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It has recently been proposed classical analogs of the purity, linear quantum entropy, and von Neumann
entropy for classical integrable systems, when the corresponding quantum system is in a Gaussian state. We
generalized these results by providing classical analogs of the generalized purities, Bastiaans-Tsallis entropies,
Rényi entropies, and logarithmic negativity for classical integrable systems. These classical analogs are entirely
characterized by the classical covariance matrix. We compute these classical analogs exactly in the cases of
linearly coupled harmonic oscillators, a generalized harmonic oscillator chain, and a one-dimensional circular
lattice of oscillators. In all of these systems, the classical analogs reproduce the results of their quantum coun-
terparts whenever the system is in a Gaussian state. In this context, our results show that quantum information
of Gaussian states can be reproduced by classical information.
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I. INTRODUCTION

In recent times, many measures of quantum effects have
emerged; among them, we can highlight the covariance matrix
[1], purity [2], von Neumann entropy [3], Rényi entropies
[4], Bastiaans-Tsallis entropies [5,6], logarithmic negativity
[7,8], Berry phase [9], and quantum geometric tensor [10].
Each of these quantities has its utility since they easily discern
specific characteristics of quantum phenomena. For instance,
the von Neumann entropy encodes the degree of mixing of
a quantum state. Also, the Rényi entropies are the natural
generalization of the von Neumann entropy by deforming it
into a parametrized entropy by a positive real number α, which
characterizes different aspects of the entanglement spectrum
in a similar way to higher moments of a probability dis-
tribution. Furthermore, the Rényi entropies have also found
various applications [11]. In particular, these entropies are
widely used as a technical tool in information theory [1],
statistical mechanics [12], and recently using the maximum
entropy principle applied to the Rényi entropies, a generalized
formulation of quantum thermodynamics was developed [13].
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In addition, the Renyi entropies have been essential to defin-
ing multifractality phenomena [14]. On the other hand, the
Bastiaans-Tsallis entropies were introduced by Bastiaans in
the context of quantum optics [5] and, independently, by Tsal-
lis in statistical mechanics [6]. These entropies quantify the
degree of mixedness of a state by the amount of information it
lacks, and it is a nonadditive quantity. Also, it is a fundamen-
tal tool to describe nonextensive statistical mechanics [15],
which has managed to describe a good number of phenomena
ranging from optical phenomena such as anomalous transport
in an optical lattice [16,17] to heavy-ion collisions [18,19].
Other applications of the Tsallis entropies involve recognizing
that the parameter α = 1

2 is a natural operational measure of
nonclassicality [20]. Another interesting measure of entangle-
ment is logarithmic negativity [7], one of the most practical
measures of quantifying mixed entanglement [21], which can
be used as an upper bound on distillable entanglement [22]
and has an unambiguous operational interpretation [23]. Fur-
thermore, it allows a more varied selection of subsystems to
be analyzed concerning entanglement with each other and
through a medium. However, the logarithmic negativity is not
convex, implying it can increase under mixing.

On the other hand, for some years, there have been at-
tempts to construct classical analogs of quantum quantities,
such as the Berry phase [24–26], linear quantum entropy
[27], quantum geometric tensor [28–30], and more recently
the quantum covariance matrix, purity, and von Neumann
entropy [31]. These constructions have had the purpose of
discovering to what extent quantum effects can be computed
using classical mechanics tools and if these tools might shed
some light on new properties of these quantum effects. In
addition, these classical analogs aim to see if they can be more
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easily calculated than their quantum counterparts, at least in
some particular cases. What has been discovered is that, in the
case of Gaussian states, the classical analogs describe most of
the quantum effects with remarkable accuracy, although some
minor differences can be understood in terms of ordering
anomalies [29]. In this article, we want to extend and compare
these results in the framework of classical integrable systems
by introducing classical analogs of the generalized purities,
Rényi entropies, Bastiaans-Tsallis entropies, and logarith-
mic negativity. We shall see that this provides an alternative
approach that effectively describes these other fundamental
quantities of the quantum spectrum. Furthermore, some quan-
tum mechanical systems have nonperturbative effects, which
can be described with kinklike solutions [32], instantonlike
solutions [33], flow tubes [34], domain walls [35], and others.
The solution to these systems generally starts by obtaining an
exact classical solution of a Euclidean version of the problem.
So our idea of considering classical attack methods could
give us information on a nonperturbative nature of a quan-
tum system, which perhaps cannot be obtained by standard
perturbative procedures.

The paper is organized as follows. In Sec. II, we fix the
notation used throughout the paper and give a brief summary
of the quantum purity, linear quantum entropy, and von Neu-
mann entropy, as well as of their classical analogs for classical
integrable systems introduced in [31]. We also include here
an example that illustrates the use and main features of these
classical analogs. In Sec. III, we review some basics about
the generalized purities, Bastiaans-Tsallis, Rényi entropies,
and logarithmic negativity. A key feature for our purposes is
that these functions are entirely determined by the quantum
covariance matrix if the system is in a Gaussian state. Then,
taking this into account, in Sec. IV, we introduce classical
analogs of generalized purities, Bastiaans-Tsallis entropies,
Rényi entropies, and logarithmic negativity for classical in-
tegrable systems. Analogously to their quantum counterparts,
these classical functions are completely determined by the
classical covariance matrix of the classical integral system. In
Sec. V, we provide three examples to illustrate the application
of the introduced classical analogs, confronting the results
with their quantum counterparts. The first example considers
a system of linearly coupled harmonic oscillators, the second
one a generalized harmonic oscillator chain, and the third
one a one-dimensional circular lattice of oscillators. In all of
these systems, the classical analogs agree with their quantum
versions, for Gaussian states. Finally, in Sec. VI, we give our
conclusions and some comments.

II. PRELIMINARIES

We begin by considering a quantum system described by
a Hamiltonian Ĥ(q̂, p̂) with a set of phase-space operators
q̂ = {q̂a} and p̂ = {p̂a} (a = 1, . . . , N). We use bold letters
with a hat to denote quantum operators. For a given quan-
tum state |m〉, the quantum covariance matrix σ = (σαβ ) is a
2N × 2N matrix whose elements are

σαβ = 1
2 〈r̂α r̂β + r̂β r̂α〉m − 〈r̂α〉m〈r̂β〉m, (1)

where r̂ = {r̂α} = (q̂1, . . . , q̂N , p̂1, . . . , p̂N )ᵀ (α, β = 1, . . . ,

2N) is a 2N-dimensional column vector and 〈Ô〉m = 〈m|Ô|m〉

stands for the expectation value of an operator Ô. In the
classical setting, the quantum covariance matrix has a counter-
part for classical integrable systems [31]. Consider a classical
integrable system defined by a Hamiltonian H (q, p) with a set
of canonical coordinates and momenta, q = {qa} and p = {pa}
(a = 1, . . . , N). Within the Wigner function formalism, we
consider the Wentzel-Kramers-Brillouin (WKB) approxima-
tion for the wave function ψm(q) = 〈q|ψm〉, which reads as

