

IV. CHARGE QUBIT AND PHONON ENVIRONMENT

In this section, we will study the average gain of coherence,
with special attention given to situations when negative values
can be observed. We follow Ref. [1] and study an excitonic
quantum dot qubit interacting with phonons, but we will take
into account two variants: First, we consider a bath of bulk
phonons as in Ref. [1], but we show that for small times
negative gains are observed even though there is a continu-
ous spectrum of phonons. Second, we restrict the number of
phonon modes to a relatively small number, to study finite
environment effects.

We choose this example of a qubit-environment system
precisely because of its versatility. Although the exciton-
phonon Hamiltonian is closely related to the spin-boson
model [22,23,47–49], its environmental evolution operators
ŵi(t ) do not commute, yielding an additional nonclassical
phase factor on top of decoherence concurring with the
spin-boson model decoherence. For bulk phonons initially at
thermal equilibrium, this phase factor averages out to zero (on
faster timescales than the decoherence takes place), but if only
a limited number of phonon modes is taken into account, the
cancellation does not take place. This results in a multitude
of different scenarios that can be taken into account, which
lead to comparable results in case of standard decoherence,
but have a qualitative impact on the effects observed in the
decoherence control protocol under study.

For the excitonic qubit [2,4,50] the |0〉 state means that
the dot is empty, while the |1〉 state means that there is an
exciton in its ground state in the quantum dot. Hence, phonons
couple only to the |1〉 qubit state and the interaction is natu-
rally asymmetric. The Hamiltonian of the system is given by
Eq. (1) with the eigenenergies corresponding to the pointer
states ε0 = 0 and ε1 = ε, where ε is the excitonic ground state
energy. The free Hamiltonian of the environment is given by
ĤE = ∑

k ωkb̂†
kb̂k , where b̂†

k and b̂k are phonon creation and
annihilation operators in mode k, and ωk are the correspond-
ing energies. The environmental operators in the interaction
term are given by V̂0 = 0 (phonons do not interact with the ex-
citon when it is not there) and V̂1 = ∑

k ( f ∗
k b̂k + fk b̂†

k ), where
fk are exciton-phonon coupling constants.

The Hamiltonian is very similar to the spin-boson model,
with the exception of being asymmetric with respect to qubit
pointer states, whereas in the spin-boson model both the qubit
and the interaction terms are proportional to the σ̂z Pauli
operator. The consequence of this is that the exciton-phonon
interaction has many of the traits characteristic of the spin-
boson model which make it so fundamental for the study
of decoherence, such as being non-Markovian, entangling at
finite temperatures [9,16], and displaying qubit decoherence
to a nonzero value for super-Ohmic distributions of coupling
constants [3,47,51]. The important difference is that, contrary
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to the spin-boson model, the conditional evolution operators
of the environment ŵi(t ) do not commute.

The Hamiltonian under study can be diagonalized exactly
using the Weyl operator method and the explicit forms of
the ŵi(t ) operators which enter the evolution operator (2) can
be found following Refs. [9,52] regardless of the form of the
coupling constants fk. These are given by

ŵ0(t ) =
⊗

k

e−iωk b̂†
k b̂kt , (35a)

ŵ1(t ) = e
−i

∑
k

| fk (t )|2
ω2

k
sin ωkt ⊗

k

e
fk (t )
ωk

b†
k−

f ∗k (t )

ωk
bk ŵ0(t ), (35b)

where the time-dependent coupling constants are given by

fk(t ) = fk(e−iωkt − 1). (36)

In the operator (35b), we have omitted a trivial oscillating
phase term, which shifts the excitonic energy difference by
a constant term of

∑
k

| fk (t )|2
ω2

k
. We include this term directly in

said energy difference, so that �ε = ε − ∑
k

| fk (t )|2
ω2

k
, but it is

relevant to note that this shift is very small.

