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Breaking the speed limit for perfect quantum state transfer
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We describe a protocol for perfectly transferring a quantum state from one party to another under the dynamics
of a fixed, engineered Hamiltonian. Our protocol combines the concepts of fractional revival, dual-rail encoding,
and a rare glimpse of the anti-Zeno effect. Remarkably, this nondeterministic transfer can happen on average
faster than the speed limit for perfect quantum state transfer.
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I. INTRODUCTION

Current generations of quantum computers are extremely
promising, being at the cusp of proving quantum advantage
[1,2], while not yet being capable of implementing arbitrary
algorithms of useful sizes. Critical to their performance is the
ability to apply as many operations as possible before the in-
evitable decoherence-induced limits are reached. Each step of
a quantum computer requires controlling a quantum system to
create the desired evolution. Any such task has a spectrum of
possible solutions, spanning a range from full-time control of
every conceivable parameter to (essentially) no control during
the evolution. These will trade different properties, including
ease of implementation, likelihood of introducing error (as a
rule of thumb, the more one can interact with the system, the
worse decoherence gets), and speed. A specific experiment,
with specific hardware and noise constraints, will choose the
most appropriate solution from within that range. Central to
that body of knowledge is the enumeration of the extreme
cases.

Theoretically, it is crucial to understand the ultimate
bounds—how long must we take to perform a specific oper-
ation, and can such a bound be saturated? For example, in
the protocol of perfect state transfer introduced in Refs. [3,4],
there is a speed limit for the protocol: there cannot exist a
solution that takes less than a certain time [5,6]. Hence, the
solution in Ref. [4] is optimal, operating at twice the speed of
the consecutive swap gates that would be specified in the gate
model.

With such limits in place, the challenge is to understand
the conditions under which a no-go theorem is proved and
whether, by relaxing any of them, the limit can be broken.
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State transfer, for example, imposes perfect transfer, and re-
quires no time control of the system Hamiltonian. Relaxing
either one permits faster protocols that may still be of practical
relevance [7–9].

Minimizing the theoretical assumptions is also important
for experiments, each of which have their own challenges;
having a range of options for what constraints to relax due to
ease of implementation is vital. Experimentally, state transfer
schemes have now been implemented in a range of systems.
Optical experiments [10,11] have been particularly successful
at tuning the required coupling strengths, while in NMR [12]
and, more recently, superconducting systems [13] and quan-
tum dots [14], short transfers have been demonstrated with
chains of three or four qubits. The superconducting results are
particularly promising with regards to scalability.

In this paper, we investigate another potential loophole:
an assumption of the unitarity of evolution. The anti-Zeno
effect suggests the possibility that repeated measurement at
appropriate times could speed up the evolution [15]. As a
consequence of relaxing this assumption, the arrival of the
transferring state will no longer be deterministic. We will
demonstrate a protocol, taking inspiration from the heralded,
nondeterministic arrival protocols of Refs. [16–18], improv-
ing them for the specific purpose of use with an engineered
spin chain. This will allow us to demonstrate a violation of
the speed limit thanks to the anti-Zeno effect. The protocol
becomes particularly elegant if the engineered chains that we
choose exhibit fractional revival [19,20], introduced in Sec. II.

Our main protocol is detailed in Sec. III. In contrast to
Refs. [16,17], which required a dual-rail encoding across
two (arbitrary, preferably identical) parallel spins chains, we
carefully tune the properties of the spin chain that we use,
such that our protocol utilizes only a single chain. We re-
fer to this as a “monorail.” Moreover, should our state fail
to arrive, it behaves like a complete reset of the protocol,
which is computationally far easier than the repeated updates
and recalculations required in Refs. [16,17]. In Sec. IV, we

2469-9926/2023/108(1)/012408(7) 012408-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0311-6266
https://orcid.org/0000-0003-4955-5253
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012408&domain=pdf&date_stamp=2023-07-07
https://doi.org/10.1103/PhysRevA.108.012408