ψm(q) = 1

(2π )N/2

∣∣∣∣det
∂2S(q, Im)

∂qa∂Ib

∣∣∣∣
1
2

e
i
h̄ S(q,Im ), (2)

where S(q, Im) is the classical action corresponding to the
particular torus Im. Following Berry [36], we built the semi-
classical Wigner function

Wm(q, p) = 1

(2π2h̄)N

∫
dx e

i
h̄ [S(q+x,Im )−S(q−x,Im )−2px]

×
∣∣∣∣det

∂2S(q + x, Im)

∂qa∂Ib
det

∂2S(q − x, Im)

∂qa∂Ib

∣∣∣∣
1
2

,

(3)

by considering a classical limit taking only linear corrections
in the exponential and performing a canonical transforma-
tion of the phase-space coordinates to action-angle variables
I = {Ia} and ϕ = {ϕa} (a = 1, . . . , N). In this case, the Wigner
function of the system is reduced to a delta function

Wm(q, p) = 1

(2π )N
δ(I (q, p) − Im), (4)

involving only the action variables of the system and the
value of the action corresponding to the m torus, i.e., |ψm〉,
quantum state. We shall refer to this as the classical limit of the
Wigner function. Furthermore, in this sense, we can identify
our action variables with a constant.

Using this formalism it was shown in [31] that in the
classical limit (which we denote by �)

σ � σcl, (5)

where σcl = (σ cl
αβ ) is the classical covariance matrix with ele-

ments given by

σ cl
αβ = 〈rαrβ〉cl − 〈rα〉cl〈rβ〉cl. (6)

Here, r = {rα} = (q1, . . . , qN , p1, . . . , pN )ᵀ is a phase-space
column vector and

〈 f 〉cl = 1

(2π )N

∫ 2π

0
· · ·

∫ 2π

0
dNϕ f , (7)

with dNϕ = dϕ1 . . . dϕN , is the classical average of a func-
tion f = f (ϕ, I ) over the angle variables.

The relation (5) was used in [31] to define classical analogs
of some quantum quantities that serve as a measure of the
mixedness of the quantum states and that for Gaussian states
can be written as functions depending only on the quantum
covariance matrix. Such quantities are the purity μ, linear
quantum entropy SL, and von Neumann entropy S which, for
a normalized quantum state described by a density operator ρ̂,
are defined as [37,38]

μ(ρ̂) = Trρ̂2, (8a)
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SL(ρ̂) = 1 − μ(ρ̂), (8b)

S(ρ̂) = −Tr(ρ̂ ln ρ̂). (8c)

For pure states ρ̂2 = ρ̂, μ takes a maximum value of 1 and
both entropies SL and S are zero, whereas for mixed states,
ρ̂2 �= ρ̂, these quantities vary in the range of 0 < μ < 1, 0 <

SL < 1, and S > 0.
For a Gaussian state, the quantities (8) depend only on

the corresponding quantum covariance matrix [37–46]. In
fact, considering an n-mode Gaussian state (n denotes the
degrees of freedom of the subsystem formed by the particles
a1, . . . , an of the system of N degrees of freedom) with the
reduced quantum covariance matrix σ (n), we have

μ(a1, a2, . . . , an) =
(

h̄

2

)n 1√
det σ (n)

(9a)

= 1

2n

n∏
k=1

ν−1
k ,

SL(a1, a2, . . . , an) = 1 −
(

h̄

2

)n 1√
det σ (n)

, (9b)

S(a1, a2, . . . , an) =
n∑

k=1

S (νk ), (9c)

where

S (νk ) = (
νk + 1

2

)
ln
(
νk + 1

2

) − (
νk − 1

2

)
ln
(
νk − 1

2

)
, (10)

the subscript (n) represents (a1, a2, . . . , an), and νk are the
symplectic eigenvalues of σ (n)/h̄, i.e., they are the entries of
a non-negative diagonal matrix Dν = diag(ν1, . . . , νn) which,
together with a suitable symplectic matrix M, allows us to
write

Mᵀ
(

σ (n)

h̄

)
M =

(
Dν 0n×n

0n×n Dν

)
. (11)

Notice that S (νk ) = 0 only if νk = 1
2 , and that in the case n =

1, for the particle ai, we have [40]

ν1 = 1

h̄

√
σpai pai

σqai qai
− (

σqai pai

)2
. (12)

Bearing in mind the relation (5) (σ (n) � σcl
(n) ), the quan-

tum functions (9), and the Bohr-Sommerfeld quantization rule
for the action variables, in the sense h̄/2 → Ik , the classi-
cal analogs of the purity (9a), linear quantum entropy (9b),
and von Neumann entropy (9c) are, respectively, defined
as [31]

μ̃cl(a1, a2, . . . , an) : = cn
1 lim

Ia→c1

1√
det σcl

(n)

(13a)

=
(

1

2n

) n∏
k=1

σ̃−1
k ,

S̃cl
L (a1, a2, . . . , an) : = 1 − cn

1 lim
Ia→c1

1√
det σcl

(n)

, (13b)

S̃cl(a1, a2, . . . , an) : =
n∑

k=1

Scl(σ̃k ), (13c)

where

Scl(σ̃k ) : = (
σ̃k + 1

2

)
ln
(
σ̃k + 1

2

) − (
σ̃k − 1

2

)
ln
(
σ̃k − 1

2

)
,

(14a)

σ̃k : = 1

2c2
lim

Ia→c2

σ cl
k , (14b)

with σ cl
k the symplectic eigenvalues of σcl

(n), and Iak the action
variables associated with the k-th normal mode. Note that
σ̃k are the symplectic eigenvalues of 1/(2c2) limIk→c2 σ(n)cl

[analogous to νk which are the symplectic eigenvalues of
σ(n)/h̄]. It is important to note that c1 and c2 are real positive
constants that disappear during the calculation of quadratic
Hamiltonian systems, which in the quantum context give rise
to Gaussian states in their ground state. This is because, for
these systems, the q and p variables depend linearly on the
square root of Ik [see (17)]. Then, by identifying all Ik as
c2, the classical covariance matrix becomes proportional to c2

[see (19)], causing σ̃k to be independent of c2.
In the particular case of n = 1, for the particle ai we get

σ̃1 = 1

2c2
lim

Ia→c2

√
σ cl

pai pai
σ cl

qai qai
− (

σ cl
qai pai

)2
. (15)

Notice that the limits in (13a) and (14b) involve not only a
particular action variable Iak , but all the action variables.

We must note that to calculate the classical functions (13)
no a priori knowledge of the corresponding quantum system
is required. In addition, these functions are defined for any
integrable system. However, it is only when the corresponding
quantum system is in a Gaussian state that (13) are the clas-
sical analogs of the quantum purity, linear quantum entropy,
and von Neumann entropy, respectively.