A. Continuous phonon spectrum

For an exciton confined in a quantum dot interacting with
bulk phonons, the interaction is dominated by the deformation
potential coupling [3,53], and the coupling constants are given
by

fk = (σe − σh)

√
k

2�VN c

∫ ∞

−∞
d3rψ∗(r)e−ik·rψ (r). (37)

Here, σe/h are deformation potential constants for electrons
and holes, respectively, � is the crystal density, VN is the
phonon normalization volume, c is the longitudinal speed of
sound (we assume linear dispersion), and ψ (r) is the ex-
citonic wave function. In the following, we will be using
material parameters corresponding to small, self-assembled
GaAs quantum dots. The wave function is modeled by an
anisotropic Gaussian of l⊥ = 4 nm width in the xy plain
and lz = 1 nm in the z direction. The difference of defor-
mation potential constants is given by σe − σh = 9 eV, while
� = 5360 kg/m3 and c = 5100 m/s. The difference in qubit
pointer state energies is taken to be �ε = 1 eV.

The left panel of Fig. 1 shows the maximum and minimum
values of the degree of coherence at long t = 20 ps as a
function of the delay time τ as compared to the standard
degree of coherence (dotted, constant line). The gain (or loss)
stabilizes at a given level after the delay time is longer than a
few picoseconds. This threshold value corresponds to the time
after initialization when the maximal dephasing is reached.
In the right panel of the same figure, the full dynamics are
shown. The oscillations arise from the interplay of the terms
which depend on the coherent evolution of the qubit in the
pre-measurement phase (20b). For long enough times (here,
above ∼3.5 ps) the minima (maxima) for the measurement
outcome |+〉 (|−〉) correspond to the situation when �ε/ =
(2 j + 1)π (points of minimal gain) and the maxima (minima)
to �ε/ = 2π j (point of maximal gain), where j is a natural
number. A highly relevant point is �ε/ = ( j + 1/2)π for

FIG. 1. Degree of coherence as a function of the delay time τ

at long t for two temperatures: 34 and 70 K. The left panel shows
envelopes of the evolution (solid lines: maximum coherence; dashed
lines: minimum coherence) and degree of standard decoherence (dot-
ted lines). The right panel shows explicit fast oscillations: solid lines
correspond to the |+〉 measurement outcome, dashed lines to the |−〉
measurement outcome.

which the gain in coherence is equal for both measurement
outcomes (point of equal gain). Interestingly the gain at this
point is not much different than that at the point of maximal
gain, and at some temperatures may even by slightly larger
(see the 34 K curves).

Figure 2 shows the corresponding average gain of coher-
ence (18) normalized by coherence which would be left in

FIG. 2. The average gain of coherence g′
av as a function of the

delay time at long t for two temperatures: 34 K (blue, solid lines)
and 70 K (dashed, orange lines). The top panel presents envelopes
of g′

av with the inset showing the area, in which g′
av reaches global

minimum. The bottom panel shows full evolution around τ = 4 ps.
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FIG. 3. Degree of coherence as a function of time elapsed from
the measurement t at T = 34 K (left plots) and T = 70 K (right
plots) for long delay times τ ≈ 4 ps (top panels) and τ ≈ 0.42 ps
(bottom panels). Dashed lines correspond to points of maximal and
minimal gain, while solid lines correspond to points of equal gain.
Dotted lines are standard decoherence curves.

the system at time t during the standard decoherence process,
g′

av (τ, t ) = gav (τ, t )/[1 − D(t )], yielding a percentage of co-
herence gained. This is plotted at a long decoherence time
t = 20 ns, so all phonon-induced processes on the qubit have
been finalized. In case of the system under study, the reservoir
is super-Ohmic, which leads to 1 − D(t ) being fixed at a finite
value; only at infinite temperature can complete decoherence
be obtained [47,51,54,55].

