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The performance of a quantum information processing protocol is ultimately judged by distinguishability
measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most
prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical
interpretations. In this paper we propose and review several algorithms for estimating distinguishability measures
based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels,
and strategies (the last also known in the literature as “quantum combs”). The fidelity-based algorithms offer
physical interpretations of these distinguishability measures in terms of the maximum probability with which a
single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation.
We simulate many of these algorithms by using a variational approach with parameterized quantum circuits.
We find that the simulations converge well in both the noiseless and noisy scenarios for all examples considered.
Furthermore, the noisy simulations exhibit a parameter noise resilience. Finally, we establish a strong relationship
between various quantum computational complexity classes and distance estimation problems.
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I. INTRODUCTION

In quantum information processing, it is essential to quan-
tify the performance of protocols by using distinguishability
measures. It is typically the case that there is an ideal state to
prepare or an ideal channel to simulate, but in practice we can
realize only approximations, due to experimental error. Two
commonly employed distinguishability measures for states
are the trace distance [1,2] and the fidelity [3]. The former has
an operational interpretation as the distinguishing advantage
in the optimal success probability when trying to distinguish
two states that are chosen uniformly at random. The latter
has an operational meaning as the maximum probability that
a purification of one state could pass a test for being a pu-
rification of the other (this is known as Uhlmann’s transition
probability [3]). These distinguishability measures have gen-
eralizations to quantum channels, in the form of the diamond
distance [4] and the fidelity of channels [5], as well as to
strategies (sequences of channels), in the form of the strat-
egy distance [6–8] and the fidelity of strategies [9]. Each of
these measures is generalized by the generalized divergence of
states [10], channels [11], and strategies [12]. The operational
interpretations of these latter distinguishability measures are
similar to the aforementioned ones, but the corresponding pro-
tocols involve more steps that are used in the distinguishing
process.

Both the trace distance and the fidelity can be computed
by means of semidefinite programming [13], so that they can
be estimated accurately with a run time that is polynomial in

the dimension of the states. The same is true for the diamond
distance [14], fidelity of channels [15,16], strategy distance
[6–8], and fidelity of strategies [9]. While this method of
estimating these quantities is reasonable for states, channels,
and strategies of small dimension, its computational com-
plexity actually increases exponentially with the number of
qubits involved, due to the well-known fact that Hilbert-space
dimension grows exponentially with the number of qubits.

In this paper we provide several quantum algorithms for
estimating these distinguishability measures. Some of the al-
gorithms rely on interaction with a quantum prover, in which
case they are not necessarily efficiently computable even on a
quantum computer. In fact, the computational hardness results
of [17–19] lend credence to the belief that estimating these
quantities reliably is not generally possible in polynomial time
on a quantum computer. However, as we show in our paper, by
replacing the quantum prover with a parameterized circuit (see
[20,21] for reviews of variational algorithms), it is possible
in some cases to estimate these quantities reliably. Identi-
fying precise conditions under which a quantum computer
can estimate these quantities efficiently is an interesting open
question that we leave for future research. Already in [22], it
was shown that estimating the fidelity of two quantum states
is possible in quantum polynomial time when one of the states
is low rank, and the same is the case for estimating the trace
distance under certain promises [23,24]. See also [25–27]
for variational algorithms that estimate fidelity of states
and [26,28] for variational algorithms to estimate trace dis-
tance. It is open to determine precise conditions under which
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estimation is possible for channel and strategy distinguisha-
bility measures.

We perform noiseless and noisy simulations of several of
the algorithms provided. We find that in the noiseless scenario,
all algorithms converge, for the examples considered, to the
true known value of the distinguishability measure under con-
sideration. In the noisy simulations, the algorithms converge
well, and the parameters obtained exhibit a noise resilience,
as put forward in [29]; i.e., the relevant quantity can be accu-
rately estimated by inputting the parameters learned from the
noisy simulator into the noiseless simulator.

Last, we discuss the computational complexity of various
distance estimation algorithms. We prove that several fidelity
and distance estimation algorithms are complete for well-
known quantum complexity classes (see [30,31] for reviews
of quantum computational complexity theory). In particular,
we prove that estimating the fidelity between two pure states,
a mixed state and a pure state, and estimating the Hilbert-
Schmidt distance of two mixed states are BQP-complete
problems. These aforementioned results follow by demon-
strating that there is an efficient quantum algorithm for these
tasks and by showing a reduction from an arbitrary BQP
algorithm to one for these tasks. Thus, if we believe that there
is a separation between the computational power of classical
and quantum computers, then these estimation problems are
those for which a quantum computer has an advantage. Sev-
eral BQP-complete promise problems are known, including
approximating the Jones polynomial [32], estimating quadrat-
ically signed weight enumerators [33], estimating diagonal
entries of powers of sparse matrices [34], a problem related to
matrix inversion [35], and deciding whether a pure bipartite
state is entangled [36]. See [37] for a 2012 review of BQP-
complete promise problems.

We then prove that the problem of estimating the fidelity
between a channel with arbitrary input and a pure state is a
QMA-complete promise problem. We show this by construct-
ing an efficient quantum algorithm, augmented by a single
all-powerful prover to solve this problem, and by showing
a reduction from an arbitrary QMA problem to one for this
task. Last, we demonstrate that the problem of estimating
the fidelity between a channel with separable input and a
pure state is QMA(2)-complete. QMA(2) is the class of prob-
lems that can be efficiently solved when augmented by two
all-powerful quantum provers who are guaranteed to be unen-
tangled [38,39].

In the rest of the paper, we provide details of the algorithms
and results mentioned above. In particular, our paper proceeds
as follows:

(1) The various subsections of Sec. II are about estimating
the fidelity of states, channels, and strategies. We begin in
Sec. II A by establishing two quantum algorithms for estimat-
ing the fidelity of pure states, one of which is based on a state
overlap test (Algorithm 1) and another that employs Bell state
preparation and measurement along with a controlled unitary
(Algorithm 2).

(2) In Sec. II B, we generalize Algorithm 1 to estimate the
fidelity of a pure state and a mixed state (see Algorithm 3).

(3) In Sec. II C, we establish several quantum algorithms
for estimating the fidelity of two arbitrary states. Algorithm 4
generalizes Algorithm 2. Algorithm 5 generalizes the well-

known swap test to the case of arbitrary states. Algorithm 6
is a variational algorithm that employs Bell measurements as
a generalization of the approach in [40,41] for pure states.
Algorithm 7 is another variational algorithm that attempts to
simulate a fidelity-achieving measurement, such as the Fuchs-
Caves measurement [42], in order to estimate the fidelity.

(4) In Sec. II D, we generalize Algorithm 4 to a quantum
algorithm for estimating the fidelity of quantum channels
(see Algorithm 8). This algorithm involves interaction with
competing quantum provers, and interestingly, its acceptance
probability is directly related to the fidelity of channels, thus
giving the latter an operational meaning. Later we replace the
provers with parameterized circuits and arrive at a method for
estimating the fidelity of channels.

(5) In Sec. II E, we generalize the aforementioned ap-
proach in order to estimate the fidelity of strategies (a strategy
is a sequence of quantum channels and thus generalizes the
notion of a quantum channel).

(6) In Sec. II F, we briefly discuss alternative methods for
estimating the fidelity of channels and strategies, based on the
approaches from Sec. II C for estimating the fidelity of states.

(7) Section II G introduces a method for estimating the
maximum output fidelity of two quantum channels, which
has an application to generating a fixed point of a quantum
channel (as discussed later in Sec. VI).

(8) In Secs. II H and II I we generalize the whole devel-
opment above to the case of testing similarity of arbitrary
ensembles of states, channels, or strategies. We find that
the acceptance probability of the corresponding algorithms
is related to the secrecy measure from [43], which can be
understood as a measure of similarity of the states in an
ensemble. We then establish generalizations of this measure
for an ensemble of channels and an ensemble of strategies and
remark how this has applications in private quantum reading
[44,45].

(9) We then move on in Sec. III to estimating trace-
distance-based measures, for states, channels, and strategies.
We stress that these various algorithms were already known,
and our goal here is to investigate their performance us-
ing a variational approach. In Secs. III A, III B, and III C,
Algorithms 14, 15, and 16 provide methods for estimating the
trace distance of states, the diamond distance of channels, and
the strategy distance of strategies, respectively.

(10) In Sec. III D, we provide two different but related
algorithms for estimating the minimum trace distance be-
tween two quantum channels. The related approaches employ
competing provers to do so.

(11) In Sec. III E, we generalize the whole development
for trace-distance-based algorithms to the case of multiple
states, channels, and strategies.

(12) In Sec. IV, we discuss the results of numeri-
cal simulations of Algorithms 4–8, Algorithms 14–15, and
Algorithm 19. We use both noiseless and noisy quantum sim-
ulators and a variational approach with parameterized circuits.

(13) In Sec. V, we prove that the problems of evaluat-
ing the fidelity between two pure states, a pure state and a
mixed state, and evaluating the Hilbert-Schmidt distance of
two mixed states are BQP-complete (Theorems 12, 13, and
14). We then show that the problem of evaluating the fidelity
between a channel with arbitrary input and a pure state is
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TABLE I. List of fidelity problems and algorithms addressed in this work. Approach used for each algorithm and comparison within a type
of fidelity problem is also presented.

Problem Algorithms Approach Comparison

F (ψ, φ) Algorithm 1 State overlap Algorithm 1 is simpler than Algorithm 2. Algorithm 2 generalizes
in a straightforward manner to testing fidelity of mixed states.

Algorithm 2 Bell-state overlap
F (ψ, ρ ) Algorithm 3 State overlap –

F (ρ0, ρ1) Algorithm 4 Bell-state overlap Algorithm 4 is a generalization of Algorithm 2 for mixed-state
Algorithm 5 Generalized SWAP test inputs. Algorithm 5 uses a controlled SWAP gate to generalize
Algorithm 6 Bell measurement the SWAP test. It requires more qubits, but no controlled
Algorithm 7 Fuchs-Caves measurement unitaries to generate the states being tested.

Algorithm 6 uses a variational unitary on the
reference system of one state only. Algorithms 4, 5, and 6
are based on learning the Uhlmann unitary and provide
a lower bound. Algorithm 7 is based on learning the
optimal Fuchs-Caves measurement and provides an upper bound.

F (N0,N1) Algorithm 8 Bell-state overlap –
F (N 0,(n),N 1,(n) ) Algorithm 9 Bell-state overlap –
Fmax(N0,N1) Algorithm 10 Bell-state overlap –
(psim({p(x), ρx}x∈X ) Algorithm 11 Bell-state overlap Generalization of Algorithm 4 to ensemble of states.
(psim({p(x),N x}x∈X ) Algorithm 12 Bell-state overlap Generalization of Algorithm 8 to ensemble of channels.
(psim,max({p(x),N x}x∈X ) Algorithm 13 Bell-state overlap Generalization of Algorithm 10 to ensemble of channels.

QMA-complete (Theorem 16). Finally, we demonstrate that
the problem of evaluating the fidelity between a channel with
separable input and a pure state is QMA(2)-complete (Theo-
rem 17).

(14) In Sec. VI, we discuss how Algorithm 10 can gener-
ate a fixed-point state or an approximate fixed-point state of a
quantum channel.

We conclude in Sec. VII with a summary and some open
questions.

II. ESTIMATING FIDELITY

In this section we propose algorithms for several different
fidelity problems. A summary of all algorithms presented in
this section is available in Table I.

A. Estimating fidelity of pure states

We begin by outlining two simple quantum algorithms
for estimating fidelity when both states are pure. A standard
approach for doing so is to use the swap test [46,47] or Bell
measurements [40,41]. The approaches that we discuss below
are different from these approaches. The first algorithm is a
special case of that proposed in [17] (see also [26]), as well
as a special case of Algorithm 3 presented later. The second
algorithm involves a Bell-state preparation and projection, as
well as controlled interactions, and it is a special case of
Algorithm 4 presented later. We list both of these algorithms
here for completeness and because later algorithms build upon
them.

Suppose that the goal is to estimate the fidelity of pure
states ψ0 and ψ1, and we are given access to quantum cir-
cuits U 0 and U 1 that prepare these states when acting on the
all-zeros state. We now detail a first quantum algorithm for
estimating the fidelity

F (ψ0, ψ1) := |〈ψ1|ψ0〉|2. (1)

Algorithm 1. The algorithm proceeds as follows:
(1) Act with the circuit U 0 on the all-zeros state |0〉.
(2) Act with U 1† and perform a measurement of all qubits

in the computational basis.
(3) Accept if and only if the all-zeros outcome is observed.
Algorithm 1 is depicted in Fig. 1. The acceptance prob-

ability of Algorithm 1 is precisely equal to |〈0|U 1†U 0|0〉|2,
which by definition is equal to the fidelity in (1). In fact,
Algorithm 1 is a quantum computational implementation of
the well-known operational interpretation of the fidelity as the
probability that the state ψ0 passes a test for being the state
ψ1.

Our next quantum algorithm for estimating fidelity makes
use of a Bell-state preparation and projection. Its acceptance
probability is equal to

1

2
[1 +

√
F (ψ0, ψ1)] (2)

and thus gives a way to estimate the fidelity through repetition.
It is a variational algorithm that optimizes over a phase φ and
makes use of the fact that

max
φ∈[0,2π]

Re[eiφ〈ψ0|ψ1〉] = |〈ψ0|ψ1〉|. (3)

This can be seen from the fact that the optimal phase φ picked
is such that

eiφ = 〈ψ1|ψ0〉
|〈ψ1|ψ0〉| . (4)

|0〉 U U †

FIG. 1. Algorithm 1 for estimating the fidelity of pure states
generated by quantum circuits U 0 and U 1. In all figures we use the
convention that a bold line represents a classical register.
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|0〉

|0〉

H

U|0〉

HU(ϕ)

FIG. 2. Algorithm 2 for estimating the fidelity of pure states
generated by quantum circuits U 0 and U 1. The third gate with U i

in the box is defined in (6).

Let S denote the quantum system in which the states ψ0

and ψ1 are prepared.
Algorithm 2. The algorithm proceeds as follows:
(1) Prepare a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (5)

on registers T ′ and T and prepare system S in the all-zeros
state |0〉S .

(2) Using the circuits U 0
S and U 1

S , perform the following
controlled unitary: ∑

i∈{0,1}
|i〉〈i|T ⊗ U i

S. (6)

(3) Act with the following unitary on system T ′:[
1 0
0 eiφ

]
. (7)

(4) Perform a Bell measurement

{�T ′T , IT ′T − �T ′T } (8)

on systems T ′ and T . Accept if and only if the outcome �T ′T
occurs.

Figure 2 depicts Algorithm 2. After Step 3 of Algorithm 2,
the overall state is as follows:

1√
2

∑
j∈{0,1}

| j j〉T ′T ei jφ|ψ j〉S, (9)

and the acceptance probability is equal to∥∥∥∥∥∥〈�|T ′T

⎛
⎝ 1√

2

∑
j∈{0,1}

| j j〉T ′T ei jφ|ψ j〉S

⎞
⎠
∥∥∥∥∥∥

2

2

= 1

4

∥∥∥∥∥∥
∑

j,k∈{0,1}
〈kk| j j〉T ′T ei jφ|ψ j〉S

∥∥∥∥∥∥
2

2

(10)

= 1

4

∥∥∥∥∥∥
∑

j∈{0,1}
ei jφ |ψ j〉S

∥∥∥∥∥∥
2

2

(11)

= 1

4
(2 + 2 Re[eiφ〈ψ0|ψ1〉]). (12)

By choosing the optimal phase φ in (3), we find that the
acceptance probability is equal to the expression in (2). Note
that, through repetition, we can execute Algorithm 2 in a
variational way to learn the optimal value of φ.

|0〉
U

U †

|0〉
R

S

FIG. 3. Algorithm 3 for estimating the fidelity of a mixed state
generated by a quantum circuit U 0 and a pure state generated by U 1.

Later, in Sec. V, we prove that a promise version of the
problem of estimating the fidelity between two pure states is
a BQP-complete promise problem.

B. Estimating fidelity when one state is pure
and the other is mixed

In this section we outline a simple quantum algorithm that
estimates the fidelity between a mixed state ρS and a pure state
ψS . It is a straightforward generalization of Algorithm 1.

Let U ρ
RS be a quantum circuit that generates a purification

ϕRS of ρS when acting on the all-zeros state of systems RS,
and let U ψ

S be a circuit that generates ψS when acting on the
all-zeros state.

Algorithm 3. The algorithm proceeds as follows:
(1) Act on the all-zeros state |0〉RS with the circuit U ρ

RS .
(2) Act with U ψ†

S on system S and perform a measurement
of all qubits of system S in the computational basis.

(3) Accept if and only if the all-zeros outcome is observed.
Figure 3 depicts Algorithm 3. The acceptance probability

of Algorithm 3 is equal to the fidelity F (ψ, ρ) = 〈ψ |ρ|ψ〉,
which follows because∥∥〈0|SU ψ†

S U ρ
RS|0〉RS

∥∥2

2 = Tr[(IR ⊗ |ψ〉〈ψ |S )|ϕ〉〈ϕ|RS] (13)

= Tr[|ψ〉〈ψ |SρS] (14)

= 〈ψ |ρ|ψ〉. (15)

We note here that it is not strictly necessary to have ac-
cess to the reference system R of |ϕ〉RS in order to execute
Algorithm 3. It is necessary only to have some method of
generating the reduced state ρS .

Later, in Sec. V, we prove that a promise version of the
problem of estimating the fidelity of a pure state and a mixed
state is a BQP-complete promise problem.

C. Estimating fidelity of arbitrary states

In this section we outline several quantum algorithms for
estimating the fidelity of arbitrary states on a quantum com-
puter, some of which involve an interaction with a quantum
prover (more precisely, the algorithms involving interaction
with a prover are QSZK algorithms, where QSZK stands
for “quantum statistical zero knowledge” [17,19]). The al-
gorithms are different from the algorithm proposed in [17]
(as also considered in [26]), which is based on Uhlmann’s
formula for fidelity [3].

Suppose that the goal is to estimate the fidelity of states ρ0
S

and ρ1
S , defined as [3]

F
(
ρ0

S , ρ1
S

)
:= ∥∥√ρ0

S

√
ρ1

S

∥∥2

1, (16)
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where the trace norm of an operator A is defined as ‖A‖1 :=
Tr[

√
A†A]. Suppose also that we are given access to quantum

circuits U 0
RS and U 1

RS that prepare purifications ψ0
RS and ψ1

RS
of ρ0

S and ρ1
S , respectively, when acting on the all-zeros state

|0〉RS . Let us recall Uhlmann’s formula for fidelity [3]:

F
(
ρ0

S , ρ1
S

) = max
|ψ0〉RS ,|ψ1〉RS

|〈ψ1|ψ0〉RS|2, (17)

where the optimization is over all purifications ψ0
RS and ψ1

RS
of ρ0

S and ρ1
S , respectively. We note here that the fidelity can

be computed by means of a semidefinite program [13]. Also,
the promise version of this problem, involving descriptions
of quantum circuits as input, is a QSZK-complete promise
problem [17], where QSZK stands for quantum statistical zero
knowledge (see [17,19] for details of this complexity class).
Thus, it is unlikely that anyone will find a general-purpose
efficient quantum algorithm for estimating fidelity (i.e., one
that does not involve interaction with an all-powerful prover).

We note that the algorithms in this subsection need the
purification of the state of interest to be provided. In scenarios
where the purification of a state is not available, there exist
variational algorithms to learn the purification [26,48].

1. Controlled unitary and Bell state overlap

We now detail a QSZK algorithm for estimating the fol-
lowing quantity:

1

2

[
1 +

√
F
(
ρ0

S , ρ1
S

)]
. (18)

It is a QSZK algorithm because, in the case that the fidelity√
F (ρ0

S , ρ1
S ) ≈ 1, the verifier does not learn anything by inter-

acting with the prover (i.e., the verifier learns only that the
algorithm accepts with high probability). This algorithm is
somewhat similar to the quantum algorithm proposed in [49],
which was used for estimating a quantity known as fidelity
of recovery [50]. It is also similar to the algorithm described
in Fig. 3 of [51]. It can be understood as a generalization of
Algorithm 2 from pure states to arbitrary states.

Algorithm 4. The algorithm proceeds as follows:
(1) The verifier prepares a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (19)

on registers T ′ and T and prepares systems RS in the all-zeros
state |0〉RS .

(2) Using the circuits U 0
RS and U 1

RS , the verifier performs
the following controlled unitary:∑

i∈{0,1}
|i〉〈i|T ⊗ U i

RS. (20)

(3) The verifier transmits systems T ′ and R to the prover.
(4) The prover prepares a system F in the |0〉F state and

acts on systems T ′, R, and F with a unitary PT ′RF→T ′′F ′ to
produce the output systems T ′′ and F ′, where T ′′ is a qubit
system.

(5) The prover sends system T ′′ to the verifier, who then
performs a Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (21)

|0〉

|0〉

H

U|0〉

H

R

S|0〉

P
|0〉

T

T’

F
F’

T’’

FIG. 4. Algorithm 4 for estimating the fidelity of mixed states
generated by quantum circuits U 0

RS and U 1
RS .

on systems T ′′ and T . The verifier accepts if and only if the
outcome �T ′′T occurs.