Example: Generalized harmonic oscillator chain

Let us now illustrate how to compute the classical analog
of the purity. To this end let us take a generalized harmonic
oscillator chain (GHOC) consisting of N coupled oscillators
[47]. The Hamiltonian of the system is

H (q, p) = 1
2 pᵀp + 1

2 qᵀKq + qᵀY p, (16)

where p = (p1, . . . , pN )ᵀ, q = (q1, . . . , qN )ᵀ, Y is an N × N
diagonal matrix whose diagonal elements are parameters de-
noted by Ya, and K is N × N symmetric matrix of parameters.

Before starting we would like to make some general asser-
tions about the stability of the system. We first determine the
fixed points. The equations of motion coming from (16) are(

q̇
ṗ

)
= A

(
q
p

)
, (17)

where

A =
(

Y 1N×N

−K −Y

)
. (18)

Setting (q̇, ṗ) = (0, 0)ᵀ, it is direct to see that there is a unique
fixed point at (q∗, p∗)ᵀ = (0, 0)ᵀ. To analyze the stability of
this equilibrium point, we calculate the eigenvalues λ of the
matrix A. The characteristic equation for λ is det(M + λ21) =
0 where M := K − Y 2. Then, denoting by ω2

a the eigenvalues
of M, the eigenvalues of the A are λ(±)

a = ±iωa. If we restrict
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the system to M > 0, then ωa are real and λ(±)
a are purely

imaginary. This corresponds to a phase portrait of a center
which is a stable system. On the other hand, if the matrix M
is not positive semidefinite, we have at least one imaginary
ωa, and hence A has at least one positive and one negative
eigenvalue, which originates an unstable hyperbolic system.
Therefore, the condition M > 0 guarantees that the system is
stable. In the following we consider M > 0.

To compute the classical analog of the purity, we start by
performing the canonical transformation q = q′, p = p′ − Y q,
followed by the canonical transformation of the form Q =
Sᵀq′, P = Sᵀp′, where S is such that it diagonalizes the ma-
trix M, i.e., SMSᵀ = �2 where � = diag(ω1, . . . , ωN ). Thus,
the total canonical transformation can be written as q = SQ,
p = SP − Y SQ. In terms of the new variables (Q, P) the
Hamiltonian (16) reads as

H (Q, P) = 1
2 PᵀP + 1

2 Qᵀ�2Q. (19)

From (19) it is clear that ωa are the normal frequencies of the
system.

In terms of action-angle variables (I, φ), the new vari-

ables (Q, P) can be written as Qa =
√

2Ia
ωa

sin φa, Pa =√
2Iaωa sin φa, and therefore

qa =
∑

b

Sab

√
2Ib

ωb
sin φb, (20a)

pa =
∑

b

⎛
⎝Sab

√
2Ibωb cos φb − YaSab

√
2Ib

ωb
sin φb

⎞
⎠. (20b)

Using (7) and (20), the terms involved in the entries of the
classical covariance matrix (6) are

〈qaqb〉cl = (SI�−1Sᵀ)ab, (21a)

〈qa pb〉cl = (SI�−1SᵀY )ab, (21b)

〈pa pb〉cl = (SI�Sᵀ + Y SI�−1SᵀY )ab, (21c)

〈qa〉cl = 〈pa〉cl = 0, (21d)

where I = diag(I1, . . . , IN ). Notice that as a consequence of
the term qᵀY p in the Hamiltonian (16), we have 〈qa pb〉cl �=
0 and the additional term Y SI�−1SᵀY in (21c). Considering
that all action variables are equal to some constant c1, i.e.,
Ia → c1 for all a = 1, . . . , N , the classical covariance matrix
takes the form

lim
Ia→c1

σcl = c1

(
M−1/2 −M−1/2Y

−Y M−1/2 M1/2 + Y M−1/2Y

)
, (22)

where M−1/2 is the inverse of the matrix M1/2 = S�Sᵀ.
Using Schur complement is not hard to show that the

determinant of (22) is c2N
1 , and then according to (13a),

the classical analog of purity of the whole system is 1, which
is the same result that follows from the quantum frame. In
general, to compute the purity of a subsystem consisting of
the first m (m � N) oscillators of the system, we need the
associated reduced covariance matrix, which is obtained by
taking the corresponding m × m block submatrix from (22).

The reduced covariance matrix σcl
(m) can be written as

σcl
(m) = c1

(
D −DY red

−Y redD A + Y redDY red

)
, (23)

where A and D are block matrices of M1/2 and M−1/2, respec-
tively,

M1/2 =
(

A B
Bᵀ C

)
, (24a)

M−1/2 =
(

D E
Eᵀ F

)
, (24b)

and Y red = diag(Y1, . . . ,Ym).
Using (13a) and (23), the classical analog of purity of the

m oscillators turns out to be

μ̃cl(a1, . . . , am) = 1√
det A det D

, (25)

where we have used Schur complement to simplify the de-
terminant. Notice that even though the matrix Y red does not
appear explicitly in this result, the classical analog of the
purity depends on the parameters Ya through the frequencies
ωa which are involved in A and D. We show below that this
result is exactly the predicted one by the quantum purity (9a).

Before going to the quantum framework, we consider a
particular case of (16) and provide an explicit expression for
the classical analog of the purity. Let us take the system of
two coupled generalized harmonic oscillators described by the
Hamiltonian

H (q, p) = H1 + H2 + 1
2 Z (q1 − q2)2, (26)

where

Ha(qa, pa) = 1
2

[
p2

a + Ya(qa pa + paqa) + Xaq2
a

]
. (27)

In this case, the matrices K and M are

K =
(

X1 + Z −Z

−Z X2 + Z

)
, (28a)

M =
(

X1 + Z − Y 2
1 −Z

−Z X2 + Z − Y 2
2

)
, (28b)

and hence the matrix S is

S =
(

cos θ − sin θ

sin θ cos θ

)
, (29)

where tan θ = γ

|γ | (γ
2 + 1) − γ with γ := X2−X1+Y 2

1 −Y 2
2

2Z . Here,

we have considered X2 − X1 + Y 2
1 − Y 2

2 �= 0 and Z �= 0.
Moreover, the normal frequencies are

ω1 =
√

X1 − Y 2
1 + Z − Z tan θ, (30a)

ω2 =
√

X2 − Y 2
2 + Z + Z tan θ. (30b)

Having these matrices at hand and using (21), we can
compute the classical covariance matrix (22). The result is

lim
Ia→c1

σcl =
(

σcl
qq σcl

qp

σcl
pq σcl

pp

)
, (31)
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where

σcl
qq = c1

⎛
⎝ cos2 θ

ω1
+ sin2 θ

ω2

(
1
ω1

− 1
ω2

)
sin θ cos θ(

1
ω1

− 1
ω2

)
sin θ cos θ sin2 θ

ω1
+ cos2 θ

ω2

⎞
⎠, (32a)

σcl
qp = σcl

pq
ᵀ = c1

⎛
⎝ Y1

(
cos2 θ

ω1
+ sin2 θ

ω2

)
Y2
(

1
ω1

− 1
ω2

)
sin θ cos θ

Y1
(

1
ω1

− 1
ω2

)
sin θ cos θ Y2

(
sin2 θ
ω1

+ cos2 θ
ω2

)
⎞
⎠, (32b)

σcl
pp = c1

⎛
⎝ω1 cos2 θ + ω2 sin2 θ + Y 2

1

(
cos2 θ

ω1
+ sin2 θ

ω2

) [
(ω1 − ω2) + Y1Y2

(
1
ω1

− 1
ω2

)]
sin θ cos θ[

(ω1 − ω2) + Y1Y2
(

1
ω1

− 1
ω2

)]
sin θ cos θ ω1 sin2 θ + ω2 cos2 θ + Y 2

2

(
sin2 θ
ω1

+ cos2 θ
ω2

)
⎞
⎠. (32c)

Using (25) together with (31), we find the classical analog of
purity for a subsystem of one particle

μ̃cl(a1) =
√

ω1ω2

(ω1 cos2 θ + ω2 sin2 θ )(ω2 cos2 θ + ω1 sin2 θ )
.