XIE, KAY, AND TAMON PHYSICAL REVIEW A 108, 012408 (2023)

shall prove that the analytic solutions of Ref. [21] saturate an
equivalent speed limit for fractional revival, and are hence the
optimal choice. We show that, for even length chains, they
yield a state transfer protocol whose expected arrival time is
less than the fastest possible perfect state transfer time. The
advantage is subtle, however, as illustrated by the fact that
there is no advantage in the case of odd chain length. While we
emphasize the theoretical aims of this result—understanding
that the speed limit can be breached—in Sec. V, we make a
few practical comparisons of our monorail scheme to the dual-
rail scheme. While we require a carefully tuned Hamiltonian
that will be susceptible to perturbations, its noise tolerance is
much better thanks to a much faster transfer time.

Perfect state transfer

Underlying most physical realizations of a quantum
computer is a Hamiltonian, describing how the individual
components interact. One of the main tasks in creating local-
ized gates for computation is to switch off that interaction,
except between the specific pair of qubits where it is needed.
Instead, the study of state transfer aims to embrace this mul-
tiqubit interference, using it to gain speed-ups in the desired
protocol. For example, let H be the Hamiltonian of an N-qubit
spin chain,

H = 1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1) − 1

2

N∑
n=1

BnZn, (1)

where Zn denotes application of the Pauli-Z matrix on qubit
n. The standard concept of perfect state transfer (PST), as
introduced in Refs. [3,4,20], involves a unitary evolution of
an unknown single-qubit state |ψ〉 from one end of the chain
to the other,

e−iHτ |ψ〉 ⊗ |0〉 = |0〉 ⊗ (e−iZφ/2|ψ〉)

in the state transfer time τ , up to a corrective phase rota-
tion by angle φ. Here, we denote |0〉 = |0〉⊗(N−1) and |n〉 =
|0〉⊗(n−1)|1〉|0〉⊗(N−n). The representation of H in the basis
{|n〉}N

n=1 is denoted by H1, and is an N × N tridiagonal matrix
with ordered eigenvalues λn > λn+1.

It is well known (see Refs. [5,6]) that on any such N-qubit
spin chain, there is a speed limit to the transfer:

Jmaxτmin � π

4

√
N2 − 1

2
[1 − (−1)N ], (2)

where Jmax = maxn |Jn| is the maximum coupling strength
[22]. This is saturated by the engineered chains introduced in
Ref. [4].

II. FRACTIONAL REVIVALS

Our aim is to specify a Hamiltonian H1 and a correspond-
ing nondeterministic protocol such that the expected transfer
time is lower than the time imposed by the speed limit. Central
to our construction is the concept of fractional revival (FR).
Specifically, we say that H has a θ -revival between 1 and N at
time τ0 if the evolution satisfies

e−iHτ0 |1〉 = cos θ |1〉 + sin θeiφ|N〉, (3)

up to a global phase. This is a very specific requirement, but
constructions of an appropriate H do exist [19–21]. The phase
φ is irrelevant to our study (it will typically be −π

2 , and will
always be known, so that it can be compensated for). For
such a revival, the state does not transfer, but gets entangled
between extremal sites:

|ψ〉|0〉 −→ cos θ |ψ〉|0〉 + sin θ |0〉(e−iZφ/2|ψ〉).

Fractional revival chains have some key properties that will
be of use to us. In particular, Eq. (3) implies that

e−iHτ0 |n〉 = cos θ |n〉 + sin θeiφ |N + 1 − n〉 (4)

for any n �= N+1
2 . To see this, observe, for example, that |2〉 =

(H |1〉 − B1|1〉)/J1 such that

e−iHτ0 |2〉 = 1

J1
(H − B11)e−iHτ0 |1〉

= 1

J1
(H − B11)(cos θ |1〉 + sin θeiφ|N〉)

= cos θ |2〉+sin θeiφ

(
JN−1

J1
|N−1〉+ BN − B1

J1
|N〉

)
.