The top panel of Fig. 2 again shows the envelope functions
of g′

av (τ, t ) (the fast oscillations resulting from the large value
of �ε are shown in the bottom panel for large delay times,
around τ = 4 ps) at two temperatures. A saturation of the
curves can be observed around 3.5 ps, which corresponds well
to the timescales at which charge-carrier–phonon processes
occur in such systems. At later times the minimum value of
the coherence gain is zero, because the nonclassical phase
factors are effectively zero and the expectation values of the
environmental operators are no longer affected by their lack
of commutation. The inset shows the short-time evolution
when the minimum envelope curves are both below zero due
to the nonclassical phase factors which are relevant at such
times. Note, that for very short times, both the minimum and
maximum curves are below zero, so a loss of coherence is
seen regardless of the fast oscillations between these curves.

To give the full picture of the phenomenon under study in
Fig. 3 we present the degree of coherence as a function of

FIG. 4. Function G(k) for continuous phonon spectrum and the
19 phonon modes chosen in the discretization. Bars corresponding to
each mode ki have width �k.

time that elapsed from the intermediate measurement, t . In
the upper panels, the curves correspond to τ ≈ 4 ps, which
is well beyond the phonon relaxation times. The actual delay
times for the three curves correspond to the points of max-
imal, minimal, and equal gain, which are closest to 4 ps.
Since the envelope functions change slowly in comparison
to the oscillatory behavior driven by the energy difference
between the qubit states, these curves can be freely compared.
The time evolutions of the decoherence strongly resemble
standard evolution (dotted lines) with the exception of a
maximum/minimum which is present at t ≈ τ . This can be
understood with the help of Eq. (32), which holds for com-
muting operators ŵi, where decoherence is canceled in one of
the terms at t = τ , yielding an extreme effect (either positive
or negative, depending on the measurement outcome) on the
degree of coherence.

The bottom panels show plots corresponding to the top
panels, but at short delay times τ ≈ 0.42 corresponding to the
minimum values in the inset of Fig. 2. The time evolutions
are qualitatively different, mainly because the curves corre-
sponding to the points of maximum and equal gain are almost
identical to the standard decoherence decay, and the only
distinct evolutions are the ones for the point of minimum gain
(which are here always related to a loss). Furthermore, only
these curves display any distinct behavior at t = τ , which is a
minimum; much less distinct than in the case of the evolutions
corresponding to long delay times τ .

B. Discrete phonon spectrum

In this subsection we focus on a situation, in which the
quantum dot interacts with a finite number of phonon modes,
corresponding to the situation when the phonons are confined
to a small structure and cannot be treated as those propagating
within a bulk crystal [53]. To obtain qubit evolutions of a
similar magnitude and occurring on similar timescales as in
the previous section, we will not model a specific medium
for the phonons, but instead artificially “quantize” the phonon
spectrum in terms of the phonon wave number, k = |k|.

This procedure is illustrated in Fig. 4, where the continuous
line shows the k dependence of G(k), which is defined by
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(a) (b)

(c) (d)

FIG. 5. Envelope functions of the average gain of coherence: de-
pendence on delay time τ at long t = 20 ps for selected discrete sets
of phonon wave numbers k. Environment with a single phonon mode:
(a) k = k1 and (b) k = k10. More environmental modes: (c) two
phonon modes, k0 and k1; (d) eleven phonon modes ki, i = 0, . . . , 10.

the equation H = ∑
k | fk

ωk
|2 = ∫ ∞

0 G(k) using the parameters
from the previous subsection (IV A) and is explicitly given by

G(k) = NV

(2π )2

(σe − σh)2

2ρc3
k
∫ π

0
d� sin �

× exp
[ − 1

2

(
l2
z k2 cos2 � + l2

⊥k2 sin2 �
)]

. (38)

Here the integration over the azimuthal angle has been per-
formed and only the integration over the polar angle remains.
We then choose 19 equally spaced values of the wave number
ki with i = 0, 1, . . . , 18, where k1 corresponds to the maxi-
mum of G(k) and �k = ki+1 − ki = 2/3k1 = 0.1282 nm−1,
which means that the k = 0 mode is taken into account
with G(k = 0) = 0. We can now find Hi = | fki