(33)

Notice that if ω1 = ω2, then (33) reduces to μ̃(a1) = 1.
Nevertheless, in this case, γ is imaginary because of the
condition Z �= 0, i.e., since the oscillators are coupled. That γ

is imaginary implies that the corresponding quantum Hamil-
tonian is non-Hermitian. The quantization of this type of
systems has been done using PT symmetry [48,49], and it has
been discovered that entanglement has different properties in
this context [50,51]. In the general case ω1 �= ω2, from (33) it
follows that μ̃(a1) < 1 and hence the quantum counterpart of
the system is entangled.

We now turn to the quantum framework. The quantum
counterpart of the Hamiltonian (16) is

Ĥ(q̂, p̂) = 1
2 p̂ᵀp̂ + 1

2 q̂ᵀKq̂ + 1
2 (q̂ᵀY p̂ + p̂ᵀY q̂). (34)

Performing a transformation analogous to the one that leads to
(19), the Hamiltonian (34) can be diagonalized as Ĥ(Q̂, P̂) =
1
2 P̂ᵀP̂ + 1

2 Q̂ᵀ�2Q̂. To compute the components (1) of the
quantum covariance matrix for the ground (Gaussian) state, it
is convenient to write the operators Q̂ and P̂ as a combination
of the usual raising and lowering operators. By doing this,
the resulting quantum covariance matrix is the same as the
classical covariance matrix (22), but with h̄/2 replacing the
constant c1. Using this result together with (9a), the quantum
purity of the m quantum oscillators turns out to be equal to
(25). This illustrates that the classical quantity μ̃cl is capable
of providing the same mathematical results as its quantum
counterpart μ.

III. GENERALIZED PURITIES AND ENTROPIES,
AND LOGARITHMIC NEGATIVITY

A. Generalized purities and entropies

The quantum quantities (8) can be generalized in the fol-
lowing sense: For a given quantum state ρ̂, the generalized
purities, Bastiaans-Tsallis entropies, and Rényi entropies [4]

for α � 0 are given by [5,6,44,52]

μα (ρ̂) = Trρ̂α, (35a)

Sα (ρ̂) = 1 − Trρ̂α

α − 1
, (35b)

Hα (ρ̂) = ln (Trρ̂α )

1 − α
, (35c)

respectively. Some comments regarding these generalizations.
First, notice that Trρ̂α = (||ρ̂||α )α where || · ||α is the Schatten
α-norm [44,53] and, in the asymptotic limit of arbitrary large
α, Trρ̂α is a function of the largest eigenvalue of ρ̂ only. Sec-
ond, (35a) reduces to the purity (8a) when α = 2. Third, for
α = 2, (35b) yields the linear entropy (8b), while in the limit
α → 1 it reduces to the von Neumann entropy (8c). Fourth,
in the limit α → 1, (35c) becomes the von Neumann entropy
(8c). Fifth, in the limit α → ∞, Sα goes to a trivial constant
null function, losing all information about the quantum state,
while Hα converges to the min-entropy, which is the smallest
entropy measure in the family of Rényi entropies [54,55].
Sixth, Sα is a monotonically decreasing function of α, for a
given quantum state.

For a n-mode Gaussian state, associated with a subsystem
formed by the particles a1, . . . , an, (35) can be written as
functions that only depend on the covariance matrix σ (n). In
fact, they are given by [13,52,56]

μα (a1, a2, . . . , an) =
n∏

k=1

gα (νk ), (36a)

Sα (a1, a2, . . . , an) = 1 − ∏n
k=1 gα (νk )

α − 1
, (36b)

Hα (a1, a2, . . . , an) =
∑n

k=1 ln [gα (νk )]

1 − α
, (36c)

where νk are the symplectic eigenvalues of σ (n)/h̄, and

gα (νk ) = 1(
νk + 1

2

)α − (
νk − 1

2

)α . (37)

Notice that gα ( 1
2 ) = 1 only if all eigenvalues satisfy νk = 1

2 ,
which implies μα = 1, Sα = 0, and Hα = 0.

B. Logarithmic negativity

We now focus on the logarithmic negativity for a Gaussian
state in a system of N coupled harmonic oscillators. We begin
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by considering a set of m = n1 + n2 � N oscillators that are
divided into two groups: One of them with n1 oscillators
and another with n2 oscillators. Assuming that there are no
correlations between positions and momenta, the quantum
covariant matrix associated with the m oscillators, which we
refer to as the reduced covariance matrix μ, can be obtained
from the quantum covariance matrix σ of the entire system by
taking the rows and columns corresponding to the m oscilla-
tors. Then, under this condition, the matrix μ has the form

μ = 1

2

(
μq 0m×m

0m×m μp

)
, (38)

where μq and μp are m × m matrices. Let us now consider
the partial transpose μ� of μ with respect to the group of n2

oscillators, which is defined as

μ� := PμP, (39)

where P is a diagonal matrix given by

P =
(

1m×m 0m×m

0m×m Pp

)
, (40)

with Pp = diag(1, . . . , 1,−1, . . . ,−1). The entries of Pp are
1 for an oscillator of the group with n1 oscillators or −1 for
an oscillator belonging to the group with n2 oscillators. It is
not hard to verify that the effect of partial transposition with
respect to the group of n2 oscillators is to change the sign of
the momenta corresponding to these oscillators.

To compute the logarithmic negativity we also require the
symplectic matrix � = (�αβ ), whose entries are given by

�αβ := −i[r̂α, r̂β ], (41)

and has the block-matrix form

� = h̄

(
0N×N 1N×N

−1N×N 0N×N

)
. (42)

Thus, for the set of m oscillators the associated symplectic
matrix � takes the form

� := h̄

(
0m×m 1m×m

−1m×m 0m×m

)
. (43)

Using (39), (43), and considering the ground state of the
chain, the logarithmic negativity EN , which provides a mea-
sure of entanglement between the two groups of n1 and n2

oscillators, is given by [7]

EN = −
2m∑

k=1

log2 [min (1, | λk |)], (44)

where λk (k = 1, . . . , 2m) are the eigenvalues of the matrix

B = i�−1μ�. (45)

In fact, if EN is positive, then the two groups of n1 and n2

oscillators are entangled. In terms of the matrices μq and μp,
the logarithmic negativity can be written as [23]

EN = −
m∑

j=1

log2[min(1, λ̃ j )], (46)

where λ̃ j are the eigenvalues of the matrix μqPpμpPp/h̄2.