Figure 4 depicts Algorithm 4.
Theorem 1. The acceptance probability of Algorithm 4 is

equal to

1

2

[
1 +

√
F
(
ρ0

S , ρ1
S

)]
. (22)

Proof. The proof can be found in Appendix A 1. �

2. Generalized swap test

We now detail another quantum algorithm for estimating
the fidelity of arbitrary states, which is a generalization of
the well-known swap test from [46,47]. We note that this
algorithm was used in [51, Fig. 3] as part of their proof that
QIP = QIP(3). A key difference between Algorithm 5 and [51,
Fig. 3] is that Algorithm 5 accepts if and only if both qubits at
the end are measured to be in the all-zeros state, whereas it is
written in [51, Fig. 3] that their algorithm accepts if and only
if the first qubit is measured to be in the zero state.

Algorithm 5. The algorithm proceeds as follows:
(1) The verifier prepares a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (23)

on registers T ′ and T and prepares systems R1S1R2S2 in the
all-zeros state |0〉R1S1R2S2 .

(2) Using the circuits U 0
RS and U 1

RS , the verifier acts
on R1S1R2S2 to prepare the two pure states |ψρ0〉R1S1 and
|ψρ1〉R2S2 .

(3) The verifier performs a controlled SWAP from qubit T
to systems S1 and S2, which applies the identity if the control
qubit is |0〉 and swaps S1 with S2 if the control qubit is |1〉.

(4) The verifier transmits systems T ′, R1, and R2 to the
prover.

(5) The prover prepares a system F in the |0〉F state and
acts on systems T ′, R1, R2, and F with a unitary PT ′R1R2F→T ′′F ′

to produce the output systems T ′′ and F ′, where T ′′ is a qubit
system.

(6) The prover sends system T ′′ to the verifier, who then
performs a Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (24)

on systems T ′′ and T . The verifier accepts if and only if the
outcome �T ′′T occurs.

Figure 5 depicts Algorithm 5.
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|0〉

|0〉

H

U|0〉

H

R

S|0〉

|0〉

T

T’

F

F’

T’’

U|0〉 R

S|0〉

F

T
P

R

S

R

S

FIG. 5. Algorithm 5 for estimating the fidelity of mixed states
generated by quantum circuits U 0

RS and U 1
RS . Algorithm 5 represents a

generalization of the well-known swap test for estimating the fidelity
of pure states.

Theorem 2. The acceptance probability of Algorithm 5 is
equal to

1
2

[
1 + F

(
ρ0

S , ρ1
S

)]
. (25)

Proof. The proof can be found in Appendix A 2. �

3. Variational algorithm with Bell measurements

A third method for estimating the fidelity of arbitrary mul-
tiqubit states is a variational algorithm that is based on a
generalization of the approach outlined in [40,41]. The ap-
proach from [40,41] employs Bell measurements to estimate
the expectation of the SWAP observable, which in turn allows
for estimating the fidelity of multiqubit pure states. See also
[52].

We begin in this section by recalling the basic idea from
[40,41] for estimating fidelity of pure states. Let ψS and ϕS be
m-qubit pure states of a system S (so that S = S1 · · · Sm, where
each Si is a qubit system, for i ∈ {1, . . . , m}). Let FSS̃ denote
the unitary swap operator that swaps systems S and S̃, and
recall that

Tr[FSS̃ (ψS ⊗ ϕS̃ )] = |〈ψ |ϕ〉|2 = F (ψS, ϕS ). (26)

Consider that

FSS̃ = FS1S̃1
⊗ FS2 S̃2

⊗ · · · ⊗ FSmS̃m
. (27)

Now observe that

FSiS̃i
=

∑
x,z∈{0,1}

(−1)x·z�x,z
SiS̃i

, (28)

where the Bell states are defined as

|�0,0〉 := 1√
2

(|00〉 + |11〉), (29)

|�0,1〉 := 1√
2

(|00〉 − |11〉), (30)

|�1,0〉 := 1√
2

(|01〉 + |10〉), (31)

|�1,1〉 := 1√
2

(|01〉 − |10〉). (32)

We then conclude that

F (ψS, ϕS ) = Tr

[(
m⊗

i=1

FSiS̃i

)
(ψS ⊗ ϕS̃ )

]
(33)

= Tr

⎡
⎣
⎛
⎝ m⊗

i=1

∑
xi,zi∈{0,1}

(−1)xi ·zi�
xi,zi

Si S̃i

⎞
⎠(ψS ⊗ ϕS̃ )

⎤
⎦
(34)

=
∑

x1,z1,...,
xm,zm∈{0,1}

(−1)
−→x ·−→z Tr

[(
m⊗

i=1

�
xi,zi

Si S̃i

)
(ψS ⊗ ϕS̃ )

]
,

(35)

where

−→x · −→z ≡
m∑

i=1

xi · zi. (36)

Thus, the approach of [40,41] is to estimate F (ψS, ϕS ) by
repeatedly performing Bell measurements on corresponding
qubits of ψS and ϕS̃ followed by classical postprocessing
of the outcomes. In particular, for j ∈ {1, . . . , n}, set Yj =
(−1)

∑m
i=1 xi·zi , where x1, z1, . . . , xm, zm ∈ {0, 1} are the out-

comes of the Bell measurements on the jth iteration. Then
set Y n := 1

n

∑n
j=1 Yj . By the Hoeffding inequality [53], for

accuracy ε ∈ (0, 1) and failure probability δ ∈ (0, 1), we are
guaranteed that

Pr[
∣∣Y n − F (ψS, ϕS )

∣∣ � ε] � 1 − δ, (37)

as long as n � 2
ε2 ln( 2

δ
). Thus, the algorithm is polynomial

in the inverse accuracy and logarithmic in the inverse failure
probability.

We now form a simple generalization of this algorithm to
estimate the fidelity of arbitrary states ρ0

S and ρ1
S , in which we

perform a variational optimization over unitaries that act on
the reference system of one of the states. For i ∈ {0, 1}, let
U i

RS be an m-qubit unitary that acts on |0〉RS to generate the
m-qubit state |ψρi〉RS; i.e.,

|ψρi〉RS = U i
RS|0〉RS, (38)

such that

ρ i
S = TrR[|ψρi〉〈ψρi |RS]. (39)

Algorithm 6. Set the error tolerance ε > 0. Set η, δ ∈
(0, 1). The algorithm proceeds as follows:

(1) Prepare systems R1S1R2S2 in the all-zeros state
|0〉R1S1R2S2 .

(2) Act with the circuits U 0
RS and U 1

RS on systems R1S1R2S2

to prepare the two pure states |ψρ0〉R1S1 and |ψρ1〉R2S2 .
(3) Perform a unitary VR1 (θ ) on system R1.
(4) For j ∈ {1, . . . , n}, where n � 2

η2 ln ( 2
δ

), for i ∈
{1, . . . , m}, perform a Bell measurement on qubit i of system
R1 and qubit i of system R2, with outcomes xi

R and zi
R, and

perform a Bell measurement on qubit i of system S1 and
qubit i of system S2, with outcomes xi

S and zi
S . Set Yj (θ ) =

(−1)
∑m

i=1 xi
R·zi

R+xi
S ·zi

S .
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V(θ)
U|0〉 R

S|0〉

U|0〉 R
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R
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R

S

Bell

Bell

FIG. 6. Algorithm 6 for estimating the fidelity of quantum states
generated by quantum circuits U 0

RS and U 1
RS .

(5) Set

Y n(θ ) := 1

n

n∑
j=1

Yj (θ ), (40)

as an estimate of

Fθ ≡ |〈ψρ1 |RSVR(θ ) ⊗ IS|ψρ0〉RS|2, (41)

so that

Pr[|Y n(θ ) − Fθ | � η] � 1 − δ. (42)

(6) Perform a maximization of the reward function Y n(θ )
and update the parameters in θ .

(7) Repeat 1–6 until the reward function Y n(θ ) con-
verges with tolerance ε, so that |�Y n(θ )| � ε, or until some
maximum number of iterations is reached. [Here �Y n(θ ) rep-
resents the difference in Y n(θ ) from the previous and current
iteration.]

(8) Output the final Y n(θ ) as an estimate of the fidelity
F (ρ0

S , ρ1
S ).

Figure 6 depicts Algorithm 6. Since this is a variational
algorithm, it is not guaranteed to converge or have a specified
runtime, other than running for a maximum number of itera-
tions. However, it is clearly a generalization of the algorithm
from [40,41], in which we estimate the fidelity∣∣〈ψρ1 ∣∣

RSVR(θ ) ⊗ IS

∣∣ψρ0〉RS

∣∣2 = F
(
ψ

ρ1

RS,VR(θ )ψρ0

RSVR(θ )†)

(43)

at each iteration of the algorithm. If we could actually opti-
mize over all possible unitaries acting on the reference system
R, then the algorithm would indeed estimate the fidelity, as a
consequence of Uhlmann’s theorem [3]:

F
(
ρ0

S , ρ1
S

) = sup
VR

F
(
ψ

ρ1

RS,VRψ
ρ0

RSV †
R

)
. (44)

However, by optimizing over only a subset of all unitaries,
Algorithm 6 estimates a lower bound on the fidelity F (ρ0

S , ρ1
S ).

4. Variational algorithm for Fuchs-Caves measurement

Algorithm 4 from Sec. II C 1 is based on Uhlmann’s for-
mula for fidelity in (17), and the same is true for Algorithm 5
from Sec. II C 2 and Algorithm 6 from Sec. II C 3. An alternate
optimization formula for the fidelity of states ρ0

S and ρ1
S is as

follows [42]:

F
(
ρ0

S , ρ1
S

) =
[

min{
x
S}x

∑
x

√
Tr
[

x

Sρ
0
S

]
Tr
[

x

Sρ
1
S

]]2

, (45)

where the minimization is over every positive operator-valued
measure {
x

S}x (i.e., the operators satisfy 
x
S � 0 for all x and

∑
x 
x

S = IS). A measurement achieving the optimal value of
the fidelity is known as the Fuchs-Caves measurement [42]
and has the form {|ϕx〉〈ϕx|}x, where |ϕx〉 is an eigenvector,
with eigenvalue λx, of the following operator geometric mean
of ρ0 and (ρ1)−1 (also called the “quantum likelihood ratio”
operator in [54]):

M := (
ρ1
)−1/2

√
(ρ1)1/2

ρ0(ρ1)1/2(ρ1)−1/2, (46)

so that

M =
∑

x

λx|ϕx〉〈ϕx|. (47)

That is, it is known from [42,54] that

F
(
ρ0

S , ρ1
S

) =
[∑

x

√
Tr
[|ϕx〉〈ϕx|ρ0

S

]
Tr
[|ϕx〉〈ϕx|ρ1

S

]]2

. (48)

Thus, we can build a variational algorithm around this
formulation of fidelity, with the idea being to optimize over
parameterized measurements in an attempt to optimize the
fidelity, while at the same time learning the Fuchs-Caves
measurement (or a different fidelity-achieving measurement).
In contrast to the other variational algorithms presented in
previous sections, this alternate approach leads to an upper
bound on the fidelity.

Before detailing the algorithm, recall the Naimark exten-
sion theorem [55] (see also [56–58]), which states that a
general POVM {
x

S}x with m outcomes, acting on a quantum
state ρ of a d-dimensional system S, can be realized as a
unitary interaction USP of the system S with an m-dimensional
probe system P, followed by a projective measurement
{|x〉〈x|P}x acting on the probe system, i.e.,

Tr
[

x

SρS
] = Tr[(IS ⊗ |x〉〈x|P )USP(ρS ⊗ |0〉〈0|P )U †

SP]. (49)

It suffices to choose USP so that

USP|ψ〉S|0〉P =
∑

x

√

x

S|ψ〉S|x〉P. (50)

Thus, we can express the optimization problem in (45) as
follows:
√

F
(
ρ0

S , ρ1
S

)
= min

USP

∑
x

√
Tr
[
(IS ⊗ |x〉〈x|P )USP

(
ρ0

S ⊗ |0〉〈0|P
)
U †

SP

]
× Tr

[
(IS ⊗ |x〉〈x|P )USP

(
ρ1

S ⊗ |0〉〈0|P
)
U †

SP

].
(51)

By replacing the optimization in (51) over all unitaries with
an optimization over parameterized ones, we arrive at a varia-
tional algorithm for estimating fidelity:

Algorithm 7. Set n ∈ N and the error tolerance ε > 0. The
algorithm proceeds as follows:

(1) For j ∈ {1, . . . , n}, prepare system S1 in the state ρ0
S1

and system S2 in the state ρ1
S2

, and prepare systems P1 and P2

in the all-zeros state |0〉P1 ⊗ |0〉P2 .
(2) Act with the circuit US1P1 (θ ) on systems S1P1 and act

with the same circuit US2P2 (θ ) on systems S2P2.
(3) Measure system P1 in the computational basis and

record the outcome as y j , and measure system P2 in the com-
putational basis and record the outcome as z j .
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FIG. 7. Algorithm 7 for estimating the fidelity of quantum states
ρ0

S and ρ1
S . The boxes enclosing ρ0 and ρ1 indicate that these are

some mechanisms by which these states are prepared.

(4) Using the measurement data {y j}n
j=1 and {z j}n

j=1, cal-
culate the empirical distributions p̃θ (x) and q̃θ (x), where
p̃θ (x) is the empirical distribution resulting from

pθ (x) := Tr
[
(IS ⊗ |x〉〈x|P )USP(θ )

(
ρ0

S ⊗ |0〉〈0|P
)
U †

SP(θ )
]
,

(52)

and q̃θ (x) is the empirical distribution resulting from

qθ (x) := Tr
[
(IS ⊗ |x〉〈x|P )USP(θ )

(
ρ1

S ⊗ |0〉〈0|P
)
U †

SP(θ )
]
.

(53)

(5) Output

F ( p̃θ , q̃θ ) :=
[∑

x

√
p̃θ (x)q̃θ (x)

]2

(54)

as an estimate of F (pθ , qθ ).
(6) Perform a minimization of the cost function F ( p̃θ , q̃θ )

and update the parameters in θ .
(7) Repeat 1–6 until the cost function F ( p̃θ , q̃θ ) converges

with tolerance ε, so that |�F ( p̃θ , q̃θ )| � ε, or until some
maximum number of iterations is reached. [Here �F ( p̃θ , q̃θ )
represents the difference in F ( p̃θ , q̃θ ) from the previous and
current iteration.]

(8) Output the final value of F ( p̃θ , q̃θ ) as an estimate of
the fidelity F (ρ0

S , ρ1
S ).

Figure 7 depicts Algorithm 7. As before, since this is
a variational algorithm, it is not guaranteed to converge or
have a specified runtime, other than running for a maximum
number of iterations. One advantage of this algorithm is that
it does not require purifications of the states ρ0

S and ρ1
S . All

it requires is a circuit or method to prepare these states, and
then it performs measurements on these states, in an attempt to
learn an optimal measurement with respect to the cost function
F ( p̃θ , q̃θ ).

In Algorithm 7, we did not specify how large n should be
in order to get a desired accuracy of the estimator in (54)
for the classical fidelity F (pθ , qθ ). This estimator is called
a “plug-in estimator” in the literature on this topic, and it is
a biased estimator, which, however, converges to F (pθ , qθ )
in the asymptotic limit n → ∞. As a consequence of the
estimator in (54) being biased, the Hoeffding inequality does
not readily apply in this case. As far as we can tell, it is an open
question to determine the rate of convergence of this estimator
to F (pθ , qθ ). Related work on this topic has been considered
in [59,60].

D. Estimating fidelity of channels

In this section we outline a method for estimating the
fidelity of channels on a quantum computer, by means of
an interaction with competing quantum provers [61–65]. The
goal of one prover is to maximize the acceptance probabil-
ity, while the goal of the other prover is to minimize the
acceptance probability. We refer to the first prover as the max-
prover and the second as the min-prover. The specific setting
that we deal with is called a double quantum interactive proof
(DQIP) [65], due to the fact that the min-prover goes first and
then the max-prover goes last. The class of promise problems
that can be solved in this model is equivalent to PSPACE
[65], which is the class of problems that can be decided on
a classical computer with polynomial memory.

Let us recall that the fidelity of channels N 0
A→B and N 1

A→B
is defined as follows [5]:

F
(
N 0

A→B,N 1
A→B

)
:= inf

ρRA

F
(
N 0

A→B(ρRA),N 1
A→B(ρRA)

)
, (55)

where the infimum is over every state ρRA, with the reference
system R arbitrarily large. It is known that the infimum is
achieved by a pure state ψRA with the reference system R
isomorphic to the channel input system A, so that

F
(
N 0

A→B,N 1
A→B

)
:= min

ψRA

F
(
N 0

A→B(ψRA),N 1
A→B(ψRA)

)
.

(56)
It is also known that it is possible to calculate the fidelity of
channels by means of a semidefinite program [15,16], which
provides a way to verify the output of our proposed algorithm
for sufficiently small examples.

Suppose that the goal is to estimate the fidelity of channels
N 0

A→B and N 1
A→B, and we are given access to quantum circuits

U 0
AE ′→BE and U 1

AE ′→BE that realize isometric extensions of the
channels N 0

A→B and N 1
A→B, respectively, in the sense that

N i
A→B(ωA) = TrE

[
U i

AE ′→BE (ωA ⊗ |0〉〈0|E ′ )(U i
AE ′→BE )†

]
,

(57)

for i ∈ {0, 1}.
We now provide a DQIP algorithm for estimating the fol-

lowing quantity:

1

2

[
1 +

√
F
(
N 0

A→B,N 1
A→B

)]
, (58)

which is based in part on Algorithm 4 but instead features an
optimization over input states of the min-prover.

Algorithm 8. The algorithm proceeds as follows:
(1) The verifier prepares a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (59)

on registers T ′ and T and prepares system E ′ in the all-zeros
state |0〉E ′ .

(2) The min-prover transmits the system A of the state
|ψ〉RA to the verifier.

(3) Using the circuits U 0
AE ′→BE and U 1

AE ′→BE , the verifier
performs the following controlled unitary:∑

i∈{0,1}
|i〉〈i|T ⊗ U i

AE ′→BE . (60)
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FIG. 8. Algorithm 8 for estimating the fidelity of quantum chan-
nels generated by quantum circuits U 0

AE ′→BE and U 1
AE ′→BE . The

min-prover prepares the state |ψ〉RA, and the max-prover acts with
the unitary PT ′EF→T ′′F ′ .

(4) The verifier transmits systems T ′ and E to the max-
prover.

(5) The max-prover prepares a system F in the |0〉F state
and acts on systems T ′, E , and F with a unitary PT ′EF→T ′′F ′

to produce the output systems T ′′ and F ′, where T ′′ is a qubit
system.

(6) The max-prover sends system T ′′ to the verifier, who
then performs a Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (61)

on systems T ′′ and T . The verifier accepts if and only if the
outcome �T ′′T occurs.

Figure 8 depicts Algorithm 8.
Theorem 3. The acceptance probability of Algorithm 8 is

equal to

1

2

[
1 +

√
F
(
N 0

A→B,N 1
A→B

)]
. (62)

Proof. The proof can be found in Appendix A 3. �
Proposition 1. An alternative expression for the accep-

tance probability of Algorithm 8 is

min
ρRA

max
PT ′E→T ′′

Tr{�T ′′TPT ′E→T ′′ [MA→T ′T BE (ρRA)]}

= max
PT ′E→T ′′

min
ρRA

Tr{�T ′′TPT ′E→T ′′ [MA→T ′T BE (ρRA)]},
(63)

where ρRA is a quantum state, PT ′E→T ′′ is a quantum channel,
and MA→T ′T BE is a quantum channel defined as

MA→T ′T BE (ρRA)

:= 1

2

∑
i, j∈{0,1}

|ii〉〈 j j|T ′T ⊗ U i(ρRA|0〉〈0|E ′ )(U j )†, (64)

with U i ≡ U i
AE ′→BE .

Proof. In Step 2 of Algorithm 8, the min-prover could
send a mixed quantum state ρRA instead of sending a pure
state. The acceptance probability does not change under this
modification due to the argument around (55)–(56). Further-
more, due to the Stinespring dilation theorem [66], the actions
of tensoring in |0〉F , performing the unitary PT ′EF→T ′′F ′ , and
tracing over system F ′ are equivalent to performing a quantum
channel PT ′E→T ′′ . Under these observations, consider that the

acceptance probability is then equal to

Tr{�T ′′TPT ′E→T ′′ [MA→T ′T BE (ρRA)]}, (65)

where the quantum channel MA→T ′T BE is defined in (64).
Performing the optimizations minρRA maxPT ′E→T ′′ then leads
to the first expression in (63). Considering that the set of
channels is convex and the set of states is convex, and the
objective function in (65) is linear in ρRA for fixed PT ′E→T ′′

and linear in PT ′E→T ′′ for fixed ρRA, the minimax theorem [67]
applies, and we can exchange the optimizations. �

Proposition 1 indicates that if the provers involved can
optimize over all possible states and channels, then indeed
the order of optimization can be exchanged. However, in a
variational algorithm, the optimization is generally dependent
upon the order in which it is conducted because we are not
optimizing over all possible states and channels, but instead
optimizing over parameterized circuits. In this latter case, the
state space is no longer convex and the objective function
no longer linear in these parameters. However, we can still
attempt the following “see-saw” strategy in a variational al-
gorithm: first, minimize the objective function with respect
to the input state ψRA while keeping the unitary PT ′EF→T ′′F ′

fixed. Then maximize the objective function with respect to
the unitary PT ′EF→T ′′F ′ while keeping the state ψRA fixed.
Then repeat this process some number of times. We consider
this approach in Sec. IV E.