ωki
|2 = G(ki )�k

and the corresponding values of the coupling constants fki =
ωki

√
Hi which enter Eqs. (35). This allows for all of the

relevant quantities for the scheme under study to be found
after replacing the integration over the wave vector k with a
summation over wave numbers ki. In fact, only the particular
values of Hi and the corresponding energies ωki , with ωki =
cki under linear dispersion, are necessary to find the evolution
of the degree of coherence both for standard decoherence and
when the decoherence reduction scheme is used. Note that
H/

∑
i Hi = 1.0176 so that the bars in Fig. 4 represent the

function very well.
Figure 5 shows the τ -dependence of the average gain of

coherence for t = 20 ps analogous to Fig. 2, but for a choice of
wave numbers out of the 19 specified in Fig. 4 and described
above. The coupling strengths are always adjusted so that∑

i Hi = H . When only a few phonon modes are taken into

account [Figs. 5(a)–5(c)], the evolution is highly periodic and
the minima of the coherence gain display large negative values
(especially in comparison with all that is observed in the case
of the continuous spectrum). The recurring negativity is due
to the fact that the effective cancellation of the noncommu-
tativity of the operators (35) is connected with the interplay
of many phonon modes when the spectrum approaches con-
tinuum. Note that this effect is obtained already for ten
phonon modes, as seen in Fig. 5(d). For smaller systems
such cancellation cannot occur and the nonclassical phases
which lead to negative values of the coherence gain are much
larger.

The top panels contain evolutions resulting from an inter-
action with only a single phonon mode, k = k1 [Fig. 5(a)] and
k = k10 [Fig. 5(b)]. Due to the adjustment of the coupling
strength, they both interact similarly with the qubit and one
can observe a change of periodicity of the evolution which is
the result of the different energies of the two phonon modes,
ωki . Qualitatively, the evolution is very similar, displaying
two maxima of different magnitude and a minimum in each
period. The differences are strongly visible in the gain and
loss which can be achieved in the two cases. The reason for
these differences lies in the arbitrary choice of the constant
time t . Since both evolutions are periodic, but with a different
periodicity, the interplays of times t and τ are different in the
two cases, yielding one evolution which is more favorable and
has a high maximum gain, and one which is much worse in
terms of coherence gain and a lot of the time leads to loss.

Adding a second phonon mode, as in Fig. 5(c), leads to an
expectedly more complicated evolution with three maxima an
two minima in a single period, whereas the initial evolution
is still dominated by the k1 mode. With each additional mode
this trend continues, simultaneously extending the period of
the evolution. Already at ten modes [Fig. 5(d)], the losses of
coherence become negligible in comparison to the situation
when only a few modes are present and the tendency toward
decoherence stabilizing at a finite value is demonstrated. This
value is similar to that in the continuous spectrum case, Fig. 2,
but a strong maximum characteristic for few-mode evolutions
is still present. At 19 phonon modes, the evolution is of the
same character as in Fig. 5(d).

V. CONCLUSION

We have generalized the scheme for the reduction of de-
coherence introduced for a charge qubit interacting with a
phononic bath [1] to the case of all qubit-environment in-
teractions that lead to pure decoherence of the qubit. In this
framework, we have shown that the scheme will always result
in gain of coherence on average (over two outcomes of the
qubit measurement which is the core of the scheme) if a
mixture of environmental states 1/2[R̂00(τ ) + R̂11(τ )] leads to
the same decoherence curves as the initial environmental state
R̂(0). The density matrices R̂ii(τ ) correspond to environmental
states which would be obtained from the initial state R̂(0)
if the environment interacted with the qubit in state |i〉 for
time τ .

Such a situation is most commonly encountered when
the operators that govern the evolution of the environment
conditional on the pointer state of the qubit |i〉, commute.
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This is usually the outcome of commutation between different
parts of the Hamiltonian, responsible for the distinguishabil-
ity of qubit states by the environment. Another possibility
is when the conditional environmental evolution operators
do not commute with each other, but do commute with the
initial state of the environment. For mixed states, this does
not exclude decoherence, even though it excludes the forma-
tion of qubit-environment entanglement [8]. An example here
is the infinite-temperature density matrix, which commutes
with any evolution operator, and typically yields the strongest
decoherence.