Since this output must be orthogonal to the output of the
evolution Eq. (3), and must also be normalized, we see that
B1 = BN and J1 = JN−1.

While these are the key properties for our protocol, some
further detail is beneficial for the optimality proofs of Sec. IV.
Following through the consequences of this argument shows
that if the chain length N is even, then the chain must be
symmetric. If N is odd, it is either a symmetric chain, or the
central two coupling strengths J(N±1)/2 could be asymmetric.

In the case of FR on a symmetric chain, satisfying SH1S =
H with

S =
N∑

n=1

|n〉〈N + 1 − n|, (5)

we can be more explicit about the phases. A symmetric chain
divides into symmetric and antisymmetric subspaces. These
have eigenvalues {λ2n−1} and {λ2n}, respectively. The initial
state |1〉 and its θ -revival are both supported only on the state
(|1〉 + |N〉)/

√
2 in the symmetric subspace. Hence, within

that subspace, we must have a perfect revival of that state
(which, in fact, means a perfect revival of all symmetric
states), up to a global phase. The same also holds for the
antisymmetric space. Thus, the only relevant parameter is the
relative phase between these two perfect revivals, which we
call 2θ . We have

1√
2

(|1〉 + |N〉) �→ 1√
2

(|1〉 + |N〉)

1√
2

(|1〉 − |N〉) �→ ei2θ

√
2

(|1〉 − |N〉).

We immediately learn that for a symmetric FR chain,

|1〉 �→ cos θ |1〉 − i sin θ |N〉, |N〉 �→ cos θ |N〉 − i sin θ |1〉
(6)

up to a global phase.
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III. ALL ABOARD THE MONORAIL

We now come to the key part of our protocol. This has
many aspects in common with Refs. [16–18], which used a
dual-rail encoding—an encoding of the qubit entirely within
the single-excitation subspace, but split across two parallel
spin chains. Here, we will use the same encoding procedure,
but on a single rail—a chain that has a θ -revival between 1
and N at time τ0.

We take the unknown single-qubit state |ψ〉 = α|0〉 + β|1〉
and encode it as α|2〉 + β|1〉, i.e., across the first two sites of
a spin chain. After waiting the time τ0, test to see if the single
excitation has arrived without looking at the state itself. As
in Refs. [16,17], the key to this working is that the arrival
amplitude for 1 → N and 2 → N − 1 should be equal. By
construction, Eq. (4), an FR chain at the time τ0 has this prop-
erty. If the excitation has arrived, the state has successfully
transferred.

e−iHτ0 (α|2〉 + β|1〉) = cos θ (α|2〉 + β|1〉) + sin θeiφ (α|N − 1〉 + β|N〉)
measure−−−−−→

{
α|N − 1〉 + β|N〉 p = sin2 θ

α|2〉 + β|1〉 p = cos2 θ

If the excitation is not present, due to the properties of FR,
we know it must be back at the start, and the protocol can just
repeat. Repetition continues until success completes after an
expected time

E(JmaxT ) = Jmaxτ0

∞∑
n=1

n cos2n−2 θ sin2 θ = Jmaxτ0

sin2 θ
.

Since the success of each repetition is independent, one can
apply Chernoff bounds to show that the need for many repeti-
tions vanishes exponentially.

The full protocol is summarized as follows, with two il-
lustrative cases being depicted in Figs. 1 and 2. Including the
encoding steps, we have the following:

(1) Prepare an arbitrary single-qubit state |ψ〉 in the first
qubit of the chain.

(2) Apply a controlled-NOT (cNOT) gate on the first two
qubits (with the first qubit being the control, and applying the
target operation if the control qubit is in |0〉).

(3) Evolve the FR chain up to its revival time τ0.
(4) Apply the standard cNOT gate on the last two qubits

(with the last qubit being the control).
(5) Measure the second-last qubit in the Z basis.