E. Estimating fidelity of strategies

In this section we extend Algorithm 8 beyond estimating
the fidelity of channels to estimating the fidelity of general
strategies [9], by conducting several rounds of interaction with
the min-prover followed by a single interaction with the max-
prover at the end.

We now develop this idea in detail. Let us first recall
the definition of a quantum strategy from [6–9,63,64]. An
n-turn quantum strategy N (n), with n � 1, input systems
A1, . . . , An, and output systems B1, . . . , Bn consists of the
following:

(1) Memory systems M1, ..., Mn−1, and
(2) Quantum channels N 1

A1→M1B1
, N 2

M1A2→M2B2
, . . .,

N n−1
Mn−2An−1→Mn−1Bn−1

, and N n
Mn−1An→Bn

.
It is implicit that any of the systems involved can be trivial

systems, which means that state preparation and measure-
ments are included as special cases.

A costrategy interacts with a strategy; costrategies are in
fact strategies also, but it is useful conceptually to provide an
explicit means by which an agent can interact with a strat-
egy. An (n − 1)-turn costrategy S (n−1), with input systems
B1, . . . , Bn and output systems A1, . . . , An consists of the
following:

(1) Memory systems R1, . . . , Rn

(2) A quantum state ρR1A1 and
(3) Quantum channels S1

R1B1→R2A2
, S2

R2B2→R3A3
, . . ., and

Sn−1
Rn−1Bn−1→RnAn

.
The result of the interaction of the strategy N (n) with the

costrategy S (n−1) is a quantum state on systems RnBn, and we
employ the shorthand

N (n) ◦ S (n−1) (66)
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FIG. 9. Interaction of a three-turn strategy N (3) with a two-turn
costrategy S (2).

to denote this quantum state. Figure 9 depicts a three-turn
strategy interacting with a two-turn costrategy.

Let N 0,(n) and N 1,(n) denote two compatible, n-turn quan-
tum strategies, meaning that all systems involved in these
strategies are the same, but the channels that make up the
strategies are possibly different. The fidelity of the strategies
N 0,(n) and N 1,(n) is defined as [9]

F (N 0,(n),N 1,(n) ) := inf
S (n−1)

F (N 0,(n) ◦ S (n−1),N 1,(n) ◦ S (n−1)),

(67)
where the optimization is over every costrategy S (n−1). One
can interpret the strategy fidelity in (67) as a generalization
of the fidelity of channels in (55), in which the idea is to
optimize the fidelity measure over all possible costrategies
that can be used to distinguish the strategies N 0,(n) and N 1,(n).
It follows from a standard data-processing argument that it
suffices to perform the optimization in (67) over costrategies
involving an initial pure state ρR1A1 and channels S1

R1B1→R2A2
,

S2
R2B2→R3A3

, . . ., and Sn−1
Rn−1Bn−1→RnAn

that are each isometric
channels (these are called pure costrategies in [9]). We also
note here that the measure in (67) is generalized by the gener-
alized strategy divergence of [12].

The goal of this section is to delineate a DQIP algorithm
for estimating the fidelity of strategies N 0,(n) and N 1,(n). To do
so, we suppose that the verifier has access to unitary circuits
that realize isometric extensions of all channels involved in the
strategies. That is, for i ∈ {0, 1}, there exists a unitary channel
U i,1

A1E ′
1→M1B1E1

such that

N i,1
A1→M1B1

(
ρA1

) = TrE1

[
U i,1

A1E ′
1→M1B1E1

(
ρA1 ⊗ |0〉〈0|E ′

1

)]
(68)

for every input state ρA1 ; for j ∈ {2, . . . , n − 1}, there exists a
unitary channel U i, j

Mj−1Aj E ′
j→Mj Bj E j

such that

N i, j
Mj−1Aj→Mj Bj

(
ρAj

) =TrEj

[
U i, j

Mj−1Aj E ′
j→Mj Bj E j

(
ρAj ⊗ |0〉〈0|E ′

j

)]
,

(69)
for every input state ρAj ; and there exists a unitary channel
U i,n

Mn−1AnE ′
n→BnEn

such that

N i,n
Mn−1An→Bn

(
ρAn

) = TrEn

[
U i,n

Mn−1AnE ′
n→BnEn

(
ρAn ⊗ |0〉〈0|E ′

n

)]
,

(70)

for every input state ρAn . We use the notation U i,1
A1E ′

1→M1B1E1
,

U i, j
Mj−1Aj E ′

j→Mj Bj E j
, and U i,n

Mn−1AnE ′
n→BnEn

to refer to the unitary

circuits.

We now provide a DQIP algorithm for estimating the fol-
lowing quantity:

1

2
[1 +

√
F (N 0,(n),N 1,(n) )], (71)

which is based in part on Algorithm 8 but instead features an
optimization over all costrategies of the min-prover.

Algorithm 9. The algorithm proceeds as follows:
(1) The verifier prepares a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (72)

on registers T ′ and T and prepares systems E ′
1 · · · E ′

n in the
all-zeros state |0〉E ′

1···E ′
n
.

(2) The min-prover transmits the system A of the state
|ψ〉RA to the verifier.

(3) Using the circuits U 0,1
A1E ′

1→M1B1E1
and U 1,1

A1E ′
1→M1B1E1

, the
verifier performs the following controlled unitary:∑

i∈{0,1}
|i〉〈i|T ⊗ U i,1

A1E ′
1→M1B1E1

. (73)

(4) The verifier transmits system B1 to the min-prover,
who subsequently acts with the isometric quantum channel
S1

R1B1→R2A2
and then sends system A2 to the verifier.

(5) For j ∈ {2, . . . , n − 1}, using the circuits
U 0, j

Mj−1Aj E ′
j→Mj Bj E j

and U 1, j
Mj−1Aj E ′

j→Mj Bj E j
, the verifier performs

the following controlled unitary:∑
i∈{0,1}

|i〉〈i|T ⊗ U i, j
Mj−1Aj E ′

j→Mj Bj E j
. (74)

The verifier transmits system Bj to the min-prover, who
subsequently acts with the isometric quantum channel
S j

R j B j→Rj+1Aj+1
and then sends system Aj+1 to the verifier.

(6) Using the circuits U 0,n
Mn−1AnE ′

n→BnEn
and U 1,n

Mn−1AnE ′
n→BnEn

,
the verifier performs the following controlled unitary:∑

i∈{0,1}
|i〉〈i|T ⊗ U i,n

Mn−1AnE ′
n→BnEn

. (75)

(7) The verifier transmits systems T ′, E1, . . ., En to the
max-prover.

(8) The max-prover prepares a system F in the |0〉F state
and acts on systems T ′, E1, . . ., En, and F with a unitary
PT ′E1···EnF→T ′′F ′ to produce the output systems T ′′ and F ′,
where T ′′ is a qubit system.

(9) The max-prover sends system T ′′ to the verifier, who
then performs a Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (76)

on systems T ′′ and T . The verifier accepts if and only if the
outcome �T ′′T occurs.

Figure 10 depicts Algorithm 9.
Theorem 4. The acceptance probability of Algorithm 9 is

equal to

1

2
[1 +

√
F (N 0,(n),N 1,(n) )], (77)

where
√

F (N 0,(n),N 1,(n) ) is the strategy fidelity defined in
(67).

Proof. The proof can be found in Appendix A 4. �
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FIG. 10. Algorithm 9 for estimating the fidelity of quantum strategies N 0,(n) and N 1,(n) generated by quantum circuits U i,1
A1E ′

1→M1B1E1
,

{U i, j
M j−1A j E ′

j→M j B j E j
}n−1

j=2, and U i,n
Mn−1AnE ′

n→BnEn
for i ∈ {0, 1} and n = 3. The min-prover prepares the state |ψ〉RA and acts with a costrategy, and

the max-prover acts with the unitary PT ′E1···EnF→T ′′F ′ .

F. Alternate methods of estimating the fidelity
of channels and strategies

We note briefly here that other methods for estimating
fidelity of channels can be based on Algorithms 5, 6, and 7. It
is not clear how to phrase them in the language of quantum in-
teractive proofs, in such a way that the acceptance probability
is a simple function of the channel fidelity. However, we can
employ variational algorithms in which we repeat the circuit
for determining an optimal input state ψRA for the channel
fidelity. Then these variational algorithms employ an extra
minimization step in order to approximate an optimal input
state for the channel fidelity.

Similarly, we can estimate the fidelity of strategies by em-
ploying a sequence of parameterized circuits to function as a
costrategy and then minimize over them, in conjunction with
any of the previous methods for estimating fidelity of states.

G. Estimating maximum output fidelity of channels

In this section we show how a simple variation of Algo-
rithm 8, in which we combine the actions of the min-prover
and max-prover into a single max-prover, leads to a QIP
algorithm for estimating the following fidelity function of two
quantum channels N 0

A→B and N 1
A→B:

Fmax(N 0,N 1) := sup
ρA

F
(
N 0

A→B(ρA),N 1
A→B(ρA)

)
, (78)

where the optimization is over every input state ρA. This
algorithm is based in part on Algorithm 4 but instead features
an optimization over input states of the prover.

Algorithm 10. The algorithm proceeds as follows:
(1) The verifier prepares a Bell state

|�〉T ′T := 1√
2

(|00〉T ′T + |11〉T ′T ) (79)

on registers T ′ and T and prepares system E ′ in the all-zeros
state |0〉E ′ .

(2) The prover transmits the system A of the state |ψ〉RA to
the verifier.

(3) Using the circuits U 0
AE ′→BE and U 1

AE ′→BE , the verifier
performs the following controlled unitary:

∑
i∈{0,1}

|i〉〈i|T ⊗ U i
AE ′→BE . (80)

(4) The verifier transmits systems T ′ and E to the prover.
(5) The prover prepares a system F in the |0〉F state and

acts on systems T ′, E , and F with a unitary PT ′EF→T ′′F ′ to
produce the output systems T ′′ and F ′, where T ′′ is a qubit
system.

(6) The prover sends system T ′′ to the verifier, who then
performs a Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (81)

on systems T ′′ and T . The verifier accepts if and only if the
outcome �T ′′T occurs.

Figure 11 depicts Algorithm 10.
Theorem 5. The acceptance probability of Algorithm 10 is

equal to

1

2

[
1 + √

Fmax
(
N 0

A→B,N 1
A→B

)]
. (82)

Proof. The proof can be found in Appendix A 5. �
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FIG. 11. Algorithm 10 for generating a state ρA that maximizes
the fidelity of quantum channels generated by quantum circuits
U 0

AE ′→BE and U 1
AE ′→BE .
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H. Generalization to multiple states

In this section we generalize Algorithm 4 to multiple states,
by devising a quantum algorithm that tests how similar all the
states of an ensemble are to each other.

Suppose that we are given an ensemble {p(x), ρx
S}x∈X of

states of system S, with d = |X |, and we would like to know
how similar they are to each other. Then we can perform a
test like that given in Algorithm 4, but it is a multiple-state
similarity test. The main difference is that the verifier prepares
an initial entangled state that encodes the prior probabilities
{p(x)}x∈X and the algorithm employs d-dimensional control
systems throughout, instead of qubit control systems. We sup-
pose that, for all x ∈ X , there is a circuit U x

RS that generates a
purification |ψx〉RS as follows:

|ψx〉RS := U x
RS|0〉RS, (83)

ρx
S = TrR[|ψx〉〈ψx|RS]. (84)

Algorithm 11. The algorithm proceeds as follows:
(1) The verifier prepares a state

|�p〉T ′T :=
∑
x∈X

√
p(x)|xx〉T ′T (85)

on registers T ′ and T and prepares systems RS in the all-zeros
state |0〉RS .

(2) Using the circuits in the set {U x
RS}x∈X , the verifier

performs the following controlled unitary:∑
x∈X

|x〉〈x|T ⊗ U x
RS. (86)

(3) The verifier transmits systems T ′ and R to the prover.
(4) The prover prepares a system F in the |0〉F state and

acts on systems T ′, R, and F with a unitary PT ′RF→T ′′F ′ to
produce the output systems T ′′ and F ′, where T ′′ is a qudit
system.

(5) The prover sends system T ′′ to the verifier, who then
performs a qudit Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (87)

on systems T ′′ and T , where

�T ′′T = |�〉〈�|T ′′T , (88)

|�〉T ′′T := 1√
d

∑
x∈X

|xx〉T ′′T . (89)

The verifier accepts if and only if the outcome �T ′′T occurs.
Theorem 6. The acceptance probability of Algorithm 11 is

equal to

psim
({

p(x), ρx
S

}
x∈X

)
:= 1

d

[
sup
σS

∑
x∈X

√
p(x)

√
F
(
ρx

S, σS
)]2

,

(90)
where the optimization is over every density operator σS . This
acceptance probability is bounded from above by

1

d
+ 2

d

∑
x,y∈X :x<y

√
p(x)p(y)

√
F
(
ρx

S, ρ
y
S

)
. (91)

When d = 2, this upper bound is tight.

Proof. The proof can be found in Appendix A 6. �
Corollary 7. The fact that the upper bound is achieved in

Theorem 6 for d = 2 leads to the following identity for states
ρ0

S and ρ1
S and probability p ∈ [0, 1]:

[
sup
σS

√
p
√

F
(
ρ0

S , σS
)+

√
1 − p

√
F
(
ρ1

S , σS
)]2

= 1 + 2
√

p(1 − p)
√

F
(
ρ0

S , ρ1
S

)
, (92)

where the optimization is over every density operator σS .
The acceptance probability in (90) is proportional to the

secrecy measure discussed in [43, Eq. (19)], which is the same
as the max-conditional entropy of the following classical-
quantum state: ∑

x∈X
p(x)|x〉〈x|T ⊗ ρx

S . (93)

Indeed, it is a measure of secrecy because if an eavesdropper
has access to system S and if ρx

S ≈ σ for all x ∈ X and if
p(x) ≈ 1/d , then it is difficult for the eavesdropper to guess
the classical message in system T (also, the fidelity is close
to one). According to [68, Remark 2.7] and the expression
in (A70) of Appendix A 6, the acceptance probability in (90)
is also a measure of the symmetric distinguishability of the
classical-quantum state in (93) and thus gives this measure an
operational meaning.

The upper bound in (91) on the acceptance probability
has some conceptual similarity with known upper bounds on
the success probability in state discrimination [69,70], in the
sense that we employ the fidelity of pairs of states in the
upper bound. Finally, we note some similarities between the
problem outlined here and coherent channel discrimination
considered recently in [71]. However, these two problems are
ultimately different in their objectives.

I. Generalization to multiple channels and strategies

We now generalize Algorithms 8 and 11 to the case of test-
ing the similarity of an ensemble of channels. The resulting
algorithm thus has applications in the context of private quan-
tum reading [44,45], in which one goal of such a protocol is to
encode a classical message into a channel selected randomly
from an ensemble of channels such that it is indecipherable by
an eavesdropper who has access to the output of the channel.
We also remark at the end of this section about a generaliza-
tion of Algorithms 9 and 12 to the case of an ensemble of
n-turn quantum strategies.

Let us first consider the case of channels. In more detail,
let {p(x),N x

A→B}x∈X be an ensemble of quantum channels.
Set d = |X |. We suppose that, for all x ∈ X , there is a circuit
U x

AE ′→BE that generates an isometric extension of the channel
N x

A→B, in the following sense:

N x
A→B(ωA) = TrE

[
U x

AE ′→BE (ωA ⊗ |0〉〈0|E ′ )
(
U x

AE ′→BE

)†]
.

(94)

The following algorithm employs competing provers, similar
to how Algorithm 8 does.

012409-12



ESTIMATING DISTINGUISHABILITY MEASURES ON … PHYSICAL REVIEW A 108, 012409 (2023)

Algorithm 12. The algorithm proceeds as follows:
(1) The verifier prepares a state

|�p〉T ′T :=
∑
x∈X

√
p(x)|xx〉T ′T (95)

on registers T ′ and T and prepares system E ′ in the all-zeros
state |0〉RS .

(2) The min-prover transmits the system A of the state
|ψ〉RA to the verifier.

(3) Using the circuits in the set {U x
AE ′→BE }x∈X , the verifier

performs the following controlled unitary:∑
x∈X

|x〉〈x|T ⊗ U x
AE ′→BE . (96)

(4) The verifier transmits systems T ′ and E to the max-
prover.

(5) The max-prover prepares a system F in the |0〉F state
and acts on systems T ′, R, and F with a unitary PT ′EF→T ′′F ′

to produce the output systems T ′′ and F ′, where T ′′ is a qudit
system.

(6) The max-prover sends system T ′′ to the verifier, who
then performs a qudit Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (97)

on systems T ′′ and T , where �T ′′T is defined in (88). The
verifier accepts if and only if the outcome �T ′′T occurs.

Theorem 8. The acceptance probability of Algorithm 12 is
equal to

psim({p(x),N x}x∈X )

= 1

d

[
inf
ψRA

sup
σRB

∑
x∈X

√
p(x)

√
F
(
N x

A→B(ψRA), σRB
)]2

. (98)

This acceptance probability is bounded from above by

1

d
+ 2

d
inf
ψRA

∑
x,y∈X :

x<y

√
p(x)p(y)

√
F

(
N x

A→B(ψRA),N y
A→B(ψRA)

)
.

(99)
When d = 2, this upper bound is tight.

Proof. The proof can be found in Appendix A 7. �
Corollary 9. The following identity holds in the special

case of two channels N 0
A→B and N 1

A→B and probability p ∈
[0, 1]:[

inf
ψRA

sup
σRB

( √
p
√

F
(
N 0

A→B(ψRA), σRB
)

+√
1 − p

√
F

(
N 1

A→B(ψRA), σRB
)

)]2

= 1 + 2
√

p(1 − p) inf
ψRA

√
F

(
N 0

A→B(ψRA),N 1
A→B(ψRA)

)
,

(100)

where the supremum is with respect to every density operator
σRB.

Remark 10. We note here that we can generalize the de-
velopments in this section and the previous one to the case of
quantum strategies, in order to test how similar strategies in
a set are to each other. Let {p(x),N x,(n)}x∈X be an ensemble
of quantum strategies, each of which has n turns. Then the
acceptance probability of an algorithm that is the obvious

generalization of Algorithms 9 and 12 is given by

1

d

[
inf
S (n−1)

sup
σ

∑
x∈X

√
p(x)

√
F
(
N x,(n) ◦ S (n−1), σRnBn

)]2

, (101)

where the infimum is with respect to every (n − 1)-turn pure
costrategy that leads to a quantum state N x,(n) ◦ S (n−1) [as
discussed around (66)] and the supremum is with respect
to every state σRnBn . The expression in (101) is a similarity
measure for the strategies in the ensemble {p(x),N x,(n)}x∈X .

We can also generalize Algorithm 10 from Sec. II G, to
estimate the following similarity measure for an ensemble
{p(x),N x

A→B}x∈X of channels:

1

d

[
sup
ρA,σB

∑
x∈X

√
p(x)

√
F

(
N x

A→B(ρA), σB
)
]2

, (102)

where the optimization is over all density operators ρA and σB.
As is the case with Algorithm 10, there is a single prover who
is trying to make all of the channel outputs look like the same
state. Again we suppose that there is a circuit U x

AE ′→BE that
generates an isometric extension of the channel N x

A→B, in the
sense of (94).

Algorithm 13. The algorithm proceeds as follows:
(1) The verifier prepares a state

|�p〉T ′T :=
∑
x∈X

√
p(x)|xx〉T ′T (103)

on registers T ′ and T and prepares system E ′ in the all-zeros
state |0〉E ′ .

(2) The prover transmits the system A of the state |ψ〉RA to
the verifier.

(3) Using the circuits in the set {U x
AE ′→BE }x∈X , the verifier

performs the following controlled unitary:∑
x∈X

|x〉〈x|T ⊗ U x
AE ′→BE . (104)

(4) The verifier transmits systems T ′ and E to the max-
prover.

(5) The prover prepares a system F in the |0〉F state and
acts on systems T ′, R, and F with a unitary PT ′EF→T ′′F ′ to
produce the output systems T ′′ and F ′, where T ′′ is a qudit
system.

(6) The prover sends system T ′′ to the verifier, who then
performs a qudit Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (105)

on systems T ′′ and T , where �T ′′T is defined in (88). The
verifier accepts if and only if the outcome �T ′′T occurs.

Theorem 11. The acceptance probability of Algorithm 13
is equal to

psim,max({p(x),N x}x∈X )

= 1

d

[
sup
ρA,σB

∑
x∈X

√
p(x)

√
F

(
N x

A→B(ρA), σB
)
]2

. (106)
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TABLE II. List of trace distance problems and algorithms addressed in this work. Approach used for each algorithm and comparison within
a type of trace distance problem are also presented.