Before concluding this section, it is worth pointing out that
another useful measure of entanglement in composite systems
is the negativity N [7], which is related to the logarithmic
negativity as

N = 2EN − 1

2
. (47)

IV. CLASSICAL ANALOGS

A. Generalized purities and entropies

In this subsection, we define classical analogs of the gen-
eralized purities and entropies for Gaussian states (36) in the
framework of classical integrable systems. We consider here
a subsystem consisting of the n particles a1, a2, . . . , an of a
classical integrable system of N degrees of freedom, which
has been written in terms of the action-angle variables (ϕ, I ).

We start by introducing the classical analog of the function
gα for the subsystem (a1, a2, . . . , an). Taking into account
(37), the relation (5) for the quantum σ (n) and classical σcl

(n) co-
variance matrices, i.e., σ (n) � σcl

(n), and the Bohr-Sommerfeld
quantization rule for the action variables, in the sense h̄/2 →
Ia, the classical analog of gα is defined as

gcl
α (σ̃k ) := 1(

σ̃k + 1
2

)α − (
σ̃k − 1

2

)α , (48)

where σ̃k is given by (14b). Notice that (48) can be obtained
from (37) just by replacing the νi with σ̃k , i.e., we are only
changing the domain of the function, just as we did in the
definition of the function Scl given by (14a).

With the help of the function gcl
α , we define classical

analogs of the generalized purities, Bastiaans-Tsallis en-
tropies, and Rényi entropies for α � 0 as

μ̃cl
α (a1, a2, . . . , an) :=

n∏
k=1

gcl
α (σ̃k ), (49a)

S̃cl
α (a1, a2, . . . , an) := 1 − ∏n

k=1 gcl
α (σ̃k )

α − 1
, (49b)

H̃ cl
α (a1, a2, . . . , an) :=

∑n
k=1 ln

[
gcl

α (σ̃k )
]

1 − α
, (49c)

respectively. We point out that the functions (49) do not need
to invoke any prior knowledge from the quantum framework,
and as we will see through examples, they yield exactly
the same mathematical results as their quantum counterparts.
Also, notice that the functions (49) are defined for any in-
tegrable system, but only when the corresponding quantum
system is in a Gaussian state they correspond to the clas-
sical analogs of the generalized purities, Bastiaans-Tsallis
entropies, and Rényi entropies.

It is worth noticing that

lim
α→1

∑n
k=1 ln

[
gcl

α (σ̃k )
]

1 − α
= lim

α→1

1 − ∏n
k=1 gcl

p (σ̃k )

α − 1

=
n∑

k=1

Scl(σ̃k ), (50)
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then

lim
α→1

S̃cl
α (a1, a2, . . . , an) = lim

α→1
H̃ cl

α (a1, a2, . . . , an)

= S̃cl(a1, a2, . . . , an), (51)

this is, in the limit α → 1 our classical analogs of the
Bastiaans-Tsallis, S̃cl

α , and Rényi, H̃ cl
α , entropies become the

classical analog of the von Neumann entropy (13c), in com-
plete analogy with the quantum case.

B. Logarithmic negativity for Gaussian states

To establish a classical analog of the logarithmic negativity
(44) [or (46)], let us consider a classical integrable system of
N coupled harmonic oscillators. As in the quantum case, we
focus on a set of m = n1 + n2 � N oscillators consisting of a
group of n1 oscillators and a group of n2 oscillators. Further-
more, we also assume that there are no correlations between
positions and momenta. Under these considerations, we begin
by introducing the reduced classical covariance matrix μcl

associated with the m oscillators, which subtracts the rows and
columns corresponding to the m oscillators from the classical
covariance matrix σcl. Then, the matrix μcl has the form

μcl = 1

2

(
μcl

q 0m×m

0m×m μcl
p

)
, (52)

where μcl
q and μcl

p are m × m matrices. Also in this case we
can define the partial transpose (μcl )� of μcl with respect to
the group of n2 oscillators, namely,

(μcl )� := PμclP, (53)

where P is given by (40).
On the other hand, the classical analog of the symplectic

matrix �, denoted by �cl, can be obtained by replacing the
commutator [·,·] with the Poisson brackets ih̄{·,·}. From this,
we obtain the relation

� � h̄�cl, (54)

where �cl = (�cl
αβ ) is the classical symplectic matrix and has

entries given by

�cl
αβ := {rα, rβ}. (55)

Using {qa, pb} = δab, it is not hard to realize that

�cl =
(

0N×N 1N×N

−1N×N 0N×N

)
. (56)

Hence, for the set of m oscillators the reduced classical sym-
plectic matrix �cl can be written as

�cl =
(

0m×m 1m×m

−1m×m 0m×m

)
. (57)

Using (53) and (57), it is natural to define a classical analog
of the logarithmic negativity (44) as

E cl
N = −

2m∑
k=1

log2

[
min

(
1,
∣∣λcl

k

∣∣)], (58)

where λcl
k are the eigenvalues of the matrix

Bcl = i

2c4
lim

Ia→c4

(�cl )−1(μcl )�. (59)

Here, c4 is an auxiliary real positive constant. Let us make
some comments regarding (58). First, it is worth noticing
that E cl

N is a purely classical quantity since its definition does
not require resorting to the quantum framework. Second, the
(arbitrary) constant c4 disappears from (59) once the limit
Ia → c4 is taken, and therefore E cl

N does not depend on this
constant. Third, by following a procedure completely analo-
gous to the one leading to (46) (see Ref. [23]), the classical
analog of the logarithmic negativity can be written in terms of
μcl

q and μcl
p as

E cl
N = −

m∑
j=1

log2

[
min

(
1, λ̃cl

j

)]
, (60)

where λ̃cl
j are the eigenvalues of the matrix

B̃
cl = 1

(2c4)2
lim

Ia→c4

μcl
q PPμcl

p PP. (61)

Note that using E cl
N we can also introduce a classical analog

of the negativity N . Bearing in mind Eq. (47), we define a
classical analog of the negativity as

N cl = 2E cl
N − 1

2
. (62)

Since N cl is trivially related to E cl
N , in the next section we only

present numerical checks of E cl
N .

V. EXAMPLES

In this section, we present some examples to illustrate the
application of the proposed classical functions. In Sec. V A,
we compute the classical analogs of the generalized purities,
Bastiaans-Tsallis entropies, and Rényi entropies for a linearly
coupled harmonic oscillator system, and compare them with
their quantum counterparts for the ground state of the system.
In Sec. V B, we consider the particular case of the general-
ized harmonic oscillator chain given by the Hamiltonian (26)
and compare the generalized purities and entropies with their
classical analogs. Finally, in Sec, V C, for a circular lattice of
oscillators in several configurations, we compute the classical
analog of the logarithmic negativity (58) and compare it with
its quantum counterpart.