We observe this type of behavior in our example of a charge
qubit coupled to an environment of phonons only for a con-
tinuous phonon spectrum and at long times, both the time of
measurement and the time elapsed afterwards. At finite tem-
peratures, this system does not fulfill any of the commutation
relations specified in the previous paragraph, but nevertheless
displays only gain of coherence and no loss. This is because
at long times the nontrivial phase oscillations, which are the
outcome of the lack of commutations, cancel out due to large-
system effects. Hence, there are more situations where loss
of coherence is unlikely, which are typically connected with
more classical properties of the environment.

Situations when loss of coherence is observed are of more
fundamental interest since they are only possible when the
conditional evolution operators of the environment, and con-
sequently observables which correspond to different parts of
the Hamiltonian do not commute. Hence, negative average

gain of coherence is witness of quantumness of the Hamil-
tonian and of the evolution of the environment, even though
it does not have to be accompanied by qubit-environment
entanglement at time τ [when R̂00(τ ) = R̂11(τ ) < R̂(0)].

We observe very small losses of coherence at small times
for the continuous spectrum example, but it is very common
for a small and discrete number of phonon modes. Although
for examples chosen in such a way that the same mode
dominates the spectrum in the continuous and discrete cases,
observed losses of coherence are small, and gain is more
probable, we were able to find situations when the gain is
predominantly negative.

Overall, we have shown that the scheme for pure de-
coherence control is of much wider usage than only for
phonon-induced decoherence, as it is able to slow or reduce
decoherence for a large class of interactions that lead to pure
decoherence. In other cases (when loss of coherence on aver-
age is possible at certain measurement times τ ), it can still be
used for decoherence control if time of measurement can be
controlled with some reliability.

All code used to generate plots in Sec. IV is available [56].
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[24] Ł. Cywiński, W. M. Witzel, and S. Das Sarma, Pure quantum
dephasing of a solid-state electron spin qubit in a large nuclear
spin bath coupled by long-range hyperfine-mediated interac-
tions, Phys. Rev. B 79, 245314 (2009).

[25] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler, 1/ f
noise: Implications for solid-state quantum information, Rev.
Mod. Phys. 86, 361 (2014).

[26] Y. Wu, L.-P. Yang, M. Gong, Y. Zheng, H. Deng, Z. Yan, Y.
Zhao, K. Huang, A. D. Castellano, W. J. Munro et al., An
efficient and compact switch for quantum circuits, npj Quantum
Inf. 4, 50 (2018).

[27] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A.
Grimm, L. Frunzio, S. Shankar, and M. H. Devoret, Gated
Conditional Displacement Readout of Superconducting Qubits,
Phys. Rev. Lett. 122, 080502 (2019).

[28] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S.
Shankar, R. J. Schoelkopf et al., Quantum error correction of
a qubit encoded in grid states of an oscillator, Nature (London)
584, 368 (2020).

[29] A. A. Wood, E. Lilette, Y. Y. Fein, N. Tomek, L. P. McGuinness,
L. C. L. Hollenberg, R. E. Scholten, and A. M. Martin, Quantum
measurement of a rapidly rotating spin qubit in diamond, Sci.
Adv. 4, eaar7691 (2018).

[30] A. Tchebotareva, S. L. N. Hermans, P. C. Humphreys, D. Voigt,
P. J. Harmsma, L. K. Cheng, A. L. Verlaan, N. Dijkhuizen, W.
de Jong, A. Dréau, and R. Hanson, Entanglement between a
Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom
Wavelength, Phys. Rev. Lett. 123, 063601 (2019).

[31] X. Wang, Y. Xiao, C. Liu, E. Lee-Wong, N. J. McLaughlin, H.
Wang, M. Wu, H. Wang, E. E. Fullerton, and C. R. Du, Electri-
cal control of coherent spin rotation of a single-spin qubit, npj
Quantum Inf. 6, 1 (2020).
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