Problem Algorithms Comparison

‖ρ0 − ρ1‖1 Algorithm 14 Algorithm 14 does not require the purifying system, unlike fidelity algorithms.
‖N0 − N1‖� Algorithm 15 –
‖N 0,(n) − N 1,(n)‖�n Algorithm 16 –

‖N0 − N1‖�,min Algorithm 17 Algorithm 18 swaps the role of the max-prover and min-prover from Algorithm 17.
Algorithm 18

pg({p(x), ρx}x∈X ) Algorithm 19 Generalizes Algorithm 14 to ensemble of states.

This acceptance probability is bounded from above by

1

d
+ 2

d

× sup
ρA

∑
x,y∈X :x<y

√
p(x)p(y)

√
F

(
N x

A→B(ρA),N y
A→B(ρA)

)
.

(107)

When d = 2, this upper bound is tight.
Proof. For a fixed state ψRA of the prover, the problem is

equivalent to that specified by Algorithm 11, for the ensemble
{p(x), F (N x

A→B(ρA)}x∈X , where ρA = TrA[ψRA]. Thus, all of
the statements from Theorem 6 apply for this fixed state. We
arrive at the statement of the theorem after optimizing over all
input states. �

III. ESTIMATING TRACE DISTANCE, DIAMOND
DISTANCE, AND STRATEGY DISTANCE

We now review several well known algorithms for estimat-
ing trace distance [17], diamond distance [18], and strategy
distance [8,63,64] by interacting with quantum provers. Later
we replace the provers with parameterized circuits to see
how well this approach can perform in estimating these dis-
tinguishability measures. A summary of the algorithms is
presented in Table II.

A. Estimating trace distance

The trace distance between quantum states ρ0
S and ρ1

S

is defined as ‖ρ0
S − ρ1

S‖1, where ‖A‖1 = Tr[
√

A†A]. It is a
well known and operationally motivated measure of distin-
guishability for quantum states.

We suppose, as is the case in Sec. II C, that quantum cir-
cuits U 0

RS and U 1
RS are available for generating purifications of

the states ρ0
S and ρ1

S , i.e., for i ∈ {0, 1},
ρ i

S = TrR
[
U i

RS|0〉〈0|RS (U i
RS )†

]
. (108)

However, the purifying systems are not strictly necessary in
the operation of the algorithm given below, which is an ad-
vantage over some of the algorithms from Sec. II C.

The following QSZK algorithm allows for estimating the
trace distance [17], in the sense that its acceptance probability
is a simple function of the trace distance:

Algorithm 14 ([1,2,17,72]). The algorithm proceeds as fol-
lows:

(1) The verifier picks a classical bit i ∈ {0, 1} uniformly
at random, prepares the state ρ i

S , and sends system S to the
prover.

(2) The prover prepares a system F in the |0〉F state and
acts on systems S and F with a unitary PSF→T F ′ to produce
the output systems T and F ′, where T is a qubit system.

(3) The prover sends system T to the verifier, who then
performs a measurement on system T , with outcome j ∈
{0, 1}. The verifier accepts if and only if i = j.

This algorithm has been well known for some time
[1,2,17,72], and its maximum acceptance probability is equal
to

max

:0�
�I

1
2 Tr

[

ρ0

S

]+ 1
2 Tr

[
(I − 
)ρ1

S

]
= 1

2

(
1 + 1

2

∥∥ρ0
S − ρ1

S

∥∥
1

)
. (109)

This follows because the acceptance probability can be writ-
ten as follows, for a fixed unitary P ≡ PSF→T F ′ of the prover:

1

2

∑
i∈{0,1}

Tr
[
(|i〉〈i|T ⊗ IF ′ )P

(
ρ i

S ⊗ |0〉〈0|F
)
P†
]

= 1

2

∑
i∈{0,1}

Tr
[〈0|F P†(|i〉〈i|T ⊗ IF ′ )P|0〉F ρ i

S

]
(110)

= 1

2

∑
i∈{0,1}

Tr
[

i

Sρ
i
S

]
, (111)

where we have defined the measurement operator 
i
S , for i ∈

{0, 1}, as


i
S := 〈0|F (PSF→T F ′ )†(|i〉〈i|T ⊗ IF ′ )PSF→T F ′ |0〉F , (112)

and it is clear that
∑

i∈{0,1} 
i
S = IS . By the Naimark exten-

sion theorem [55] (see also [58]), every measurement can be
realized in this way, so that

max
P

1

2

∑
i∈{0,1}

Tr
[
(|i〉〈i|T ⊗ IF ′ )P

(
ρ i

S ⊗ |0〉〈0|F
)
P†
]

= max

:0�
�I

1

2
Tr
[

ρ0

S

]+ 1

2
Tr
[
(I − 
)ρ1

S

]
. (113)

Thus, by replacing the actions of the prover with a pa-
rameterized circuit and repeating the algorithm, we can use
a quantum computer to estimate a lower bound on the trace
distance of the states ρ0

S and ρ1
S . An approach similar to this

has been adopted in [26].
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We note here that the following identity holds also [1,2,72]
(see also [[58], Theorem 3.13]):

min

:0�
�I

1
2 Tr

[

ρ0

S

]+ 1
2 Tr

[
(I − 
)ρ1

S

]
= 1

2

(
1 − 1

2

∥∥ρ0
S − ρ1

S

∥∥
1

)
. (114)

B. Estimating diamond distance

The diamond distance between quantum channels N 0
A→B

and N 1
A→B is defined as [4]∥∥N 0

A→B − N 1
A→B

∥∥
� := sup

ρRA

∥∥N 0
A→B(ρRA) − N 1

A→B(ρRA)
∥∥

1,

(115)
where the optimization is over every bipartite state ρRA and
the system R can be arbitrarily large. By a well known data
processing argument, the following equality holds:∥∥N 0

A→B − N 1
A→B

∥∥
� := max

ψRA

∥∥N 0
A→B(ψRA) − N 1

A→B(ψRA)
∥∥

1,

(116)
where the optimization is over every pure bipartite state ψRA

and the system R is isomorphic to the channel input system
A. The diamond distance is a well known and operationally
motivated measure of distinguishability for quantum channels
[5,18].

We suppose, as is the case in Sec. II D, that quantum
circuits U 0

AE ′→BE and U 1
AE ′→BE are available for generating

isometric extensions of the channels N 0
A→B and N 1

A→B. That
is, for i ∈ {0, 1},

N i
A→B(·) = TrE

[
U i

AE ′→BE ((·) ⊗ |0〉〈0|E ′ )
(
U i

AE ′→BE

)†]
.

(117)

However, the environment systems are not strictly necessary
in the operation of the algorithm given below, which is an
advantage over some of the algorithms from Sec. II D.

The following QIP algorithm allows for estimating the dia-
mond distance [18], in the sense that its acceptance probability
is a simple function of the diamond distance:

Algorithm 15 ([18]). The algorithm proceeds as follows:
(1) The prover prepares a pure state ψRA and sends system

A to the verifier.
(2) The verifier picks a classical bit i ∈ {0, 1} uniformly at

random, applies the channel N i
A→B, and sends system B to the

prover.
(3) The prover prepares a system F in the |0〉F state and

acts on systems R, B, and F with a unitary PRBF→T F ′ to
produce the output systems T and F ′, where T is a qubit
system.

(4) The prover sends system T to the verifier, who then
performs a measurement on system T , with outcome j ∈
{0, 1}. The verifier accepts if and only if i = j.

This algorithm has been well known for some time [18]
and its maximum acceptance probability is equal to

1
2

(
1 + 1

2

∥∥N 0
A→B − N 1

A→B

∥∥
�
)
. (118)

Thus, by replacing the actions of the prover with a parameter-
ized circuit and repeating the algorithm, we can use a quantum
computer to estimate a lower bound on the diamond distance
of the channels N 0

A→B and N 1
A→B.

C. Estimating strategy distance

We already provided the definition of a quantum strategy
in Sec. II E, and therein we discussed the strategy fidelity
[see Eq. (67)]. The strategy distance [6,8,63] is conceptually
similar, but it is defined with the trace distance as the underly-
ing metric:∥∥N 0,(n) − N 1,(n)

∥∥
�n

:= sup
S (n−1)

∥∥N 0,(n) ◦ S (n−1) − N 1,(n) ◦ S (n−1)
∥∥

1, (119)

where the supremum is with respect to every costrategy S (n−1)

that leads to the quantum states N 0,(n) ◦ S (n−1) and N 1,(n) ◦
S (n−1) [here we have employed the same notation used in
(66)]. The strategy distance is an operationally motivated mea-
sure of distinguishability for quantum strategies.

The following QIP algorithm allows for estimating the
strategy distance [63], in the sense that its acceptance prob-
ability is a simple function of the strategy distance:

Algorithm 16 ([63]).The algorithm proceeds as follows:
(1) The prover prepares a pure state ψRA and sends system

A to the verifier.
(2) The verifier picks a classical bit i ∈ {0, 1} uniformly at

random, applies the channel N i,1
A1→M1B1

, and sends system B1

to the prover.
(3) The prover acts with the isometric channel S1

R1B1→R2A2

and then sends system A2 to the verifier.
(4) For k ∈ {2, . . . , n − 1}, the verifier applies the channel

N i,k
Mk−1Ak→MkBk

and transmits system Bk to the prover, who
subsequently acts with the isometric channel Sk

RkBk→Rk+1Ak+1

and then sends system Ak+1 to the verifier.
(5) The verifier applies the channel N i,n

Mn−1An→Bn
and sends

system Bn to the prover.
(6) The prover prepares a system F in the |0〉F state and

acts on systems Rn, Bn, and F with a unitary PRnBnF→T F ′ to
produce the output systems T and F ′, where T is a qubit
system.

(7) The prover sends system T to the verifier, who then
performs a measurement on system T , with outcome j ∈
{0, 1}. The verifier accepts if and only if i = j.

This algorithm has been well known since [63], and its
maximum acceptance probability is equal to

1
2

(
1 + 1

2‖N 0,(n) − N 1,(n)‖�n
)
. (120)

Thus, by replacing the actions of the prover with a parameter-
ized circuit and repeating the algorithm, we can use a quantum
computer to estimate a lower bound on the strategy distance
of the strategies N 0,(n) and N 1,(n). See [8,73] for semidefinite
programs for evaluating the strategy distance of two strategies.

D. Estimating minimum trace distance of channels

In this section we show how to estimate the following trace
distance function of channels N 0

A→B and N 1
A→B by means of a

short quantum game (SQG) algorithm:

inf
ρA

∥∥N 0
A→B(ρA) − N 1

A→B(ρA)
∥∥

1, (121)

where the optimization is over every input state ρA. The algo-
rithm features a min-prover and a max-prover. Short quantum
games were defined and studied in [61,62].
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Algorithm 17. The algorithm proceeds as follows:
(1) The min-prover prepares a state ψRA and sends system

A to the verifier.
(2) The verifier picks a classical bit i ∈ {0, 1} uniformly at

random, applies the channel N i
A→B, and sends system B to the

max-prover.
(3) The max-prover prepares a system F in the |0〉F state

and acts on systems R, B, and F with a unitary PRBF→T F ′

to produce the output systems T and F ′, where T is a qubit
system.

(4) The max-prover sends system T to the verifier, who
then performs a measurement on system T , with outcome j ∈
{0, 1}. The verifier accepts if and only if i = j.

For a fixed state ψRA of the min-prover, it follows from
Algorithm 14 that the acceptance probability is equal to

1
2

[
1 + 1

2

∥∥N 0
A→B(ρA) − N 1

A→B(ρA)
∥∥

1

]
, (122)

where ρA = TrR[ψRA]. Since the min-prover plays first and his
goal is to minimize the acceptance probability, it follows that
the acceptance probability of Algorithm 17 is given by

1
2 (1 + ‖N0 − N1‖�,min), (123)

where

‖N0 − N1‖�,min := 1
2 inf

ρA

∥∥N 0
A→B(ρA) − N 1

A→B(ρA)
∥∥

1. (124)

Another way to estimate the minimum trace distance of
channels in (121) is to swap the roles of the max-prover and
min-prover in Algorithm 17:

Algorithm 18. The algorithm proceeds as follows:
(1) The max-prover prepares a state ψRA and sends system

A to the verifier.
(2) The verifier picks a classical bit i ∈ {0, 1} uniformly at

random, applies the channel N i
A→B, and sends system B to the

min-prover.
(3) The min-prover prepares a system F in the |0〉F state

and acts on systems R, B, and F with a unitary PRBF→T F ′

to produce the output systems T and F ′, where T is a qubit
system.

(4) The min-prover sends system T to the verifier, who
then performs a measurement on system T , with outcome j ∈
{0, 1}. The verifier accepts if and only if i = j.

For a fixed state ψRA of the max-prover, it follows from
(114) that the acceptance probability is equal to

1
2

[
1 − 1

2

∥∥N 0
A→B(ρA) − N 1

A→B(ρA)
∥∥

1

]
, (125)

where ρA = TrR[ψRA]. Since the max-prover plays first and
his goal is to maximize the acceptance probability, it follows
that the acceptance probability of Algorithm 17 is given by

1
2

[
1 − 1

2 inf
ρA

∥∥N 0
A→B(ρA) − N 1

A→B(ρA)
∥∥

1

]
. (126)

Although the quantities estimated by Algorithms 10 and
17 or 18 are similar (and related to each other by standard
inequalities relating trace distance and fidelity [74]), the algo-
rithms are very different in that the channel output is available
at the end of Algorithm 10, whereas it is not at the end of
Algorithms 17 and 18. This has implications for applications
in which it is helpful to have access to the channel output,
for example, when one is trying to find the fixed point of a
quantum channel.

E. Generalization to multiple states, channels, and strategies

Each of the algorithms from the previous subsections has
a generalization to multiple states, channels, and strategies.
We go through them briefly here. The main idea is that,
rather than randomly picking from a set of two resources, the
verifier picks randomly from a set of multiple resources and
then a prover has to guess which one was chosen. The main
difference with the binary case is that there is not a closed-
form expression for the acceptance probability in terms of a
metric like the trace distance or derived metrics, but rather the
optimization is phrased as a semidefinite program that can be
solved numerically or used in some cases to obtain analytical
solutions (for example, if there is sufficient symmetry).

Suppose that we are given an ensemble {p(x), ρx
S}x∈X of

quantum states. The verifier picks x randomly according to
p(x), prepares ρx

S , and the prover has to guess which state was
prepared. The acceptance probability is given by

pg({p(x), ρx}x∈X ) := sup
{
x

S}x∈X

∑
x∈X

p(x) Tr
[

x

Sρ
x
S

]
, (127)

where the optimization is over every POVM {
x
S}x∈X . In the

case that |X | = 2, this acceptance probability has the explicit
form

1
2

[
1 + ∥∥pρ0

S − (1 − p)ρ1
S

∥∥
1

]
. (128)

To account for multiple states, we modify Algorithm 14
as follows: the verifier’s variable i ∈ {0, . . . , |X | − 1} is ran-
domly selected, and the prover’s guess j is chosen from the
same set. System T therein is generalized to be a �log2 |X |�-
qubit system. When |X | is a power of two, there is a perfect
match between the number |X | of measurement outcomes and
the dimension of system T . The verifier accepts if the outcome
j equals the state i that was picked. If |X | is not a power
of two, the following algorithm handles this case by coarse
graining some of the measurement outcomes together. This is
relevant because most quantum computers are qubit-based.

Algorithm 19. The algorithm proceeds as follows:
(1) The verifier selects an integer i ∈ {0, . . . , |X | − 1} at

random according to p(i), prepares the state ρ i
S , and sends

system S to the prover.
(2) The prover prepares a system F composed of

�log2 |X |� qubits in the |0〉F state. The prover then acts on
systems S and F with a unitary PSF→T F ′ , producing the output
systems F ′ and T , where T is a system of �log2 |X |� qubits.

(3) The prover sends system T to the verifier, who then
performs a computational basis measurement on system T ,
with outcome j ∈ {0, . . . , 2�log2 |X |� − 1}.

(4) The verifier accepts under two conditions:
(a) j � |X | − 1 and i = j.
(b) j > |X | − 1 and i = 0.

This algorithm is a direct generalization of Algorithm 14.
To understand its connection to (127), consider that, for a fixed
unitary PSF→T F ′ , its acceptance probability is given by∑

i∈{0,...,|X |−1}
p(i) Tr

[
(|i〉〈i|T ⊗ IF ′ )P

(
ρ i

S ⊗ |0〉〈0|F
)
P†
]

+ p(0)
2�log2 |X |�∑

j=|X |
Tr
[
(| j〉〈 j|T ⊗ IF ′ )P

(
ρ i

S ⊗ |0〉〈0|F
)
P†
]

(129)

012409-16



ESTIMATING DISTINGUISHABILITY MEASURES ON … PHYSICAL REVIEW A 108, 012409 (2023)

=
∑

i∈{0,...,|X |−1}
p(i) Tr

[〈0|F P†(|i〉〈i|T ⊗ IF ′ )P|0〉F ρ i
S

]

+ p(0)
2�log2 |X |�∑

j=|X |
Tr
[〈0|F P†(| j〉〈 j|T ⊗ IF ′ )P|0〉F ρ i

S

]
(130)

=
∑

i∈{0,...,|X |−1}
p(i) Tr

[

i

Sρ
i
S

]
, (131)

where we have defined the following measurement operators:


0
S := 〈0|F P†(|0〉〈0|T ⊗ IF ′ )P|0〉F

+
2�log2 |X |�∑

j=|X |
〈0|F P†(| j〉〈 j|T ⊗ IF ′ )P|0〉F , (132)

and for all i ∈ {1, . . . , |X | − 1}:


i
S := 〈0|F P†(|i〉〈i|T ⊗ IF ′ )P|0〉F . (133)

As such, we coarse grain all measurement outcomes in
{0, |X |, |X | + 1, . . . , 2�log2 |X |�} into a single measurement
outcome. By the Naimark extension theorem, every measure-
ment with |X | outcomes can be realized in this way, so that
maximizing the expression in (129) over every unitary P gives
a value equal to that in (127).

On the one hand, if |X | is a power of two, then it follows
that |X | = 2�log2 |X |� and the outcome j > |X | − 1 never oc-
curs. On the other hand, if |X | is not a power of two, then
|X | < 2�log2 |X |� and the outcome j > |X | − 1 does occur.

Now suppose that we are given an ensemble
{p(x),N x

A→B}x∈X of quantum channels. Then a similar
modification of Algorithm 15 has acceptance probability

sup
ψRA,{
x

RB}x∈X

∑
x∈X

p(x) Tr
[

x

RBN x
A→B(ψRA)

]
, (134)

where the optimization is over every state ψRA and POVM
{
x

RB}x∈X . In the case that |X | = 2, this acceptance probabil-
ity has the explicit form

1
2

[
1 + ∥∥pN 0

A→B − (1 − p)N 1
A→B

∥∥
�
]
. (135)

Suppose we are given an ensemble {p(x),N x,(n)}x∈X of n-
turn quantum strategies. A similar modification of Algorithm
16 has acceptance probability

sup
S (n−1),

{
x
RnBn }x∈X

∑
x∈X

p(x) Tr
[

x

RnBn (N x,(n) ◦ S (n−1))
]
, (136)

where the optimization is over every (n − 1)-turn pure costrat-
egy S (n−1) and POVM {
x

RB}x∈X [recall (66) in this context].
In the case that |X | = 2, this acceptance probability has the
explicit form

1
2 (1 + ‖pN 0,(n) − (1 − p)N 1,(n)‖�n), (137)

where this is the strategy norm.

Finally, we can generalize Algorithms 17 and 18, with the
acceptance probabilities, respectively, given by

inf
ρA

sup
{
x

B}x∈X

∑
x∈X

p(x) Tr
[

x

BN x
A→B(ρA)

]
, (138)

sup
ρA

inf
{
x

B}x∈X

∑
x∈X

p(x) Tr
[

x

BN x
A→B(ρA)

]
. (139)

In the case that |X | = 2, these acceptance probabilities be-
come

1
2

[
1 + inf

ρA

∥∥pN 0
A→B(ρA) − (1 − p)N 1

A→B(ρA)
∥∥

1

]
, (140)

1
2

[
1 − inf

ρA

∥∥pN 0
A→B(ρA) − (1 − p)N 1

A→B(ρA)
∥∥

1

]
. (141)

IV. PERFORMANCE EVALUATION OF ALGORITHMS
USING A NOISELESS AND NOISY QUANTUM SIMULATOR

In this section we present results obtained from numer-
ically simulating Algorithms 4–7 and Algorithm 14 on a
noiseless quantum simulator and Algorithms 8, 15, and 19
on both a noiseless and noisy quantum simulator. In the first
subsection, we introduce and discuss the circuit ansatz em-
ployed in these numerical experiments. In the next subsection
we discuss the form of the states and channels used for the nu-
merical simulations. In the following subsections, we present
the details of our numerical simulations of Algorithms 4–7
for fidelity of states, Algorithm 8 for the fidelity of channels,
Algorithm 14 for trace distance of states, Algorithm 15 for
diamond distance of channels, and Algorithm 19 for multiple
state discrimination.

In the simulations below, we use a maximum number of
iterations to be the stopping condition. We noted that some
algorithms—in particular, ones with multiple provers—were
more prone to get stuck in local minima and optimization
loops. We found that, in these scenarios, using convergence
as the stopping condition could lead to an unbounded number
of iterations. In these cases we found that using a maximum
number of iterations was sufficient and effective.