We will see in these examples that our classical approach
provides exactly the same results as their quantum counter-
parts when the quantum counterpart of the system is in a
Gaussian state.

A. Linearly coupled harmonic oscillators

Let us consider the system composed of two coupled har-
monic oscillators described by the Hamiltonian

H (q, p) = 1
2

(
p2

1 + p2
2 + Aq2

1 + Bq2
2 + Cq1q2

)
, (63)

where A, B, and C are real parameters such that A, B > 0,
A �= B, and 4AB − C2 � 0. This system has been widely used
for the analysis of quantum entanglement [57,58], and one
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of its features is that it presents a very large quantum entan-
glement for certain parameter values [2,59,60]. Recently, in
[31] this system was also used to study the classical analogs
of purity, linear quantum entropy, and von Neumann entropy,
finding that these classical functions provide the same results
as their quantum counterparts. Furthermore, this model was

used to study the classical analog of the quantum geomet-
ric tensor [29]. Interestingly and in contrast to the classical
functions studied in [31], it was shown that the classical
metric tensor does not yield the full parameter structure of
its quantum counterpart, the cause being a quantum ordering
anomaly.

Using the corresponding action-angle variables (ϕa, Ia) (a = 1, 2), the components of the classical covariance matrix σcl of
the system are [31]

σ cl
qq =

⎛
⎝ I1 cos2 β

ω1
+ I2 sin2 β

ω2

( I2
ω2

− I1
ω1

)
sin β cos β( I2

ω2
− I1

ω1

)
sin β cos β

I1 sin2 β

ω1
+ I2 cos2 β

ω2

⎞
⎠, (64a)

σ cl
pp =

(
I1ω1 cos2 β + I2ω2 sin2 β (I2ω2 − I1ω1) sin β cos β

(I2ω2 − I1ω1) sin β cos β I1ω1 sin2 β + I2ω2 cos2 β

)
, (64b)

σ cl
qp = 02×2, (64c)

where ω1 and ω2 are the normal frequencies

ω1 :=
√

A − C

2
tan β, ω2 :=

√
B + C

2
tan β, (65)

and tan 2β = C/(B − A) with β ∈ (−π/4, π/4).
In this case, the subsystems are each oscillator {1} and {2}; and the complete system {1,2}. For the subsystem {1} the

corresponding σ̃1 [see (14b)] is

σ̃1 = 1

2

√√√√(
cos2 β

ω1
+ sin2 β

ω2

)
(ω1 cos2 β + ω2 sin2 β ), (66)

which in terms of the original parameters reduces to

σ̃1 =
√

AB

4AB − C2
, (67)

and, because of the symmetry between the subsystems {1} and {2}, the symplectic eigenvalue of the subsystem {2} satisfies
σ̃2 = σ̃1. Notice that in the uncoupled regime C = 0, σ̃1 = σ̃2 = 1

2 and then the classic analogs of the generalized purities and
entropies are 1 and 0 for all α > 1, respectively, which means that the oscillators are separated in phase space. Furthermore, the
symplectic eigenvalues of the complete system {1, 2} are σ1 = 1

2 = σ2 = σ̃1 = σ̃2, which means that the complete system is pure
as expected.

Using (49) and (67), we compute the classical analogs of the generalized purities and entropies defined by (49) for α → 1
and α = 0.9, 2, 4, 8, 16, 32, 64. Also, for illustrative purposes, we set AB = 100. In Fig. 1 we show the numerical results of
the classical analogs as functions of the coupling constant C, which with the election AB = 100 can take values in the interval
(−20, 20). As these functions are symmetric under C → −C, we only plot the region [0,20). Let us make some comments about
it: (i) These plots illustrate what we have said about the case C = 0. (ii) We have included the case α = 2, then Fig. 1(a) contains
the analog of the purity. (iii) We have included in Figs. 1(b) and 1(c) the limit α → 1, which corresponds with the von Neumann
entropy, given by

S̃cl(1) =
(√

AB

4AB − C2
+ 1

2

)
ln

(√
AB

4AB − C2
+ 1

2

)
−
(√

AB

4AB − C2
− 1

2

)
ln

(√
AB

4AB − C2
− 1

2

)
= S̃cl(2), (68a)

S̃cl(1, 2) = 0. (68b)

This classical analog was discussed in [31]. (iv) In Figs. 1(b) and 1(c) we inset subfigures to illustrate the global behavior of the
classical analogs of the generalized entropies. (v) We can appreciate some general characteristics of the generalized entropies;
for instance, in Fig. 1(b) we observe that Tsallis entropies are monotonically decreasing functions of α and Fig. 1(c) shows the
concave behavior of Rényi entropies.
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Let us now consider the quantum case. Using the quantum counterpart of the Hamiltonian (63), the components of the
quantum covariance matrix σ for the ground state are

σqq = h̄

2

⎛
⎝ cos2 β

ω1
+ sin2 β

ω2

(
1
ω2

− 1
ω1

)
sin β cos β(

1
ω2

− 1
ω1

)
sin β cos β

sin2 β

ω1
+ cos2 β

ω2

⎞
⎠, (69a)

σpp = h̄

2

(
ω1 cos2 β + ω2 sin2 β (ω2 − ω1) sin β cos β

(ω2 − ω1) sin β cos β ω1 sin2 β + ω2 cos2 β

)
, (69b)

σqp = 02×2. (69c)

Bearing in mind the Bohr-Sommerfeld quantization rule
Ia → h̄/2, it is direct to show that the resulting classical
and quantum covariant matrices (64) and (69) are exactly
the same. Therefore, the resulting generalized purities and
entropies (36) of the subsystems are the same as determined
from the classical functions (49). This corroborates that our
classical analogs are capable of giving rise to the same math-
ematical results as their quantum versions.

B. Generalized harmonic oscillator chain

In this section, we continue with the example of a gen-
eralized harmonic oscillator chain, whose Hamiltonian is
presented in (26). For this system, we have already computed
the classical covariance matrix and the classical analog of the
purity. Now we will focus on the classical analogs of gener-
alized purities, Bastiaans-Tsallis, and Rényi entropies, which
can be calculated by using (49) and the symplectic eigenvalues
of the reduced covariance matrix (32). The symplectic eigen-
values have the same functional form of (66), but with normal
frequencies given by (30). The resulting expressions for these
classical quantities will not be given explicitly, but instead,
we plot them for α = 0.9, 2, 4, 8, 16, 32, 64 and α → 1, as
functions of the parameter Y2. We fix the rest of the parameters
as X1 = X2 = 2, Z = 1, and Y1 = 0. This choice implies that
Y2 can take values in the interval (−√

8/3,
√

8/3) (out of
this interval the normal frequencies have an imaginary part).
As these functions are symmetric under Y2 → −Y2 we only
plot the region [0,

√
8/3). The results are shown in Fig. 2.