All the program code for Algorithms 4–8, 14, 15, 19,
and corresponding SDPs can be found in the Supplemental
Material [75].

A. Ansatz

To estimate the relevant quantities in this work, we em-
ploy the hardware-efficient ansatz (HEA) [76]. The HEA is
a problem-agnostic ansatz that depends on the architecture
and the connectivity of the given hardware. In this work we
consider a fixed structure of the HEA. Let X , Y , and Z denote
the Pauli matrices. We define one layer of the HEA to consist
of the single-qubit rotations e−iθ/2Y e−iδ/2X , each of which acts
on a single qubit and is parameterized by θ and δ, followed
by CNOTs between neighboring qubits. A CNOT between the
control qubit k and the target qubit � is given by

e−iπ/2(|1〉〈1|k⊗(X�−I� )) = |0〉〈0|k ⊗ I� + |1〉〈1|k ⊗ X�. (142)

For our numerical experiments, we consider a sufficiently
large number of layers of the HEA. In principle, both the
circuit structure and the number of layers of the HEA can
be made random, and this randomness can lead to better
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performance of variational algorithms [77]. We leave the
study of such ansatzes for future work.

The HEA is used both to create the states and channels,
as well as to create a parameterized unitary that replaces the
provers. In the former two cases, the rotation angles are fixed,
but in the prover scenario, the angles are parameters that are
optimized.

B. Test states and channels

To study the performance of our algorithms, we randomly
select states and channels as follows. For n-qubit states, we
apply m layers of the HEA with randomly selected angles for
rotation around the x and y axes on n + k qubits initialized to
the state |0〉〈0|. This procedure prepares a pure state on n + k
qubits and, hence, a mixed state on n qubits of rank � 2k .

To realize an n-qubit channel NA→B, we generate a unitary
UAE ′→BE on n + k qubits such that

NA→B(ωA) := TrE [UAE ′→BE (ωA ⊗ |0〉〈0|E ′ )(UAE ′→BE )†],

(143)

where systems E ′ and E each consist of k qubits. Due the
Stinespring dilation theorem [66], this is a general approach
by which arbitrary channels can be realized.

For our experiments, we set U to consist of m layers of the
HEA itself, with randomly selected angles for rotation around
the x and y axes on n + 1 qubits. Tracing out one of the qubits
gives a channel on n qubits, as required.

Several algorithms in our paper [see (6), (20), (60)] depend
on having access to unitaries of the form∑

i∈{0,1}
|i〉〈i|T ⊗ U i

S = |0〉〈0| ⊗ U 0
S + |1〉〈1| ⊗ U 1

S . (144)

These can be split into the sequential application of the fol-
lowing two controlled unitaries:

|0〉〈0| ⊗ I + |1〉〈1| ⊗ U 1
S ,

|1〉〈1| ⊗ I + |0〉〈0| ⊗ U 0
S , (145)

of which our algorithms make use.

C. Fidelity of states

In this section we discuss the performance of Algorithms
4–7 in the noiseless scenario to estimate the fidelity between
two three-qubit mixed states. Algorithms 4–7 require different
numbers of qubits for estimating the fidelity between ρ and σ .
In particular, for this case, Algorithm 4 requires eight qubits,
along with access to controlled unitaries, as defined in (145).
Algorithms 5, 6, and 7 require 13, 10, and 8 qubits, respec-
tively. We recall that Algorithms 4–6 require purifications
of both ρ and σ , while Algorithm 7 relies only on access
to ρ and σ directly. Moreover, Algorithms 4 and 5 require
measurements on two qubits, and Algorithm 6 requires Bell
measurements on ten qubits. Finally, Algorithm 7 requires two
single-qubit measurements.

We now summarize the HEA employed. For Algorithm 4,
the prover unitary is created using five layers of the HEA,
which acts on four qubits. Similarly, in Algorithm 5, we
employ eight layers of the HEA that acts on six qubits. In
Algorithm 6, the ansatz acts on two qubits, and we consider
four layers of it. In Algorithm 7, the ansatz acts on four qubits,

FIG. 12. Estimation of the fidelity between quantum states ver-
sus the number of iterations. We implement Algorithms 4–7 on a
noiseless simulator to estimate the fidelity between two three-qubit
mixed states, each of rank �4. For each variational algorithm, we
employ the HEA, as defined in Sec. IV A. In particular, we start
with a random parameter vector �θ and then update it according to
a gradient-based optimization procedure. The dashed-dotted curve
represents the true fidelity between two randomly chosen quantum
states. In each case the optimization procedure converges to the
true fidelity with high accuracy. Algorithms 4–7 achieve an absolute
error in fidelity estimation of order 10−5, 10−4, 10−9, and 10−3,
respectively.

and we apply eight layers of it. For our implementations,
we picked these circuit depths so that the cost function is
minimized. A more general framework allows for the ansatz
structure to be unfixed and instead variable, but we leave the
detailed study of this, for our algorithms, to future work [77].

We begin the training with a random set of variational
parameters. We evaluate the cost using a state vector simulator
(noiseless simulator) [78]. We then employ the gradient-
descent algorithm to obtain a new set of parameters. We note
that in general, the true fidelity between states ρ and σ is
not known. Thus the stopping criterion for these algorithms
is a maximum number of iterations. For our numerical experi-
ments, we set the total number of iterations to be 300. For each
algorithm, we run ten instances of the algorithm and pick the
best run for generating Fig. 12.

In Fig. 12 we plot the results of the numerical simulations.
The dashed-dotted line represents the true fidelity between
two random three-qubit quantum states ρ and σ , as described
above. Each algorithm converges to the true fidelity with high
accuracy within a finite number of iterations. As discussed
above, for each algorithm, the HEA is of a different size. Thus,
it is not straightforward to compare these different algorithms.
In terms of the convergence rate, we find that Algorithm 6
converges to the true fidelity faster than all other algorithms.
Algorithms 4–7 achieve an absolute error in fidelity estimation
of order 10−5, 10−4, 10−9, and 10−3, respectively.

D. Trace distance of states

Using Algorithm 14, we estimate the normalized trace dis-
tance 1

2‖ρ − σ‖1 between two three-qubit states ρ and σ , each
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FIG. 13. Estimation of the normalized trace distance between
quantum states versus the number of iterations. We implement Al-
gorithm 14 on a noiseless simulator to estimate the normalized trace
distance between three-qubit mixed states, each of rank four. Algo-
rithm 14 achieves an absolute error in trace distance estimation of
order 10−4.

having rank �4, as defined above in Sec. IV B. For our numer-
ical experiments, we use a noiseless simulator. Algorithm 14
requires eight qubits in total and two single-qubit measure-
ments. We employ ten layers of the HEA, which acts on four
qubits. Similar to the fidelity-estimation algorithms detailed
above, we begin with a random set of variational parameters
and update them using the gradient-descent algorithm.

As the true normalized trace distance between ρ and σ is
assumed to be unknown, we use a stopping criterion as the
number of iterations, which we take to be 300 iterations. For
Algorithm 14, we run ten instances of it and pick the best run
for generating Fig. 13.

In Fig. 13 we plot the results of Algorithm 14. The
dashed-dotted line represents the true normalized trace dis-
tance between two random three-qubit quantum states ρ and
σ , as described above. The absolute error in trace-distance
estimation is of order 10−4.

E. Fidelity of channels

In this section we discuss the performance of Algorithm 8
in both the noiseless and noisy scenarios. The channels in
question are realized by using parameterized unitaries and
tracing out ancilla qubits, as discussed in Sec. IV B. The
algorithm employs a min-max optimization and thus requires
two parameterized unitaries representing the min- and max-
provers, respectively. The controlled unitaries consist of one
layer of the HEA, with each consisting of random rotations
about the x axis, on two qubits, thereby realizing the N i

A→B
channels acting on one qubit, for i ∈ {0, 1}.

We now summarize the HEA employed in generating the
min- and max-provers. The min-prover unitary is generated
using two layers of the HEA, which acts on two qubits.
The max-prover unitary is generated using two layers of the
HEA, which acts on three qubits. The rotation angles for both
provers around the x and y axes are chosen at random. The

FIG. 14. Estimation of the normalized fidelity between quantum
channels versus the number of iterations. We implement Algorithm 8
to estimate the normalized fidelity between two-qubit channels. The
noiseless simulation achieves an absolute error in fidelity estimation
of order 10−4. The parameters obtained from the noisy simulation,
with the noise model from IBM-Jakarta, achieve an absolute error of
10−2 on a noiseless simulator.

particular choices of the number of layers are made so that the
cost function is minimized.

We begin the training phase with a random set of vari-
ational parameters for both parameterized unitaries. For the
noiseless simulation, we evaluate the cost using a state vector
simulator (noiseless simulator) [78]. For the noisy simulation,
we use the QASM-simulator with the noise model from IBM-
Jakarta. Since the number of parameters is significantly higher
than the previous algorithms, to speed up the convergence, we
employ both the simultaneous perturbation stochastic approx-
imation (SPSA) method [79] and the gradient-descent method
to obtain a new set of parameters.

The optimization is carried out in a zig-zag fashion, ex-
plained as follows. The minimizing optimizer implements
the SPSA algorithm and is allowed to run until convergence
occurs. Then, the maximizing optimizer, implementing the
gradient descent algorithm, runs for one iteration. We note that
in general, the true fidelity between the channels N 0 and N 1

is not known. Thus, the stopping criterion for these algorithms
is a maximum number of iterations. For our numerical experi-
ments, we set the total number of iterations to be 6000, mostly
used in the minimizing optimizer. The results of the numerical
simulations are presented in Fig. 14.

Note that the graph presented in Fig. 14 shows that the
convergence is highly nonmonotonic, unlike the convergence
behavior presented in previous graphs. Each iteration consists
of a decrease in the function value, followed by a single
increasing iteration. This is clearly indicative of the min-
max optimization nature of the algorithm. Furthermore, unlike
other algorithms, the optimization value in this algorithm can
overshoot the true solution, due to the min-max nature of
the optimization. However, the noiseless plot indicates that,
once it overshoots the solution, it oscillates with decreasing
amplitude and converges.
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The noisy optimization converges as well, but it does not
converge to the known value of the root fidelity of the two
channels. However, the parameters found after convergence
exhibit a noise resilience, as put forward in [29]; i.e., using the
parameters obtained from the noisy optimization in a noiseless
simulator gives a value much closer to the true value, as
indicated by the solid orange line in Fig. 14.

F. Diamond distance of channels

In this section we discuss the performance of Algorithm 15
in the noiseless and noisy scenarios. Algorithm 15 requires
eight qubits. Similar to the previous section, the channels in
question are realized using the procedure from Sec. IV B.
The algorithm utilizes a max-max optimization and thus
requires two parameterized unitaries representing the two
max-provers. Each unitary U i

AE ′→BE , for i ∈ {0, 1}, consists
of one layer of the HEA with random rotations about the x-
and y-axes, on two qubits, each thereby realizing the one-qubit
channel N i

A→B.
We now summarize the HEA employed in generating the

two provers. The first prover, called the state-prover because
its goal is to realize an optimal distinguishing state, is gener-
ated using two layers of the HEA, which acts on two qubits.
The second prover, called the max-prover, is generated using
two layers of the HEA, which acts on three qubits. The rota-
tion angles for both provers around the x and y axes are chosen
at random. The particular choices of the number of layers are
made so that the cost function is minimized.

We begin the training phase with a random set of vari-
ational parameters for both parameterized unitaries. In the
noiseless simulation, we evaluate the cost using a state vector
simulator (noiseless simulator). In the noisy setup we use the
QASM simulator with the noise model from IBM-Jakarta.
Similar to the previous section, we employ the SPSA opti-
mization technique.

The optimization is carried out in two parts—the first part
uses the COBYLA optimizer [80,81] (nongradient based), and
the second part uses the SPSA optimizer. In both stages, the
optimization is carried out in a zig-zag fashion, explained as
follows. The first stage allows for moving quickly into the
neighborhood of the actual solution, but then slows down
dramatically. Once we approach the solution, we switch to
a gradient-based method that converges to the solution more
quickly. In both stages we allow the state-prover and the max-
prover to be optimized for a fixed number of iterations in a
zig-zag manner. This is because, in general, the true diamond
distance between channels N 0 and N 1 is not known. Thus the
stopping criterion for these algorithms is a maximum number
of iterations. For our numerical experiments, we set the total
number of iterations to be 1600. The results of the numerical
simulations are presented in Fig. 15.

Note that the noiseless graph presented in Fig. 15 shows
that the convergence is highly monotonic, unlike the fidelity of
channels (see Fig. 14), because the optimization is a max-max
one, as opposed to the min-max nature of Algorithm 8. The
quick convergence, indicated by the lower number of itera-
tions, is a consequence of this difference.

The noisy simulation converges as well, and similar to the
previous section, the parameters exhibit a noise resilience.

FIG. 15. Estimation of the normalized diamond distance be-
tween quantum channels versus the number of iterations. We
implement Algorithm 15 to estimate the normalized diamond
distance between one-qubit channels. Algorithm 15 achieves an
absolute error in diamond distance estimation of order 10−4. The
parameters obtained from the noisy simulation, with the noise model
from IBM-Jakarta, achieve an absolute error of 10−2 on a noiseless
simulator.

Once the COBYLA stage of the optimization is completed,
the SPSA optimization is more noisy, due to the perturbative
nature of the algorithm. Note that the COBYLA optimizer
operates in batches of 30, giving an impression of smoothness.

G. Multiple-state discrimination

In this section we discuss the performance of
Algorithm 19 in the noisy and noiseless scenarios. We
consider a specific scenario of distinguishing three one-qubit
mixed states. Recall from Sec. IV B that the one-qubit
states are generated by using two layers of the HEA on
two qubits. We execute this on a qubit system, and hence
we use Algorithm 19. The algorithm requires 12 qubits in
total and three two-qubit measurements. The measurement is
realized using a parameterized unitary and ancilla qubits. By
Naimark’s extension theorem [55], an arbitrary POVM can
be realized using this procedure, so that there is no loss in
expressiveness. The parameterized unitary required employs
two layers of the HEA, which acts on three qubits.

To speed up convergence, we use the SPSA algorithm for
the optimization. As the true value of the optimal acceptance
probability between the three states is assumed to be un-
known, we set the stopping criterion to be a maximum number
of iterations, which we take to be 250 iterations.

In Fig. 16 we plot the results of simulating Algorithm 19.
The dashed-dotted line represents the optimal acceptance
probability of the three states, calculated using the semidefi-
nite program corresponding to (127). The noiseless simulation
converges to the known optimal acceptance probability. The
noisy optimization converges as well, but it does not con-
verge to the known optimal acceptance probability. However,
similar to the previous sections, the parameters exhibit noise
resilience, as indicated by the solid orange line in Fig. 16.
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FIG. 16. Estimation of the optimal acceptance probability for
Algorithm 19. The noiseless simulation achieves an absolute error
of order 10−4. The parameters obtained from the noisy simulation,
with the noise model from IBM-Jakarta, achieve an absolute error of
10−3 on a noiseless simulator.

V. ESTIMATING DISTANCE MEASURES
AS COMPLEXITY CLASSES

We now turn our attention to the intersection of our al-
gorithms with quantum computational complexity theory. In
this section we prove that several basic quantum complexity
classes can be reframed as distance and fidelity estimation
problems. That is, we show that various distance and fidelity
estimation problems are complete for various quantum com-
plexity classes. References [30,31] provide reviews of basic
concepts in quantum computational complexity theory for
interested readers.

In particular, here we summarize existing results linking
estimation problems to complexity classes, and furthermore,
we prove that five distance estimation algorithms are complete
for some complexity classes of interest. First, we prove that
promise versions of the following estimation problems are
BQP-complete:

(1) Estimating the fidelity between two pure states,
(2) Estimating the fidelity between a pure state and a

mixed state,
(3) Estimating the Hilbert-Schmidt distance of two arbi-

trary states.
Fourth, we prove that the promise problem version of

estimating the fidelity between a pure state and a channel
with arbitrary input is QMA-complete. Finally, we show that
the promise problem version of estimating the fidelity be-
tween a pure state and a channel with a separable input state
is QMA(2)-complete. In Fig. 17 we summarize the various
quantum complexity classes and the representative fidelity
and distance estimation algorithms.

A. BQP-complete problems

First, we prove that promise versions of the problems of
evaluating the fidelity between two pure states, evaluating the
fidelity between a mixed state and a pure state, and evaluating

FIG. 17. List of distance estimation problems and the corre-
sponding quantum complexity class. Entries in bold are the results
of our paper. In this diagram, ψ and φ are pure states, ρ and σ

are mixed states, and N and M are channels. Note that ρ and σ

may be of different dimensions, depending on the context. The cells
are organized such that if a cell is connected to a cell above it, the
complexity class for the lower cell is a subset of that for the the higher
cell. For example, QMA is a subset of both QIP(2) and QMA(2).

the Hilbert-Schmidt distance of two arbitrary states are BQP-
complete. Intuitively, this means that these problems can be
solved efficiently on a quantum computer, and these prob-
lems furthermore capture the full power of polynomial-time
quantum computation (in the sense that the ability to solve
these problems implies the ability to solve an arbitrary BQP
problem).

Here we reproduce the definition of BQP for convenience.
Note that our definition given here differs somewhat from the
definition in [30], in that we restrict the circuits considered to
be unitary circuits; it is known that the two different defini-
tions are equivalent, in the sense that the computational power
of BQP does not change. Let A = (Ayes, Ano) be a promise
problem and let a, b : N → [0, 1] and p be polynomial func-
tions. Then A ∈ BQP(a, b) if there exists a polynomial-time
generated family Q = {Qn : n ∈ N} of unitary circuits, where
each circuit Qn takes n + p(n) input qubits and produces one
decision qubit D and n + p(n) − 1 garbage qubits G, with the
following properties (in what follows, we abbreviate each Qn

as QSA→DG, thereby suppressing the dependence on the input
length n = |x| and explicitly indicating the systems involved
at the input and output of the unitary):

(1) Completeness: For all x ∈ Ayes,

Pr[Q accepts x] = ‖(〈1|D ⊗ IG)QSA→DG(|x〉S ⊗ |0〉A)‖2
2

� a(|x|). (146)

(2) Soundness: For all x ∈ Ano,

Pr[Q accepts x] � b(|x|), (147)

where, as clarified by the mathematical expression in (146),
acceptance is defined as obtaining the outcome one upon
measuring the decision qubit register D. BQP is then defined
as BQP(2/3, 1/3).
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1. Fidelity between two pure states

We now prove that the promise version of the problem
of estimating the fidelity between two pure states is BQP-
complete. In this problem and all that follows, the parameter
x is the description of the circuits involved, and the length |x|
is the number of bits needed to describe these circuits.

Problem 1 ((α, β )-Fidelity-Pure-Pure). Let α and β be
such that 0 � α < β � 1. Given are descriptions of circuits
U ψ

S and U φ
S that prepare the pure states ψS and φS , respec-

tively. Decide which of the following holds:

Yes: F (ψS, φS ) � 1 − α, (148)

No: F (ψS, φS ) � 1 − β. (149)

Theorem 12. The promise problem Fidelity-Pure-Pure is
BQP-complete.

(1) (α, β )-Fidelity-Pure-Pure is in BQP for all α < β. (It
is implicit that the gap between α and β is larger than an
inverse polynomial in the input length.)

(2) (ε, 1 − ε)-Fidelity-Pure-Pure is BQP-hard, even when
ε decays exponentially in the input length.

Thus, (α, β )-Fidelity-Pure-Pure is BQP-complete for all
(α, β ) such that 0 < α < β < 1.

Proof. The containment of (α, β )-Fidelity-Pure-Pure in
BQP is a direct consequence of Algorithm 1.

So we focus on proving the hardness result. Consider an
arbitrary problem L in BQP. Thus, there exists a family Q of
circuits such that (146) and (147) hold. Given an instance x,
the acceptance probability of the BQP algorithm is

pacc = ‖(〈1|D ⊗ IG)Q|x〉S|0〉A‖2
2

= 〈x|S〈0|AQ†(|1〉〈1|D ⊗ IG)Q|x〉S|0〉A. (150)

To prove the hardness result (i.e., to see that this is an instance
of Fidelity-Pure-Pure), we use the BQP-subroutine theorem
[83]. Intuitively, we act with the circuit QSA→DG on the input
|x〉S|0〉A, apply a CNOT gate from the decision qubit to an
ancillary qubit initialized to |0〉C , apply the inverse unitary
Q†, measure the output qubits, and accept if we get the state
|x〉S|0〉A|1〉C . The acceptance probability of this procedure is
equal to

p̃acc = |(〈x|S〈0|A〈1|C )Q†CNOTDCQ(|x〉S|0〉A|0〉C )|2. (151)

Expanding CNOTDC as

CNOTDC := |0〉〈0|D ⊗ IC + |1〉〈1|D ⊗ XC, (152)

where XC denotes the Pauli-X operator, it follows that

p̃acc = |〈x|S〈0|AQ†(|1〉〈1|D ⊗ IG)Q|x〉S|0〉A|2. (153)

Comparing this expression to (150), we see that the modified
circuit has an acceptance probability equal to the square of the
acceptance probability of the original BQP problem. Thus, by
repeating the modified algorithm sufficiently many times, we
can estimate the acceptance probability p̃acc, and by taking
a square root, we can output an estimate of the acceptance
probability pacc of the original problem. In Appendix B we
derive the number of samples required to estimate pacc with
accuracy ε and error probability δ.

The last step to be shown is that the modified acceptance
probability p̃acc can be rewritten as the fidelity between two

pure states. From (151), we see that

p̃acc = |(〈x|S〈0|A〈1|C )Q†CNOTDCQ(|x〉S|0〉A|0〉C )|2
= F (|ψ〉〈ψ |, |φ〉〈φ|), (154)

where

|ψ〉 := |x〉S|0〉A|1〉C, (155)

|φ〉 := Q†CNOTDCQ|x〉S|0〉A|0〉C . (156)

Thus, an arbitrary instance of a BQP problem can be rewritten
as an instance of the fidelity between two pure states, proving
that Fidelity-Pure-Pure is indeed a BQP-hard problem. �

2. Fidelity between a pure state and a mixed state

Problem 2 ((α, β )-Fidelity-Pure-Mixed). Let α and β be
such that 0 � α < β � 1. Given are descriptions of circuits
U ρ

RS and U ψ
S that prepare a purification of a mixed state ρS and

a pure state ψS , respectively. Decide which of the following
holds:

Yes: F (ρS, ψS ) � 1 − α, (157)

No: F (ρS, ψS ) � 1 − β. (158)

Theorem 13. The promise problem Fidelity-Pure-Mixed is
BQP-complete.

(1) (α, β )-Fidelity-Pure-Mixed is in BQP for all α < β.
(It is implicit that the gap between α and β is larger than an
inverse polynomial in the input length.)

(2) (ε, 1 − ε)-Fidelity-Pure-Mixed is BQP-hard, even
when ε decays exponentially in the input length.

Thus, (α, β )-Fidelity-Pure-Mixed is BQP-complete for all
(α, β ) such that 0 < α < β < 1.

Proof. The containment of (α, β )-Fidelity-Pure-Mixed in
BQP is a direct consequence of Algorithm 3.

So we focus on proving the hardness result. Let L be an ar-
bitrary promise problem in BQP, and let {φx

DG}x be a family of
efficiently preparable pure states witnessing membership of L
in BQP. System D is a decision qubit indicating acceptance or
rejection of x, and system G is a garbage system that purifies
D. Suppose that the family {φx

DG}x has completeness 1 − δ and
soundness δ. If x is a yes-instance of L, then, by the definition
of BQP, it follows that ‖〈1|D|φx〉DG‖2

2 � 1 − δ. On the other
hand, if x is a no-instance of L, then ‖〈1|D|φx〉DG‖2

2 � δ. Since

‖〈1|D|φx〉DG‖2
2 = 〈1|D TrG

[
φx

DG

]|1〉D (159)

= F
(|1〉〈1|D, TrG

[
φx

DG

])
, (160)

it follows directly that this is an instance of (1 − δ, δ)-
Fidelity-Pure-Mixed, given that the reduced state TrG [φx

DG]
can be prepared efficiently, as well as the state |1〉〈1|D. The
desired hardness result then follows because BQP(c, s) ⊆
BQP(δ, 1 − δ), for every δ exponentially small in the input
length. �

3. Hilbert-Schmidt distance

The next result we prove is that the promise version of
the problem of estimating the normalized Hilbert-Schmidt
distance of two arbitrary states is BQP-complete. Recall that
the normalized Hilbert-Schmidt distance of two states ρ and
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σ is given by

1√
2
‖ρ − σ‖2 := 1√

2

√
Tr[(ρ − σ )2]

= 1√
2

√
Tr[ρ2] + Tr[σ 2] − 2 Tr[ρσ ]. (161)

If ρ = σ , then the Hilbert-Schmidt distance is equal to
zero. The prefactor of 2−1/2 is the correct normalization by the
following argument. Since Tr[ρσ ] � 0, the maximum value
of the normalized distance satisfies

1√
2

√
Tr[ρ2] + Tr[σ 2] − 2 Tr[ρσ ]

� 1√
2

√
Tr[ρ2] + Tr[σ 2]

� 1, (162)

where the second inequality follows because the purity of
an arbitrary state ρ satisfies Tr[ρ2] � 1. The upper bound is
achieved by pure orthogonal states.

Problem 3 ((α, β )-Hilbert-Schmidt-Distance). Let α and
β be such that 0 � α < β � 1. Given are descriptions of
circuits U ρ

RS and U σ
RS that prepare a purification of a mixed

states ρS and σS , respectively. Decide which of the following
holds:

Yes:
1√
2
‖ρS − σS‖2 � 1 − α, (163)

No:
1√
2
‖ρS − σS‖2 � 1 − β. (164)

Theorem 14. The promise problem Hilbert-Schmidt-
Distance is BQP-complete.

(1) (α, β )-Hilbert-Schmidt-Distance is in BQP for all α <

β. (It is implicit that the gap between α and β is larger than an
inverse polynomial in the input length.)

(2) (ε, 1 − ε)-Hilbert-Schmidt-Distance is BQP-hard,
even when ε decays exponentially in the input length.

Thus, (α, β )-Hilbert-Schmidt-Distance is BQP-complete
for all (α, β ) such that 0 < α < β < 1.

Proof. To show that the problem is BQP-complete, we need
to demonstrate two facts: first, that the problem is in BQP, and,
second, that it is BQP-hard. Let us begin by proving that the
problem is in BQP. This part of the proof is well known and
understood by now, and it has been used in many quantum
algorithms. We discuss it here for completeness. The intuitive
idea is to estimate each term in (162) separately using a swap
test. A term of the form Tr[ρσ ], where ρ and σ are n-qubit
states, can be estimated by repeatedly performing a swap test
sufficiently many times to get a good estimate. Since there are
only three terms to estimate, it follows that the problem is in
BQP.

Next, we show that any problem in the BQP class can
be reduced to this problem. A simpler way to show this is
to map a known BQP-complete problem to our problem. We
now show that the BQP-complete Fidelity-Pure-Pure problem
can be reduced to this problem. A special case of the Hilbert-
Schmidt-Distance problem is when both inputs are pure states.
In this scenario, the normalized Hilbert-Schmidt distance is

given by

1√
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖2 =

√
1 − |〈ψ |φ〉|2

=
√

1 − F (ψ, φ). (165)

Then the YES instance condition in (163) and (165) implies
that F (ψ, φ) � α(2 − α), in the case of a YES instance of
Hilbert-Schmidt-Distance, and the NO instance condition in
(164) and (165) implies that F (ψ, φ) � β(2 − β ), in the case
of a NO instance of Hilbert-Schmidt-Distance. Since the func-
tion x → x(2 − x) is a bijection on the unit interval [0,1], it
follows that the ability to decide Hilbert-Schmidt-Distance for
pure states implies the ability to decide Fidelity-Pure-Pure,
which is a BQP-complete problem by Theorem 12. We thus
conclude that Hilbert-Schmidt-Distance is BQP-Hard. This,
along with the fact that the problem is in the BQP class,
concludes the proof. �

Remark 15. The normalized Schatten-p distance between
two states ρ and σ is defined as

1

21/p
‖ρ − σ‖p := 1

21/p
(Tr[|ρ − σ |p])1/p. (166)

We can formulate promise problems from these quantities,
generalizing Hilbert-Schmidt-Distance in Problem 3. Plug-
ging pure states ψ and φ into (166) and exploiting the fact that
the eigenvalues of ψ − φ are equal to | sin θ | and −| sin θ | [56,
Proof of Theorem 9.3.1], where θ satisfies F (ψ, φ) = cos2 θ ,
it follows that

1

21/p
‖ψ − φ‖p =

√
1 − F (ψ, φ) (167)

for all p � 1. Thus, by the same reasoning given in the second
part of the proof of Theorem 14, we conclude that these
promise problems are all BQP-hard.

Now consider that estimating the Schatten-2k distance be-
tween two states, where k ∈ N, is in BQP. For constant k, each
term in the expansion of ‖ρ − σ‖2k

2k = Tr[(ρ − σ )2k] can be
estimated in polynomial time [84], in fact, in constant quan-
tum depth [85] after the circuits that prepare multiples copies
of ρ and σ are executed. Thus, combining with the above, we
conclude that, for each constant k ∈ N, the promise version of
the problem of estimating 1

21/(2k) ‖ρ − σ‖2k is a BQP-complete
problem.

B. Fidelity between a pure state and a channel (QMA-complete)

Next, we provide a proof that the promise version of the
problem of evaluating the fidelity between a channel and a
pure state is QMA-complete. The definition of QMA can be
found in [30], reproduced here for convenience (but again
slightly different in that we consider unitary circuits). Let A =
(Ayes, Ano) be a promise problem, let p, q be polynomially
bounded functions, and let a, b : N → [0, 1] be functions.
Then A ∈ QMAp(a, b) if there exists a polynomial-time gen-
erated family of unitary circuits Q = {Qn : n ∈ N}, where
each circuit Qn takes n + p(n) + q(n) input qubits and pro-
duces one decision qubit D and n + p(n) + q(n) − 1 garbage
qubits G, with the following properties (as before, we abbrevi-
ate each Qn as QSAP→DG, thereby suppressing the dependence
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on the input length n = |x| and explicitly indicating the sys-
tems involved at the input and output of the unitary):

(1) Completeness: For all x ∈ Ayes, there exists a q(|x|)-
qubit quantum state σ such that

Pr[Q accepts (x, σ )] = 〈1|D TrG[ωDG]|1〉D (168)

� a(|x|), (169)

where

ωDG := QSAP→DG(|x〉〈x|S ⊗ |0〉〈0|A ⊗ σP )(QSAP→DG)†.

(170)
(2) Soundness: For all x ∈ Ano, and all q(|x|)-qubit quan-

tum states σ , the following inequality holds:

Pr[Q accepts (x, σ )] � b(|x|). (171)

Then QMA = ⋃
p QMAp(2/3, 1/3), where the union is

over every polynomially bounded function p.
Problem 4 ((α, β )-Fidelity-Channel-Pure). Let α and β be

such that 0 � α < β � 1. Given are descriptions of circuits
UN

SR→BE and U ψ
B that prepare a unitary dilation of a channel

NS→B(·) := TrE
{
UN

SR→BE [(·)S ⊗ |0〉〈0|R]
(
UN

SR→BE

)†}
(172)

and a pure state ψB := U ψ
B |0〉〈0|B(U ψ

B )†, respectively. Decide
which of the following holds:

Yes: max
ρS

F (NS→B(ρS ), ψB) � 1 − α, (173)

No: max
ρS

F (NS→B(ρS ), ψB) � 1 − β, (174)

where the maximization is over every input density
operator ρS .

Theorem 16. The promise problem Fidelity-Channel-Pure
is QMA-complete.

(1) (α, β )-Fidelity-Channel-Pure is in QMA for all α < β.
(It is implicit that the gap between α and β is larger than an
inverse polynomial in the input length.)

(2) (ε, 1 − ε)-Fidelity-Channel-Pure is QMA-hard, even
when ε decays exponentially in the input length.

Thus, (α, β )-Fidelity-Channel-Pure is QMA-complete for
all (α, β ) such that 0 < α < β < 1.

Proof. To show that the problem is QMA-complete, we
need to demonstrate two facts: first, that the problem is in
QMA, and, second, that it is QMA-hard.

Let us begin by proving that the problem is in QMA. The
intuitive idea is that the prover sends an optimal state ρS

to the verifier, who then performs the channel NS→B on it,
followed by the unitary (U ψ

B )†. The verifier then performs a
computational basis measurement on all registers of system B
and accepts if and only if the all-zeros measurement outcome
occurs. Indeed, the acceptance probability of this scheme is
precisely equal to the fidelity in (173):

〈0|B(U ψ
B )†NS→B(ρS )U ψ

B |0〉B = 〈ψ |SNS→B(ρS )|ψ〉S

= F (NS→B(ρS ), ψB). (175)

To bring the original expression more closely to the form
given in (168), observe that

〈0|B
(
U ψ

B

)†NS→B(ρS )U ψ
B |0〉B

= 〈1|BXB
(
U ψ

B

)†
TrE

[
UN

SR→BE (|0〉〈0|R ⊗ ρS )
(
UN

SR→BE

)†]
× U ψ

B XB|1〉B, (176)

where XB is understood to be the tensor power Pauli-X op-
erator acting on all qubits of the B register. To bring the
final expression exactly into the form (168), we need a single
decision qubit that we measure. We can use a multicontrolled
Toffoli gate from the B register to a single-qubit decision
qubit. Thus, if we identify x with 0, σ with ρS , and Qn

with (XB ⊗ IE ) ◦ ((U ψ
B )† ⊗ IE ) ◦ UN

SR→BE , it follows that the
problem belongs to the QMA class.

Next, we show that any problem in the QMA class can be
polynomially reduced to this problem. Let P be an arbitrary
problem in the QMA class. This implies that (168) and (171)
must hold. This problem can then be thought of as a fidelity
problem with a channel Mx defined as

Mx
SAP→D(·) := TrG{Q[|x〉〈x|S ⊗ |0〉〈0|A ⊗ (·)]Q†}. (177)

Furthermore, we identify the state ψ from the fidelity problem
with |1〉〈1|D, and then we find that

〈1D| TrG[Q(|x〉〈x|S ⊗ |0〉〈0|A ⊗ σP )Q†]|1〉D

= 〈1|GMx
SAP→D(σ )|1〉G (178)

= F (Mx(σ ), |1〉〈1|). (179)

It follows directly that this is an instance of (1 − a(|x|), 1 −
b(|x|))-Fidelity-Channel-Pure, given that the channel Mx can
be prepared efficiently, as well as the state |1〉〈1|. The desired
hardness result then follows because QMA(1 − a(|x|), 1 −
b(|x|)) ⊆ QMA(δ, 1 − δ), for every δ exponentially small in
the input length. �

C. Fidelity between a pure state and a channel
with separable input (QMA(2)-complete)

Last, we provide a proof for the result that the promise
version of the problem of evaluating the fidelity between a
pure state and a channel with a separable state as input is
QMA(2)-complete. A state is separable if and only if is it not
entangled. A separable state σSR can be expanded as follows:

σSR =
∑

k

p(k)|ϕk〉〈ϕk|S ⊗ |φk〉〈φk|R, (180)

where {p(k)}k is a probability distribution and {|ϕk〉〈ϕk|S}k

and {|φk〉〈φk|R}k are sets of pure states. SEP is defined as
the set of all separable states. QMA(2) is a generalization of
QMA with proofs that consist of two systems guaranteed to
be unentangled [38,39].

We reproduce the definition of QMA(2) for convenience.
Let A = (Ayes, Ano) be a promise problem, let p, q, r be
polynomially bounded functions, and let a, b : N → [0, 1]
be functions. Then A ∈ QMA(2)p,q(a, b) if there exists a
polynomial-time generated family of circuits Q = {Qn : n ∈
N}, where each circuit Qn takes n + p(n) + q(n) + r(n) input
qubits and produces one decision qubit D and n + p(n) +
q(n) + r(n) − 1 garbage qubits G, with the following prop-
erties (again, we employ the notation QSAP1P2→DG in what
follows):

(1) Completeness: For all x ∈ Ayes, there exists a q(|x|)-
qubit state ρ and an r(|x|)-qubit state σ such that

Pr[Q accepts (x, ρ, σ )] = 〈1|D TrG[ωDG]|1〉D

� a(|x|), (181)
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where

ωDG := QSAP1P2→DG(|x〉〈x|S ⊗ |0〉〈0|A ⊗ ρP1 ⊗ σP2 )

× (QSAP1P2→DG)†. (182)

(2) Soundness: For all x ∈ Ano, and every q(|x|)-qubit
state ρ and r(|x|)-qubit state σ , the following inequality holds:

Pr[Q accepts (x, ρ, σ )] � b(|x|). (183)

Then QMA(2) = ⋃
p QMA(2)p,q(2/3, 1/3), where the

union is over all polynomially bounded functions p and q.
Problem 5 ((α, β )-Fidelity-Pure-Channel-Sep-Inp). Let α

and β be such that 0 � α < β � 1. Given are descriptions of
circuits UN

SRE→AE ′ and U ψ
A that prepare a unitary dilation of a

channel

NSR→A(·) := TrE ′
{
UN

SRE→AE ′ [(·)SR ⊗ |0〉〈0|E ]
(
UN

SRE→AE ′
)†}

,

(184)

and a pure state ψA, respectively. Decide which of the follow-
ing holds:

Yes: max
σSR∈SEP

F (NSR→A(σSR), ψA) � 1 − α, (185)

No: max
σSR∈SEP

F (NSR→A(σSR), ψA) � 1 − β. (186)

Theorem 17. The promise problem Fidelity-Pure-
Channel-Sep-Inp is QMA(2)-complete.

(1) (α, β )-Fidelity-Pure-Channel-Sep-Inp is in QMA(2)
for all α < β. (It is implicit that the gap between α and β

is larger than an inverse polynomial in the input length.)
(2) (ε, 1 − ε)-Fidelity-Pure-Channel-Sep-Inp is QMA(2)-

hard, even when ε decays exponentially in the input length.
Thus, (α, β )-Fidelity-Pure-Channel-Sep-Inp is QMA(2)-

complete for all (α, β ) such that 0 < α < β < 1.
Proof. To show that the problem is QMA(2)-complete, we

need to demonstrate two facts: first, that the problem is in
QMA(2), and, second, that it is QMA(2)-hard. Let us begin
by proving that the problem is in QMA(2). The intuitive idea
is that the two provers, using shared randomness, send an
optimal separable state σSR to the verifier, who then performs
the channel NSR→A on it, followed by the unitary (U ψ

A )†. [Note
that QMA(2) remains unchanged if the provers have access
to shared randomness [39].] The verifier then performs a
computational basis measurement on all registers of system A
and accepts if and only if the all-zeros measurement outcome
occurs.

Consider that a separable state can be decomposed as

σSR =
∑

k

p(k)|ϕk〉〈ϕk|S ⊗ |φk〉〈φk|R. (187)

Indeed, the acceptance probability of this scheme is precisely
equal to the fidelity in (185):

F (NSR→A(σSR), ψA) = 〈ψ |ANSR→A(σSR)|ψ〉A

=
∑

k

p(k)〈ψ |ANSR→A(|ϕk〉〈ϕk|S

⊗ |φk〉〈φk|R)|ψ〉A.

The final expression is an average of individual elements.
Thus, taking a maximization over all separable states and

noting that the maximum is always greater than the average,
we conclude that

max
σSR∈SEP

F (NSR→A(σSR), ψA)

= max
|ϕ〉S ,|φ〉R

〈ψ |ANSR→A(ϕS ⊗ φR)|ψ〉A

= max
|ϕ〉S ,|φ〉R

〈0|A(U ψ
A )†NSR→A(ϕS ⊗ φR)U ψ

A |0〉A. (188)

Thus, we see that

max
σSR∈SEP

F (NSR→A(σSR), ψA)

= max
|ϕ〉S ,|φ〉R

〈1|AXA
(
U ψ

A

)†
TrE ′

[
UN

SRE→AE ′ (|0〉〈0|E ⊗ ϕS ⊗ φR)

× (
UN

SRE→AE ′
)†]

U ψ
A XA|1〉A,

(189)

where XA is understood to be the tensor-power Pauli-X oper-
ator acting on all qubits of the A register. To bring the final
expression into the precise form in (181), we need a single
decision qubit that we measure. We can use a multicontrolled
Toffoli gate from the A register to a single-qubit decision
qubit. Thus, if we identify x with 0, ρ with ϕS , σ with φR

and Qn with (XA ⊗ IR) ◦ [(U ψ
A )† ⊗ IR] ◦ UN

SRE→AE ′ , it follows
that the problem belongs to the QMA(2) class.

Next, we show that any problem in the QMA(2) class can
be polynomially reduced to this problem. Let P be an arbitrary
problem in the QMA(2) class. This implies that (181) and
(183) must hold. This problem can then be thought of as a
fidelity problem with a channel Mx defined as

Mx
SAP1P2→D(·) := TrG{Qn[|x〉〈x|S ⊗ |0〉〈0|A ⊗ (·)P1P2 ]Q†

n}.
(190)

Furthermore, by identifying the state ψ from the fidelity prob-
lem with |1〉〈1|, then we find that

〈1| TrG[Q(|x〉〈x|S ⊗ |0〉〈0|A ⊗ ψ1 ⊗ ψ2)Q†]|1〉 (191)

= 〈1|Mx(ψ1 ⊗ ψ2)|1〉 (192)

= F (Mx(ψ1 ⊗ ψ2), |1〉〈1|). (193)

It follows directly that this is an instance of (1 − a(|x|), 1 −
b(|x|))-Fidelity-Channel-Pure, given that the channel Mx can
be prepared efficiently, as well as the state |1〉〈1|. The desired
hardness result then follows because QMA(1 − a(|x|), 1 −
b(|x|)) ⊆ QMA(δ, 1 − δ), for every δ exponentially small in
the input length (see [39, Theorem 9]). �

VI. GENERATING FIXED POINTS
OF QUANTUM CHANNELS

In this section we discuss how Algorithm 10 can generate
a fixed-point state or an approximate fixed-point state of a
quantum channel. There are various associated subtleties in
such a scenario that we consider.