Notice that the classical analogs of Rényi entropies are always
concave [see Fig. 2(c)], while the corresponding analogs of
Bastiaans-Tsallis entropies are not [see Fig. 2(b)]. On one
hand, for α > 1, in the limit Y2 → √

8/3 the classical analogs
of generalized purities go to zero [see Fig. 2(a)], while the
classical analogs of Rényi entropies diverge and the classical
analogs of Bastiaans-Tsallis entropies go to 1/(α − 1). On
the other hand, for 0 < α � 1 and Y2 → √

8/3, the classical
analogs of both Rényi and Bastiaans-Tsallis entropies diverge.
Remarkably, we find that all these results (obtained by clas-
sical methods) coincide with those obtained by the quantum
approach.

C. One-dimensional circular lattice of oscillators

To close this section, we want to present numerical checks
of our classical analog of the logarithmic negativity (60) for
two groups of n1 and n2 oscillators in a system of N iden-
tical oscillators on a one-dimensional circular lattice. The

Hamiltonian of the system under consideration is

H = 1

2

N∑
a=1

[
p2

a + kq2
a + κ (qa − qa+1)2

]
, (70)

with the periodic boundary condition q1 ≡ qN+1. This system
has been investigated in the context of logarithmic negativity
[23,61,62], entanglement between collective operators [63],
and circuit complexity [64]. It is worth noting that the Hamil-
tonian (70) is a particular case of the Hamiltonian (16), i.e.,
the case where Y = 0 and K is an N × N symmetric circulant
matrix given by

K =

⎛
⎜⎜⎜⎜⎜⎝

k + 2κ −κ 0 · · · −κ

−κ k + 2κ −κ · · · 0

0 −κ
. . .

. . .
...

...
...

. . .
. . . −κ

−κ 0 · · · −κ k + 2κ

⎞
⎟⎟⎟⎟⎟⎠. (71)

This matrix is orthogonally diagonalizable and then can be
expressed as K = Uᵀ�2U , where U is an orthogonal matrix
and � = diag(ω1, . . . , ωN ) with ω1, . . . , ωN being the normal
frequencies of the system.

To study the classical analog of the logarithmic negativity,
we now consider a set of m = n1 + n2 � N oscillators con-
sisting of two groups of n1 and n2 oscillators. In this case, the
reduced 2m × 2m classical covariance matrix μcl for the set of
m oscillators is obtained directly from the 2N × 2N classical
covariance matrix σcl of the system,

σcl =
(

Uᵀ�−1IU 0N×N

0N×N Uᵀ�IU

)
, (72)

by subtracting the corresponding rows and columns of the
m oscillators. Here, I = diag(I1, . . . , IN ) is a diagonal matrix
whose elements are the action variables Ia. From the resulting
matrix μcl we can read off the matrices μcl

q and μcl
p and then

construct the matrix B̃
cl

given by (61) for each considered
case. It is important to point out that the resulting matrix

B̃
cl

does not depend on the auxiliary constant c4, despite the

fact that its construction involves such a constant. Having B̃
cl

,
we find the classical logarithmic negativity (60) by a simple
numerical calculation.

Let us begin by considering a system of N = 200 oscilla-
tors which involves two disjoint groups of n1 = 50 and n2 =
50 oscillators, separated by d oscillators. The oscillators 51 to
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(a)

(b)

(c)

FIG. 1. Plots of the classical analogs, as a function of C for dif-
ferent values of α, for (a) generalized purities, (b) Bastiaans-Tsallis,
and (c) Rényi entropies.

50 + d and 101 + d to 200 are not part of the two groups. In
Fig. 3, we show an illustration of this setup.

In Fig. 4(a), we plot the classical analog of the logarithmic
negativity, on a logarithmic scale, as a function of d and the
coupling constant κ , with k = 0.1. From this figure we see
that, given a value of κ , the classical analog of the logarith-
mic takes a maximum value at d = 0 and 100, whereas it
takes a minimum value when d = 50 which corresponds to
the most symmetric case. This can be better appreciated in
Fig. 4(b) where we plot the classical analog of the logarithmic

(a)

(b)

(c)

FIG. 2. Plots of the classical analogs, as a function of Y2 for dif-
ferent values of α, for (a) generalized purities, (b) Bastiaans-Tsallis,
and (c) Rényi entropies.

negativity, on a logarithmic scale, as a function of d for some
values of κ . In this plot, we can also see that E cl

N decreases
from d = 0 to 50 following a near-exponential form. This
result is in agreement with the one reported in [23] for the
effect of the group separation on the logarithmic negativity.
Notice that due to the symmetry of the setup, E cl

N increases
from d = 50 to 100 following a near-exponential form. An-
other feature that we can see is that the minimum values of
E cl
N (at d = 50) increase as κ increases. From Fig. 4(c) we

can see the behavior of the classical analog of the logarithmic
negativity with respect to κ , for different values of d . Here
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1 2

50

3

49

...

51

...

50+d
51+d

52+d

99+d100+d
101+d

200

n

n

d

199

...

...

FIG. 3. Illustration of the setup used in the first case. Two disjoint
groups of n1 = 50 and n2 = 50 oscillators of a circular lattice of N =
200 oscillators. The groups are separated by d oscillators

we see that E cl
N increases as κ increases, which is an expected

result. It can be verified that these results coming from the
classical analog of the logarithmic negativity are exactly the
same as those obtained using logarithmic negativity given by
Eq. (46).

Let us now illustrate our approach on a system with two
adjacent (d = 0) groups of n1 � 100 and n2 = 100 − n1 os-
cillators in a circular lattice of N = 200 oscillators. Note that
in general the groups have different sizes (n1 �= n2) while
the set has a fixed size (m = n1 + n2 = 100) and that the
oscillators 101 to 200 are not part of the two groups. The setup
is depicted in Fig. 5. In this case, we fix k = 0.0001.

The numerical calculation yields the results depicted in
Fig. 6(a), where we show a map of the classical analog of
the logarithmic negativity as a function of κ and n1. Note that
when n1 is kept fixed the classical function E cl

N increases with
κ . This behavior can be seen more clearly in Fig. 6(b), which
also shows that the value of E cl

N for n1 = 50 (n1 = n2) is
greater than the corresponding values for n1 �= 50 (n1 �= n2).
In Fig. 6(c), we plot the classical analog of the logarithmic
negativity as a function of n1 for κ = 2, 64. We see that the
lowest value of E cl

N is obtained for n1 = 0 (n2 = 100) and
n1 = 100 (n2 = 0), while the highest value of E cl

N is obtained
for the symmetric configuration n1 = 50(= n2). This effect of
the group sizes n1 and n2 on E cl

N is analogous to the one found
in [23] for asymmetrically bisected chains, in the sense that
the value of E cl

N with n1 = n2 provides an upper bound on
the values with n1 �= n2. On the other hand, the logarithmic
negativity for two adjacent intervals of lengths n1, n2 of a finite
system of length N is given by [61,62]