As a special case of Algorithm 10, we can select N 0
A→B to

be a channel N with its output and input systems having the
same dimension (i.e., |A| = |B|), and we can select the second
channel N 1

A→B to be the identity channel. In this case the
quantity in (78) is always equal to one. This follows from the
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well known fact that every quantum channel with matching
input and output systems has a fixed-point state [86] (see
also [87,88]) and because the prover’s goal is to maximize
the acceptance probability. That is, for every such channel N ,
there exists a state ρ such that

N (ρ) = ρ, (194)

and so the prover can simply send this state. Related to this,
there is a faithfulness property that holds. If the acceptance
probability is equal to one, then it follows that

sup
ρ

F (N (ρ), ρ) = 1, (195)

and we conclude that there exists a state ρ satisfying (194) be-
cause the fidelity is continuous and the set of density operators
is convex and compact.

What is interesting in this case is that Algorithm 10 outputs
a fixed point of the channel N . Fixed points of quantum chan-
nels are important not only for understanding thermalization
in a physical process [89] (a fixed point can be understood as
an equilibrium state of the channel) but also in the Deutschian
theory of closed timelike curves [87].

We can also modify this approach slightly and employ Al-
gorithm 13. In this case, the verifier can employ the following
ensemble of channels {

1

L
,N �

}L−1

�=0

, (196)

where N � here is defined as

N � = N ◦ · · · ◦ N︸ ︷︷ ︸
� times

. (197)

In this case, the acceptance probability of Algorithm 13 is
given by [

1

L
sup
ρ,σ

L−1∑
�=0

√
F (N �(ρ), σ )

]2

. (198)

This is again equal to one because the prover can transmit a
fixed point to the verifier, which satisfies

N �(ρ) = ρ ∀� ∈ {0, . . . , L − 1}. (199)

Similarly, in this case, a faithfulness property holds as well. If
the expression in (198) is equal to one, then there exists a state
ρ satisfying (199). Furthermore, Algorithm 13 outputs a fixed
point satisfying (198).

The cases outlined above are simple. The situation be-
comes more subtle when the verifier tries to use the state sent
by the prover to solve a computational problem, as is the case
in quantum computation in the presence of Deutschian closed
timelike curves [90]. In this case, there are different goals,
which are (1) to pass the test of the verifier in Algorithm 13,
as well as (2) to have the decision qubit be as close as possible
to the |1〉〈1| state. In this case, the prover need not send an
exact fixed point, but only send an approximate fixed point,
satisfying

F (ρ,N (ρ)) � 1 − ε (200)

or [
1

L
sup
σ

L−1∑
�=0

√
F (N �(ρ), σ )

]2

� 1 − ε, (201)

where ε ∈ (0, 1). The prover can do this to optimize the over-
all acceptance probability of the QIP algorithm. Somewhat
counterintuitively, approximate fixed points need not be close
to exact fixed points, as illustrated by the following example.
Suppose that N is a classical channel that takes 1 → 1 de-
terministically, but then takes 0 → 0 with probability 1 − ε

and 0 → 1 with probability ε. In this case, 1 is the exact fixed
point of this stochastic process, but 0 is an approximate fixed
point satisfying (200). However, 0 is completely distinguish-
able from 1 (the fidelity of these two classical states is equal
to zero).

In Appendix C we discuss various issues related to fixed
points and approximate fixed points of quantum channels
when attempting to understand quantum interactive proofs
and the computational complexity of Deutschian closed time-
like curves.

VII. CONCLUSION

In this paper we have delineated several algorithms for es-
timating distinguishability measures on quantum computers.
All of the measures are based on trace distance or fidelity, and
we have considered them for quantum states, channels, and
strategies. Many of the algorithms rely on interaction with
a quantum prover, and in these cases we have replaced the
prover with a parameterized quantum circuit. As such, these
methods are not guaranteed to converge for all possible states,
channels, and strategies. It is an interesting open question to
determine conditions under which the algorithms are guaran-
teed to converge and run efficiently.

We have also simulated several of the algorithms in both
the noiseless and noisy scenarios. We found that the simu-
lations converge well for all states and channels considered,
and for all algorithms simulated. As more advanced quantum
computers become available (with more qubits and greater
reliability), it would be interesting to simulate our algorithms
for states and channels involving larger numbers of qubits.
All of our Python code is written in a modular way, such
that it will be straightforward to explore this direction. Last,
we proved several complexity-theoretic results about various
distance estimation algorithms; in particular, we showed and,
in some cases, recalled that there is a fidelity or distance
estimation problem that is complete for the commonly studied
complexity classes BQP, QMA, QMA(2), QSZK, QIP(2), and
QIP.

Going forward from here, it remains open to determine
methods for estimating other distinguishability measures such
as the Petz-Rényi relative entropy [91,92] and the sandwiched
Rényi relative entropy [93,94] of channels [11] and strategies
[12]. More generally, one could consider distinguishability
measures beyond these. One desirable aspect of the algo-
rithms appearing in this paper is that they provide a one-shot
interpretation for the various distinguishability measures as
the maximum acceptance probability in a quantum inter-
active proof (with the trace-distance based algorithms and
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interpretations being already known from [8,17,18,63,64]).
However, it is unclear to us whether one could construct a
quantum interactive proof for which the maximum acceptance
probability is related to the Petz or sandwiched Rényi relative
entropy of a channel or a strategy.

Note added. Recently we noticed the paper [95], which is
related to the contents of Sec. III.
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APPENDIX A: PROOFS

1. Proof of Theorem 1

Proof of Theorem 1. After Step 1 of Algorithm 4, the global
state is

|�〉T ′T |0〉RS. (A1)

After Step 2 of Algorithm 4, it is

1√
2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψ i〉RS. (A2)

After Step 4 of Algorithm 4, it is

PT ′RF→T ′′F ′

⎛
⎝ 1√

2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψ i〉RS|0〉F

⎞
⎠. (A3)

For a fixed unitary P ≡ PT ′RF→T ′′F ′ of the prover, the accep-
tance probability is then∥∥∥∥∥∥〈�|T ′′T P

⎛
⎝ 1√

2

∑
i∈{0,1}

|i〉T ′ |i〉T |ψ i〉RS|0〉F

⎞
⎠
∥∥∥∥∥∥

2

2

= 1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T |ψ i〉RS|0〉F

∥∥∥∥∥∥
2

2

. (A4)

In a quantum interactive proof, the prover is trying to
maximize the probability that the verifier accepts. So the ac-
ceptance probability of Algorithm 4 is given by

max
PT ′RF→T ′′F ′

1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T |ψ i〉RS|0〉F

∥∥∥∥∥∥
2

2

. (A5)

Setting

P0
R→F ′ := 〈0|T ′′PT ′RF→T ′′F ′ |0〉T ′ |0〉F , (A6)

P1
R→F ′ := 〈1|T ′′PT ′RF→T ′′F ′ |1〉T ′ |0〉F , (A7)

we have that

1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T |ψ i〉RS|0〉F

∥∥∥∥∥∥
2

2

= 1

4

∥∥∥∥∥∥
∑

i∈{0,1}
Pi

R→F ′ |ψ i〉RS

∥∥∥∥∥∥
2

2

(A8)

= 1

4

∑
i, j∈{0,1}

〈ψ i|RS (Pi
R→F ′ )†P j

R→F ′ |ψ j〉RS (A9)

� 1

2

{
1 + Re

[〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

]}
(A10)

� 1

2

[
1 + ∣∣〈ψ0|RS

(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣]. (A11)

The first inequality follows because Pi
R→F ′ is a contraction for

i ∈ {0, 1}, so that (Pi
R→F ′ )†Pi

R→F ′ � IF ′ . Then consider that∣∣〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣
� max

P0,P1

{∣∣〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣
:
∥∥Pi

∥∥
∞ � 1 ∀i

}
(A12)

=
√

F
(
ρ0

S , ρ1
S

)
. (A13)

The last line is a consequence of the following reasoning
(which is the same as that employed in Sec. III in [49]). The
inequality

max
P0,P1

{∣∣〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣
: ‖Pi‖∞ � 1 ∀i

}
�

√
F
(
ρ0

S , ρ1
S

)
(A14)

holds because the isometries P0
R→F ′ and P1

R→F ′ that achieve
the maximum for the fidelity are each contractions and the
optimization is conducted over all contractions. The opposite
inequality

max
P0,P1

{∣∣〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣
: ‖Pi‖∞ � 1 ∀i

}
�

√
F
(
ρ0

S , ρ1
S

)
(A15)

is a consequence of the fact that every contraction can be
written as a convex combination of isometries [96, Theorem
5.10]. Indeed, this means that, for each i ∈ {0, 1},

Pi
R→F ′ =

∑
x

pi(x)W i,x
R→F ′ , (A16)

where {pi(x)}x is a probability distribution and W i,x
R→F ′ is an

isometry, for each i and x. Then we find that∣∣〈ψ0|RS
(
P0

R→F ′
)†

P1
R→F ′ |ψ1〉RS

∣∣
=
∣∣∣∣∣ 〈ψ0|RS

[∑
x p0(x)W 0,x

R→F ′
]†

×[∑x′ p1(x′)W 1,x′
R→F ′

]|ψ1〉RS

∣∣∣∣∣ (A17)

=
∣∣∣∣∣∣
∑
x,x′

p0(x)p1(x′)〈ψ0|RS
(
W 0,x

R→F ′
)†

W 1,x′
R→F ′ |ψ1〉RS

∣∣∣∣∣∣
(A18)
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�
∑
x,x′

p0(x)p1(x′)
∣∣〈ψ0|RS

(
W 0,x

R→F ′
)†

W 1,x′
R→F ′ |ψ1〉RS

∣∣
(A19)

� max
x,x′

∣∣〈ψ0|RS
(
W 0,x

R→F ′
)†

W 1,x′
R→F ′ |ψ1〉RS

∣∣ (A20)

�
√

F
(
ρ0

S , ρ1
S

)
. (A21)

Thus, an upper bound on the acceptance probability of Algo-
rithm 4 is as follows:

1

2

[
1 +

√
F
(
ρ0

S , ρ1
S

)]
. (A22)

This upper bound can be achieved if the prover applies a
unitary extension of the following isometry:

PT ′RF→T ′′F ′ =
∑

i∈{0,1}
|i〉T ′′ 〈i|T ′ ⊗ Pi

R→F ′ ⊗ 〈0|F , (A23)

where P0
R→F ′ and P1

R→F ′ are isometries achieving the maxi-
mum in the fidelity F (ρ0

S , ρ1
S ). �

2. Proof of Theorem 2

Proof of Theorem 2. After Step 1 of Algorithm 5, the global
state is

|�〉T ′T |0〉R1S1R2S2 . (A24)

After Step 2, the global state is

|�〉T ′T
∣∣ψρ0 〉

R1S1

∣∣ψρ1 〉
R2S2

. (A25)

After Step 3, it becomes

1√
2
|0〉T |0〉T ′

∣∣ψρ0 〉
R1S1

∣∣ψρ1 〉
R2S2

+ 1√
2
|1〉T |1〉T ′

∣∣ψρ1 〉
R2S1

∣∣ψρ0 〉
R1S2

. (A26)

The verifier then sends systems T ′, R1, and R2 to the
prover, who appends the state |0〉F and acts with a unitary

PT ′R1R2F→T ′′F ′ . Without loss of generality, and for simplicity of
the ensuing analysis, we can imagine that before applying the
unitary PT ′R1R2F→T ′′F ′ , the prover applies a controlled SWAP
to systems T ′, R1, and R2, so that the state before applying
PT ′R1R2F→T ′′F ′ is as follows:

1√
2
|0〉T |0〉T ′

∣∣ψρ0 〉
R1S1

∣∣ψρ1 〉
R2S2

+ 1√
2
|1〉T |1〉T ′

∣∣ψρ1 〉
R1S1

∣∣ψρ0 〉
R2S2

. (A27)

This follows because the prover can apply arbitrary uni-
taries to his received systems, and one such possible unitary
is to apply this controlled SWAP, undo it, and then apply
PT ′R1R2F→T ′′F ′ . However, the latter two unitaries are a particu-
lar example of a unitary PT ′R1R2F→T ′′F ′ . So we proceed with
the ensuing analysis assuming that the global state, before
the prover applies PT ′R1R2F→T ′′F ′ , is given by (A27). Note
that the actions of tensoring in the state |0〉F and applying
PT ′R1R2F→T ′′F ′ together constitute an isometry

PT ′R1R2→T ′′F ′ := PT ′R1R2F→T ′′F ′ |0〉F , (A28)
resulting in the state

1√
2

PT ′R1R2→T ′′F ′ |0〉T |0〉T ′
∣∣ψρ0 〉

R1S1

∣∣ψρ1 〉
R2S2

+ 1√
2

PT ′R1R2→T ′′F ′ |1〉T

∣∣1〉T ′
∣∣ψρ1〉R1S1

∣∣ψρ0 〉
R2S2

. (A29)

Let us set

P00
R1R2→F ′ := 〈0|T ′′PT ′R1R2→T ′′F ′ |0〉T ′ , (A30)

P11
R1R2→F ′ := 〈1|T ′′PT ′R1R2→T ′′F ′ |1〉T ′ . (A31)

The verifier finally performs a Bell measurement and accepts
if and only if the outcome �T ′′T occurs. The acceptance prob-
ability is then

∥∥∥∥〈�|T T ′′
1√
2

(|0〉T PT ′R1R2→T ′′F ′ |0〉T ′ |ψρ0〉R1S1 |ψρ1〉R2S2 + |1〉T PT ′R1R2→T ′′F ′ |1〉T ′ |ψρ1〉R1S1 |ψρ0〉R2S2

)∥∥∥∥2

2

= 1

4

∥∥〈0|T ′′PT ′R1R2→T ′′F ′ |0〉T ′ |ψρ0〉R1S1 |ψρ1〉R2S2 + 〈1|T ′′PT ′R1R2→T ′′F ′ |1〉T ′ |ψρ1〉R1S1 |ψρ0〉R2S2

∥∥2

2 (A32)

= 1

4

∥∥P00
R1R2→F ′ |ψρ0〉R1S1 |ψρ1〉R2S2 + P11

R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

∥∥2

2
(A33)

= 1

4

⎛
⎜⎜⎜⎜⎝

〈ψρ0 |R1S1〈ψρ1 |R2S2

(
P00

R1R2→F ′
)†

P00
R1R2→F ′ |ψρ0〉R1S1 |ψρ1〉R2S2

+〈ψρ1 |R1S2〈ψρ0 |R2S1

(
P11

R1R2→F ′
)†

P11
R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

+〈ψρ0 |R1S1〈ψρ1 |R2S2

(
P00

R1R2→F ′
)†

P11
R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

+〈ψρ1 |R1S1〈ψρ0 |R2S2

(
P11

R1R2→F ′
)†

P00
R1R2→F ′ |ψρ0〉R1S1 |ψρ1〉R2S2

⎞
⎟⎟⎟⎟⎠ (A34)

� 1

4

{
2 + 2 Re

[〈ψρ0 |R1S1〈ψρ1 |R2S2

(
P00

R1R2→F ′
)†

P11
R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

]}
(A35)

� 1

4

[
2 + 2

∣∣〈ψρ0 |R1S1〈ψρ1 |R2S2

(
P00

R1R2→F ′
)†

P11
R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

∣∣] (A36)

= 1

2

[
1 + ∣∣〈ψρ0 |R1S1〈ψρ1 |R2S2

(
P00

R1R2→F ′
)†

P11
R1R2→F ′ |ψρ1〉R1S1 |ψρ0〉R2S2

∣∣] (A37)
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� 1

2

(
1 + max

UR1R2

|〈ψρ0 |R1S1〈ψρ1 |R2S2UR1R2 |ψρ1〉R1S1 |ψρ0〉R2S2 |
)
. (A38)

The steps given above follow for reasons very similar to
those given in the proof of Theorem 1. Continuing, we find
that

Eq. (A38) = 1

2
[1 +

√
F (ρ0 ⊗ ρ1, ρ1 ⊗ ρ0)] (A39)

= 1

2
[1 +

√
F (ρ0, ρ1)F (ρ1, ρ0)] (A40)

= 1

2
[1 + F (ρ0, ρ1)], (A41)

where we used the multiplicativity of the fidelity for tensor-
product states to get (A40) and the symmetric property of
fidelity to arrive at (A41). Thus, we have established (25) as an
upper bound on the acceptance probability. This upper bound
can be achieved by setting F ′ � R1R2 and

PT ′R1R2F→T ′′F ′ = |0〉T ′′ 〈0|T ′ ⊗ IR1R2→F ′ ⊗ 〈0|F (A42)

+ |1〉T ′′ 〈1|T ′ ⊗ UR1 ⊗ U †
R2

⊗ 〈0|F , (A43)

where UR1 is a unitary that achieves the fidelity for F (ρ0, ρ1),
so that

√
F (ρ0, ρ1) = 〈

ψρ0 ∣∣
R1S1

UR1

∣∣ψρ1 〉
R1S1

. (A44)

This concludes the proof. �

3. Proof of Theorem 3

Proof of Theorem 3. After Step 1 of Algorithm 8, the global
state is

|�〉T ′T |ψ〉RA|0〉E ′ . (A45)

After Step 2 of Algorithm 8, it is

1√
2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|0〉E ′ , (A46)

where U i ≡ U i
AE ′→BE for i ∈ {0, 1}. After Step 4 of Algorithm

8, it is

P

⎛
⎝ 1√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|00〉E ′F

⎞
⎠, (A47)

where P ≡ PT ′EF→T ′′F ′ . For a fixed unitary PT ′EF→T ′′F ′ of
the max-prover and fixed state |ψ〉RA of the min-prover, the
acceptance probability is then∥∥∥∥∥∥〈�|T ′′T P

⎛
⎝ 1√

2

∑
i∈{0,1}

|i〉T ′ |i〉T U i|ψ〉RA|00〉E ′F

⎞
⎠
∥∥∥∥∥∥

2

2

= 1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T U i|ψ〉RA|00〉E ′F

∥∥∥∥∥∥
2

2

. (A48)

In a competing-provers quantum interactive proof, the max-
prover is trying to maximize the probability that the verifier

accepts, while the min-prover is trying to minimize the accep-
tance probability. Since the max-prover plays second in this
game, the acceptance probability of Algorithm 8 is given by

min
|ψ〉RA

max
P

1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|ii〉T ′T U i|ψ〉RA|00〉E ′F

∥∥∥∥∥∥
2

2

. (A49)

Applying the analysis of Theorem 1, it follows that

max
P

1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|ii〉T ′T U i|ψ〉RA|00〉E ′F

∥∥∥∥∥∥
2

2

= 1

2

[
1 +

√
F

(
N 0

A→B(ψRA),N 1
A→B(ψRA)

)]
. (A50)

Thus, after applying the minimization over every input state
ψRA, the claim in (62) follows. �

4. Proof of Theorem 4

Proof of Theorem 4. After Step 1 of Algorithm 9, the global
state is

|�〉T ′T |ψ〉RA|0〉E ′n , (A51)

where we have employed the shorthand E ′n ≡ E ′
1 · · · E ′

n. After
Step 6 of Algorithm 9, the global state is∣∣ϕ(ψ, {S j}n−1

j=1

)〉 ≡ 1√
2

∑
i∈{0,1}

|i〉T ′ |i〉T U i,n−1

×
n−1∏
j=1

(S jU i, j )|ψ〉RA|0〉E ′n , (A52)

where we have omitted many of the system labels for simplic-
ity. After Step 8 of Algorithm 9, the global state is

P
∣∣ϕ(ψ, {S j}n−1

j=1

)〉
. (A53)

For a fixed unitary P of the max-prover and a fixed pure
costrategy (ψ, {S j}n−1

j=1 ) of the min-prover, the acceptance
probability is thus∥∥〈�|T ′′T P

∣∣ϕ(ψ, {S j}n−1
j=1

)〉∥∥2

2
. (A54)

In a double-prover quantum interactive proof, the max-prover
is trying to maximize the probability that the verifier accepts,
while the min-prover is trying to minimize the acceptance
probability. Since the max-prover plays second in this game,
the acceptance probability of Algorithm 9 is given by

min
(ψ,{S j}n−1

j=1 )
max

P

∥∥〈�|T ′′T P
∣∣ϕ(ψ, {S j}n−1

j=1

)〉∥∥2

2
. (A55)

Applying the analysis of Theorem 1, it follows that

max
P

∥∥〈�|T ′′T P
∣∣ϕ(ψ, {S j}n−1

j=1

)〉∥∥2

2

= 1

2
[1 +

√
F (N 0,(n) ◦ S (n−1),N 1,(n) ◦ S (n−1))]. (A56)
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Thus, after applying a minimization over every pure costrat-
egy S (n−1), the claim in (77) follows. �

5. Proof of Theorem 5

Proof of Theorem 5. After Step 2 of Algorithm 10, the
global state is

|�〉T ′T |ψ〉RA|0〉E ′ . (A57)

After Step 3, the global state is

1√
2

∑
i∈{0,1}

|i〉T ′ |i〉T U i
AE ′→BE |ψ〉RA|0〉E ′ . (A58)

After Step 5, it is

1√
2

P
∑

i∈{0,1}
|i〉T ′ |i〉T U i

AE ′→BE |ψ〉RA|0〉E ′ , (A59)

where P ≡ PT ′EF→T ′′F ′ . For a fixed state |ψ〉RA and unitary
PT ′EF→T ′′F ′ of the prover, the acceptance probability is

1

2

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T U i

AE ′→BE |ψ〉RA|0〉E ′

∥∥∥∥∥∥
2

2

. (A60)

In a QIP algorithm, the prover chooses his actions in order to
maximize the acceptance probability, so that the acceptance
probability is

1

2
sup

|ψ〉RA,
P

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T U i

AE ′→BE |ψ〉RA|0〉E ′

∥∥∥∥∥∥
2

2

.

(A61)

By the same reasoning employed in the proof of Theorem 1,
we conclude that

1

2
sup

P

∥∥∥∥∥∥〈�|T ′′T P
∑

i∈{0,1}
|i〉T ′ |i〉T U i

AE ′→BE |ψ〉RA|0〉E ′

∥∥∥∥∥∥
2

2

= 1

2

[
1 +

√
F

(
N 0

A→B(ρA),N 1
A→B(ρA)

)]
, (A62)

where ρA is the reduced state of ψRA (i.e., TrR[ψRA] = ρA).
Now including the optimization over every pure state ψRA, we
conclude the claim in (82). �

6. Proof of Theorem 6

Proof of Theorem 6. After Step 2 of Algorithm 11, the
global state is ∑

x∈X

√
p(x)|xx〉T ′T |ψx〉RS. (A63)

After Step 4, it is

P
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F , (A64)

where P ≡ PT ′RF→T ′′F ′ . Then, for a fixed unitary PT ′RF→T ′′F ′ ,
the acceptance probability is∥∥∥∥∥〈�|T ′′T P

∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F

∥∥∥∥∥
2

2

= sup
|ϕ〉F ′S

∣∣∣∣∣〈�|T ′′T 〈ϕ|F ′SP
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F

∣∣∣∣∣
2

,

(A65)

where the optimization is over every pure state |ϕ〉F ′S and we
have used the fact that ‖|φ〉‖2

2 = sup|ψ〉:‖|ψ〉‖2=1 |〈ψ |φ〉|2. This
implies that the acceptance probability is given by

sup
|ϕ〉F ′S,P

∣∣∣∣∣〈�|T ′′T 〈ϕ|F ′SP
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F

∣∣∣∣∣
2

.

(A66)
Recall Uhlmann’s theorem [3], which is the statement that

F (ωC, τC ) = sup
VB

|〈ϕτ |BCVB ⊗ IC |ϕω〉BC |2, (A67)

where ωC and τC are density operators with respective purifi-
cations |ϕω〉BC and |ϕτ 〉BC and the optimization is over every
unitary VB. Observing that the unitary PT ′RF→T ′′F ′ acts on
systems T ′RF of

∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F and systems

T ′′F ′ of |�〉T ′′T |ϕ〉F ′S , that their respective reduced states on
systems T S are ∑

x∈X
p(x)|x〉〈x|T ⊗ ρx

S, (A68)

πT ⊗ σS, (A69)

where πT is the maximally mixed state and σS := TrF ′[ϕF ′S],
and applying Uhlmann’s theorem, we conclude that the accep-
tance probability is given by

sup
σS

F

(∑
x∈X

p(x)|x〉〈x|T ⊗ ρx
S, πT ⊗ σS

)
(A70)

=
[

sup
σS

√
F

(∑
x∈X

p(x)|x〉〈x|T ⊗ ρx
S, πT ⊗ σS

)]2

(A71)

= 1

d

[
sup
σS

∑
x∈X

√
p(x)

√
F(ρx

S, σS )

]2

. (A72)

In the second equality, we made use of the direct-sum property
of the root fidelity [58, Proposition 4.29]. We note here that
the analysis employed is the same as that used to show that
the CLOSE-IMAGE problem is QIP(2)-complete [82,97].

We can also write the acceptance probability as∥∥∥∥∥〈�|T ′′T P
∑
x∈X

√
p(x)|xx〉T ′T |ψx〉RS|0〉F

∥∥∥∥∥
2

2

= 1

d

∥∥∥∥∥∑
x∈X

√
p(x)Px

R→F ′ |ψx〉RS

∥∥∥∥∥
2

2

(A73)

where we have defined

Px
R→F ′ := 〈x|T ′′PT ′RF→T ′′F ′ |x〉T ′ |0〉F . (A74)
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The upper bound in (91) follows because

1

d

∥∥∥∥∥∑
x∈X

√
p(x)Px

R→F ′ |ψx〉RS

∥∥∥∥∥
2

2

= 1

d

∑
x,y∈X

√
p(x)p(y)〈ψx|RS

(
Px

R→F ′
)†

Py
R→F ′

∣∣ψy〉RS

(A75)

= 1

d

∑
x∈X

p(x)〈ψx|RS
(
Px

R→F ′
)†

Px
R→F ′ |ψx〉RS

+ 2

d

∑
x,y∈X
:x<y

√
p(x)p(y) Re[〈ψx|RS (Px )†Py|ψy〉RS]

(A76)

� 1

d
+ 2

d

∑
x,y∈X :x<y

√
p(x)p(y)

√
F
(
ρx

S, ρ
y
S

)
, (A77)

where the first equality follows by expanding the norm, the
second by splitting the terms into those for which x = y and
x < y, and the inequality follows because (Px

R→F ′ )
†
Px

R→F ′ �
IR and from reasoning similar to that in the proof of
Theorem 1.

The final statement about tightness of the upper bound for
the case d = 2 follows by picking Px and Py for x < y to be
isometries from Uhlmann’s theorem, as was done at the end
of the proof of Theorem 1. �

7. Proof of Theorem 8

Proof of Theorem 8. We can employ the result of
Theorem 6. For a fixed state ψRA of the min-prover, the
acceptance probability is equal to

1

d

[
sup
σRB

∑
x∈X

√
p(x)

√
F

(
N x

A→B(ψRA), σRB
)
]2

, (A78)

as a consequence of Theorem 6. Thus, we arrive at the claim
in (98) by minimizing over every state ψRA of the min-prover.

The upper bound in (99) follows from the upper bound
in (91). Indeed, for a fixed state ψRA of the min-prover, the
acceptance probability in (A78) is bounded from above by

1

d
+ 2

d

∑
x,y∈X :

x<y

√
p(x)p(y)

√
F

(
N x

A→B(ψRA),N y
A→B(ψRA)

)
.

(A79)
After taking infima, we arrive at (99).

The final statement follows from the same reasoning em-
ployed at the end of the proof of Theorem 6. �

APPENDIX B: NUMBER OF SAMPLES
FOR FIDELITY-PURE-PURE

In Theorem 12 we argued that the problem Fidelity-Pure-
Pure is BQP-complete; i.e., every problem in BQP can be
reduced to this problem in polynomial time. In this Ap-
pendix we discuss the number of samples required to obtain

a desired accuracy and confidence. Let us first recall Hoeffd-
ing’s bound.

Lemma 18 (Hoeffding’s Bound). Suppose that we are
given n independent samples Y1, . . . ,Yn of a bounded random
variable Y taking values in the interval [a, b] and having mean
μ. Set

Yn := 1

n
(Y1 + · · · + Yn) (B1)

to be the sample mean. Let ε ∈ (0, 1) be the desired accuracy,
and let 1 − δ be the desired success probability, where δ ∈
(0, 1). Then

Pr[|Yn − μ| � ε] � 1 − δ, (B2)

as long as

n � M2

2ε2
ln

(
2

δ

)
, (B3)

where M := b − a.
In the main text, we mapped a general BQP algorithm to

Fidelity-Pure-Pure. In a general BQP algorithm, we measure
a single qubit called the decision qubit, leading to a random
variable Y taking the value 0 with probability 1 − p and the
value 1 with probability p, where p is the acceptance proba-
bility of the algorithm. We repeat this procedure n times and
label the outcomes Y1, . . . ,Yn. We output the mean

Yn = 1

n
(Y1 + · · · + Yn) (B4)

as an estimate for the true value p [as seen in (150)]

p = 〈x|S〈0|AQ†(|1〉〈1|D ⊗ IG)Q|x〉S|0〉A. (B5)

By plugging into Lemma 18, setting

μ = p (B6)

therein, and taking n to satisfy the condition n � 1
2ε2 ln ( 2

δ
), we

can achieve an error ε and confidence δ [as defined in (B2)].
Now, we see from (153) that the modified algorithm has

an acceptance probability p2, i.e., equal to the square of the
original BQP problem’s acceptance probability. In the mod-
ified algorithm, we measure the decision qubit, leading to a
random variable Z taking value 0 with probability 1 − p2 and
the value 1 with probability p2. We repeat the procedure m
times and label the outcomes Z1, . . . , Zm. We output the mean

Zm = 1

m
(Z1 + · · · + Zm) (B7)

as an estimate for the true value p2 [as seen in (153)]. Setting
μ̃ = p2, and plugging into Lemma 18, it follows that

Pr[|Zm − μ̃| � ε2] � 1 − δ, (B8)

if

m � 1

2ε4
ln

(
2

δ

)
. (B9)
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Consider the following inequalities:

ε2 � |Zm − μ̃|
= |Zm − μ2|

= |
√

Zm − μ||
√

Zm + μ|

� |
√

Zm − μ|2, (B10)

where the second inequality is derived from the fact that
Zm, μ ∈ [0, 1], so that |Zm + μ| � |Zm − μ|. Thus,

|
√

Zm − μ| � ε. (B11)

In other words,

ε2 � |Zm − μ2| ⇒ ε � |
√

Zm − μ| (B12)

so that

Pr[|
√

Zm − μ| � ε] � Pr[
∣∣Zm − μ2

∣∣ � ε2]

� 1 − δ. (B13)

Thus,
√

Zm is an estimator for p and taking

m � 1

2ε4
ln

(
2

δ

)
(B14)

suffices to achieve an error ε and confidence δ in estimating p.

APPENDIX C: APPROXIMATE FIXED POINTS AND
DEUTSCHIAN CLOSED TIMELIKE CURVES

The computational complexity of computation assisted by
Deutschian closed timelike curves (CTCs) was solved in
[90], in which these authors showed that the power of clas-
sical and quantum computing are equivalent and equal to
PSPACE, which is the class of decision problems solvable
with polynomial memory. Let us briefly review these results.
In the Deutschian model of CTCs [87], we suppose that
chronology-respecting qubits in a state ρ can interact with
chronology-violating qubits in a state σ according to a unitary
transformation U . Let S denote the quantum system for the
chronology-respecting qubits, and let C denote the quantum
system for the chronology-violating qubits. Then the output
state of the transformation is as follows:

TrC[USC (ρS ⊗ σC )U †
SC]. (C1)

In an effort to avoid grandfather and unproved theorem para-
doxes, Deutsch postulates that nature imposes the following
self-consistency condition on the state of the CTC qubits:

σC = TrS[USC (ρS ⊗ σC )U †
SC]. (C2)

At first glance, this condition might seem innocuous, but
its implications for quantum information processing are dra-
matic, essentially due to the fact that (C2) allows for nonlinear
evolutions, which are disallowed in standard quantum me-
chanics. Indeed, quantum processors assisted by Deutschian
CTCs can violate the uncertainty principle [98,99], can break
the no-cloning theorem [100,101], and can solve computa-
tional problems believed to be difficult [90].

The connection of Deutschian CTCs (D-CTCs) with fixed
points of channels is that the condition in (C2) demands that
the state of the CTC system be a fixed point of the quantum
channel NU,ρ :

ωC → NU,ρ (ωC ) := TrS[USC (ρS ⊗ ωC )U †
SC]. (C3)

Thus, this is how Sec. VI connects with Deutschian CTCs.
The class of computational problems efficiently decid-

able by a quantum computer assisted by D-CTCs is called
BQPCTC, and it is formally defined as follows. Set δ ∈
(0, 1/2). Let G be a universal set of quantum gates. A quantum
D-CTC algorithm is a deterministic polynomial time algo-
rithm that takes as input a string x ∈ {0, 1}n and produces an
encoding of a unitary quantum circuit U using gates from G.
This unitary acts on two systems of qubits, called S and C
as discussed above, which consist of p(n) and q(n) qubits,
respectively, where p(n) and q(n) are polynomials. The sys-
tem S is initialized to the all-zeros state |0〉〈0|⊗p(n)

S , and the
system C is initialized to a state σC satisfying the causal
self-consistency condition in (C2) with ρS = |0〉〈0|⊗p(n)

S . That
is, σC is such that

NU,|0〉〈0|⊗p(n)
S

(σC ) = σC . (C4)

Let M be a measurement of the last qubit of S in the compu-
tational basis. The algorithm accepts the input x if

M
(

TrC
[
USC

(|0〉〈0∣∣⊗p(n)

S ⊗ σC
)
U †

SC

])
(C5)

results in the output 1 with probability at least 1 − δ for
every state σC satisfying (C2). The algorithm rejects if (C5)
results in output 1 with probability no larger than δ for every
state σC satisfying (C2). The algorithm decides the promise
problem A = Ayes ∪ Ano ⊆ {0, 1}∗ (where Ayes ∩ Ano = ∅) if
the algorithm accepts every input x ∈ Ayes and rejects every
input x ∈ Ano. BQPCTC is the class of all promise problems
that are decided by some quantum D-CTC algorithm.

It is already known from [90] that BQPCTC = PSPACE,
and it is also known that QIP = PSPACE [102]. Thus, it
immediately follows from these results that BQPCTC = QIP.
Here we discuss an attempt at a direct proof that BQPCTC ⊆
QIP, which ideally would be arguably simpler to see than by
examining the proofs of the equalities BQPCTC = PSPACE
and QIP = PSPACE individually. However, there are some
difficulties in establishing this direct proof. We note here that
this is related to an open question posed in [103, Sec. 8], the
spirit of which is to find a direct proof of the containment
BQPCTC ⊆ QIP.

Consider the following purported algorithm for simulating
BQPCTC in QIP:

Algorithm 20. The algorithm proceeds as follows:
(1) The verifier prepares a state

|�〉T ′T :=
L−1∑
�=0

√
1

L
|��〉T ′T (C6)

on registers T ′ and T and prepares system SL in the all-zeros
state |0〉SL .

(2) The prover transmits the system C of the state |ψ〉RC

to the verifier.

012409-32



ESTIMATING DISTINGUISHABILITY MEASURES ON … PHYSICAL REVIEW A 108, 012409 (2023)

(3) Using the circuit USC , the verifier performs the follow-
ing controlled unitary:

L−1∑
�=0

|�〉〈�|T ⊗ U �
S�

1C, (C7)

where

U �
S�

1C
:= (US�C→S�C ◦ · · · ◦ US1C→S1C )︸ ︷︷ ︸

� times

. (C8)

(4) The verifier transmits systems T ′ and SL to the max-
prover.

(5) The prover prepares a system F in the |0〉F state and
acts on systems T ′, SL, and F with a unitary PT ′SLF→T ′′F ′ to
produce the output systems T ′′ and F ′, where T ′′ is a qudit
system.

(6) The prover sends system T ′′ to the verifier, who then
performs a qudit Bell measurement

{�T ′′T , IT ′′T − �T ′′T } (C9)

on systems T ′′ and T , where �T ′′T is defined in (88). The
verifier then initializes a system SL+1 to the all-zeros state
|0〉SL+1 , performs the unitary USL+1C , and measures the decision
qubit of system SL+1. The verifier accepts if and only if the
outcome �T ′′T occurs and the decision qubit is measured to
be in the |1〉 state.

Proposition 2. The acceptance probability of
Algorithm 20 is equal to[

sup
ρC ,σG

1

L

L−1∑
�=0

√
F

(
|1〉〈1|D ⊗ σG,

USC (|0〉〈0|S ⊗ N �(ρC ))U †
SC

)]2

, (C10)

where

N (ωC ) := TrS[USC (|0〉〈0|S ⊗ ωC )U †
SC]. (C11)

Proof. This follows by employing reasoning similar to that
for [104, Lemma 4.2] (see also [51]). This reasoning is also
very similar to the reasoning used around (A65)–(A72). For a
fixed state |ψ〉RC of the prover, the global state after Step 6 of
Algorithm 20, but before the measurements, is

PUSL+1C

L−1∑
�=0

√
1

L
|��〉T ′T U �

S�
1C |0〉SL+1 |ψ〉RC, (C12)

where P ≡ PT ′SLF→T ′′F ′ . Then, by splitting the systems SL+1C
into the decision qubit D and denoting all other qubits by G,
the acceptance probability is given by∥∥∥∥∥∥

〈�|T ′′T 〈1|DPUSL+1C

×∑L−1
�=0

√
1
L |��〉T ′T U �

S�
1C

|0〉SL+1 |ψ〉RC

∥∥∥∥∥∥
2

2

= sup
|ϕ〉F ′G

∣∣∣∣∣∣
〈�|T ′′T 〈1|D〈ϕ|F ′GPUSL+1C

×∑L−1
�=0

√
1
L |��〉T ′T U �

S�
1C

|0〉SL+1 |ψ〉RC

∣∣∣∣∣∣
2

. (C13)

Considering that the reduced state of∑L−1
�=0

√
1
L |��〉T ′T U �

S�
1C

|0〉SL+1 |ψ〉RC , after tracing over all

systems sent to the prover, is

1

L

L−1∑
�=0

|�〉〈�|T ⊗ N �(ρC ), (C14)

where ρC := TrR[ψRC], and the reduced state of
|�〉T ′′T |1〉D|ϕ〉F ′G, after tracing over all systems not
transmitted by the prover, is

1

L

L−1∑
�=0

|�〉〈�|T ⊗ |1〉〈1|D ⊗ σG, (C15)

where σG := TrF ′[ϕF ′G], we conclude by Uhlmann’s theorem
that (C13) is equal to

sup
σG

F

(
1
L

∑L−1
�=0 |�〉〈�|T ⊗ N �(ρC ),

1
L

∑L−1
�=0 |�〉〈�|T ⊗ |1〉〈1|D ⊗ σG

)

=
[

sup
σG

1

L

L−1∑
�=0

√
F

(
|1〉〈1|D ⊗ σG,

USC[|0〉〈0|S ⊗ N �(ρC )]U †
SC

)]2

.

(C16)

We conclude the expression in the statement of the theorem
after optimizing over all input states of the prover. �

In order to establish that BQPCTC is contained in QIP, it is
necessary to map yes-instances of the former to yes-instances
of the latter, and the same for the no-instances. Accomplishing
the first part of the task is straightforward. A yes-instance of
BQPCTC implies that there exists a fixed-point state ρC such
that

Tr{[|1〉〈1|D ⊗ IG)USC (|0〉〈0|S ⊗ ρC]U †
SC} � 1 − δ. (C17)

Thus, the prover transmits such a fixed-point state ρC to the
verifier, and we find that the acceptance probability is not
smaller than[

sup
σG

1

L

L−1∑
�=0

√
F

( |1〉〈1|D ⊗ σG,

USC[|0〉〈0|S ⊗ N �(ρC )]U †
SC

)]2

� sup
σG

F (|1〉〈1|D ⊗ σG,USC (|0〉〈0|S ⊗ ρC )U †
SC ) (C18)

� sup
|ϕ〉F ′G

|〈1|D〈ϕ|F ′GUSC |0〉S|ψ〉RC |2 (C19)

= ‖〈1|DUSC |0〉S|ψ〉RC‖2
2 (C20)

= Tr[(|1〉〈1|D ⊗ IG)USC (|0〉〈0|S ⊗ ρC )U †
SC] (C21)

� 1 − δ. (C22)

The first inequality follows because N �(ρC ) = ρC for all �.
It is less clear how to handle the case of a no-instance

of BQPCTC, because the definition of this complexity class
only specifies the behavior of the circuit when ρC is an exact
fixed point of N . Algorithm 20 attempts to verify whether the
prover sends a fixed point, but it only actually verifies whether
the prover sends a state that is an approximate fixed point. The
acceptance probability of Algorithm 20 is given by (C10) and
is bounded from above by

sup
ρC ,σG

F (|1〉〈1|D ⊗ σG,USC[|0〉〈0|S ⊗ NL(ρC )]U †
SC )

� sup
ρC

〈1|D TrG{USC[|0〉〈0|S ⊗ NL(ρC )]U †
SC}|1〉D, (C23)
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where the bounds follow from concavity of root fidelity and
the data-processing inequality for fidelity. In the above, NL is
the Cesaro mean channel:

NL(ωC ) := 1

L

L−1∑
�=0

N �(ωC ). (C24)

This channel has the property that the sequence {NL}L con-
verges to the fixed-point projection channel P := limL→∞ NL

of N , so that P (ωC ) is guaranteed to be a fixed point of N
for every input state ωC [88]. It is not clear how to obtain
a channel independent bound that relates the convergence of

NL to P , as a function of L alone. Furthermore, it is likely
not possible that the closeness of NL to P could generally be
inverse polynomial in L; for if it were, then one could simulate
BQPCTC in BQP, because the verifier could apply the map NL

and generate a fixed point of the channel without the help of
the prover. However, we now know that BQPCTC = PSPACE
[90], and it is widely believed that PSPACE �= BQP. In the
case of a no-instance of BQPCTC, it is thus not clear how to
relate the acceptance probability of Algorithm 20 to the ac-
ceptance probability of the no-instance of BQPCTC. We leave
this as a curious open question.
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