EN = b1

4
ln

[
N

π

sin
(

πn1
N

)
sin

(
πn2
N

)
sin

(
π (n1+n2 )

N

)
]

+ b2, (73)

where b1 and b2 are constants. Plugging N = 200 and n2 =
100 − n1 into this expression, the logarithmic negativity re-
duces to

EN = b1

4
ln

[
100

π
sin

(
πn1

100

)]
+ b2. (74)

In Fig. 6(c), we also plot EN given by (74) as a func-
tion of n1 with b1 = 2.5834, b2 = 1.3864 (blue continuous

(a)

(b)

(c)

FIG. 4. Classical analog of the logarithmic negativity for two
groups of n1 = n2 = 50 oscillators embedded in a harmonic chain
of N = 200 oscillators with k = 0.1. d is the number of oscillators
between the two groups, as shown in Fig. 3.

line) and b1 = 2.7464, b2 = 1.3448 (orange continuous line),
which fit well to the data for κ = 4 and 64, respectively. This
corroborates the predictions made by our classical approach.
Furthermore, we verify that the numerical results obtained
in this case using the classical function E cl

N are the same as
those determined with the logarithmic negativity EN . It is
interesting to note that, in the quantum context, b1 in (74)
(or (73)) is associated with the central charge which can be
regarded as a measure of the degrees of freedom of a system.
Of course, the notion of central charge only makes sense in
our chain of oscillators (70) in the conformal limit, i.e., when
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FIG. 5. Illustration of the setup considered in the second case.
Two adjacent groups of n1 and n2 = 100 − n1 oscillators of a circular
lattice of N = 200 oscillators.

the constant k goes to zero. As we are considering k = 0.0001
this approaches the aforementioned limit. This means that the
values of b1 obtained by following our classical approach can
be regarded as an estimation of the central charge since in this
case, E cl

N leads to the same results as its quantum counterpart.
Nevertheless, understanding the role of the constant b1 in the
classical framework requires further analysis.

Finally, the third case is devoted to studying two adjacent
groups of equal sizes n1 = n2 = 10 embedded in a harmonic
chain of N oscillators. The setup is illustrated in Fig. 7, where
it is also clear that the oscillators 21 to N do not belong to the
two groups.

In Fig. 8(a), we show the numerical results for the classical
analog of the logarithmic negativity as a function of N and
κ . From this plot, we see two features. First, E cl

N increases
with κ , which also happened in the two previous cases and
is expected. Second, for a fixed value of κ , E cl

N decreases
as N increases and asymptotically approaches a finite con-
stant value for large N . This behavior is shown explicitly
in Fig. 8(b) for different values of the coupling constant κ .
Moreover, from this plot, we can see that there is a dependence
on κ of the value to which E cl

N approaches.
To gain more insight into this, in Fig. 9 we show E cl

N as a
function of κ for a fixed system size of N = 500 oscillators,
which in this case is large enough to avoid finite-size effects
[see Fig. 8(b)]. We see that, for large N , E cl

N increases as κ

increases and behaves as

E cl
N ∼ 2.458 − 2.149

κ0.641 + 0.875
. (75)

To conclude this case, we point out that the results reported
in Figs. 8 and 9 are exactly the same as those given by the
logarithmic negativity. Thus, our results in the three consid-
ered cases corroborate that, in fact, E cl

N can be regarded as a
classical analog of the logarithmic negativity for a Gaussian
state in a system of N coupled harmonic oscillators.

VI. CONCLUSIONS

In this article, we consider classical integrable sys-
tems and introduce four new classical analogs of quantum

0 20 40 60 80 100

0

10

20

30

40

50

60

n1

Ecl

0.26

0.52

0.78

1.04

1.30

1.56

1.82

2.08

2.34

2.60

(a)

(b)

(c)

FIG. 6. Classical analog of the logarithmic negativity for two
adjacent groups of sizes n1 and n2 = 100 − n1 in a harmonic chain
of N = 200 oscillators with k = 0.0001. Continuous lines in (c) are
the fit obtained with (74).

quantities that measure entanglement: Generalized purities,
Rényi entropies, Bastiaans-Tsallis entropies, and logarithmic
negativity. These classical analogs involve an identification of
all the action variables of the classical system with a real posi-
tive constant, which disappears at the end of the computation.
We show through examples that all these classical analogs
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FIG. 7. Illustration of the setup used in the third case. Two adja-
cent groups of n1 = 10 and n2 = 10 oscillators of a circular lattice of
N oscillators.

exactly reproduce the quantum results in the case of Gaussian
states. For non-Gaussian states, the results are not reproduced
essentially because the covariance matrix does not entirely
determine these states.

In the case of linearly coupled harmonic oscillators, from
our results in Sec. V, we observe that the generalized purities
are more sensitive than the generalized entropies to the change
in the coupling constant of the oscillators, which could be
of interest from an experimental point of view. On the other

(a)

(b)

FIG. 8. Classical analog of the logarithmic negativity for two
adjacent groups of identical size n1 = n2 = 10 in a harmonic chain
of N oscillators with k = 0.1.

FIG. 9. Classical analog of the logarithmic negativity for two
adjacent groups of size n1 = n2 = 10 in a fixed chain of N = 500
oscillators.

hand, for the Bastiaans-Tsallis and Rényi entropies we find
that their growth is more negligible for α > 1 with respect
to the von Neumann entropy. But in the case of α < 1, these
entropies are much more sensitive to parameter growth than
von Neumann entropy.

Regarding the chain of generalized oscillators, the results
for the generalized entropies and purities are similar to the
case of linearly coupled oscillators in the sense that we can
reproduce these results only by taking the corresponding fre-
quencies (30). Furthermore, we have two possibilities for
the system to become pure: One implying that the system
becomes decoupled, and the other that some self-coupling
parameters are imaginary. This last possibility would lead
to considering non-Hermitian systems [48,49], showing that
quantum entanglement has different characteristics for non-
Hermitian systems [50,51], and this situation already appears
in our classical context.

In the case of logarithmic negativity, we observe from the
worked-out examples that the classical analog (60) gives the
same results as the quantum case with the advantage that it
can be computed rather easily using only classical informa-
tion. In this sense, our classical analog can reproduce all the
quantum information of Gaussian states. We also corroborate
this by comparing the predictions of our approach with the
results of [61,62] for a finite system, finding an excellent
agreement between them. A remarkable result is that, for
the example in Sec. V C and considering k = 0.0001, which
approaches to the conformal limit of the linear chain, we
have obtained an estimation of the value of the central charge
from the classical setting. However, as we mentioned the
meaning of b1 in the classical setting demands a more careful
analysis.

In view of these results, our classical analogs could
be helpful as a first estimation of quantum effects, and
it would be worth extending our results to nonintegrable
systems, for instance, to compute generalized fractal dimen-
sions [65]. Furthermore, it will be interesting to generalize
these classical analogs to other kinds of states, like non-
Gaussian states, perhaps along the lines of [66], where
quantities like purity are expressed in terms of the Wigner
function and of which we have an excellent classical
analog.
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