FIG. 1. PST spin chain with heralded anti-Zeno effect (success-
ful arrival). If 1 is measured on the second last qubit at FR time, the
state |ψ〉 has arrived at the last qubit.

(6) If the measurement result is 1, halt: |ψ〉 has arrived on
the last qubit. Otherwise, repeat from step 3 (the state is the
same as it was then).

IV. SPIN CHAIN CONSTRUCTION

In the previous section, we gave a protocol for transferring
a state based on a chain the FR property. In this section,
we evaluate the efficacy of the scheme for a specific FR
construction. We will see that for an even length N , the con-
struction yields an expected transfer time that is lower than
any deterministic N-qubit spin chain with the same maximum
coupling strength, and will prove that this is the optimal FR
construction for these purposes.

Consider the FR chain constructed by Genest et al.
(Ref. [21], Sec. 6). Written using our indexing convention, the
coupling strengths that give a θ -revival at time τ0 = π/2 are

Jn =
√

n(N − n)
(
(N − 2n)2 − 4θ2

π2

)
(N − 1 − 2n)(N + 1 − 2n)

, Bn = 0. (7)

We will be particularly interested in

θc = π

2

√
1 − 3

N2 − 1
,

FIG. 2. PST spin chain with heralded anti-Zeno effect (waiting
for arrival). If 0 is measured on the second last qubit, the state
|ψ〉 = α|0〉 + β|1〉 has not arrived at the last qubit at FR time, but we
can simply wait for the next FR cycle (as the protocol automatically
resets itself).
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which is extremely close to possessing perfect state trans-
fer (θ = π

2 ). This choice fixes that Jmax = JN/2±1 = JN/2 =
θcN/π .

If T is the arrival time of the state (which is a geometric
random variable), the expected transport time is

E[JmaxT ] = π

2

θN

π

1

sin2 θ
= Nθ

2 sin2 θ
,

which should be compared to the perfect transfer speed limit
of Eq. (2). At our chosen value of θc,

E[JmaxT ]

Jmaxτmin
= 2θc

π sin2 θc
= 1 − ε

cos2 πε
2

,

where θc = π
2 (1 − ε). This is evidently smaller than 1 for ε <

1
2 , which is certainly true for θ = θc and N > 2.

A. Fastest possible FR

We will now justify that the chain we have used, defined
by Eq. (7), yields the smallest possible value of Jmaxτ0 for
any given θ . This proof strongly parallels the speed limit
proof of Ref. [5]. Since N is even, we saw in Sec. II that
the chain is symmetric and the evolution is given by Eq. (6).
Since the symmetric subspace has perfect revivals in time
τ0, its eigenvalues must satisfy λ1 − λ2n−1 = 2π

τ0
kn for some

integers kn. Similarly, the antisymmetric subspace must sat-
isfy λ1 − λ2n = 2π

τ0
k′

n + 2θ
τ0

, in order to get the correct relative
phase. Most critically for us,

λ2n−1 − λ2n � 2θ

τ0
. (8)

Recall from Eq. (5) that the symmetry operator has the prop-
erty S|λn〉 = (−1)n+1|λn〉. Now,

2Jmax � 2JN/2 = Tr(H1S) =
∑

n

λ2n−1 − λ2n � N

2

2θ

τ0
,

where we took the trace using the eigenvector basis {|λn〉} and
applied Eq. (8). We conclude that

Jmaxτ0 � Nθ

2
.

This is exactly the value that we achieved above. Hence, the
solution from Ref. [21] is optimal for any given θc � θ �
π − θc, i.e., such that Jmax = JN/2 in the chosen scheme. This
recovers the previously known results for perfect state transfer
when θ = π/2 [4,5,20].

In addition to the solution for even chain lengths, Ref. [21]
gives an equivalent symmetric solution for odd chain lengths.
This works within our protocol (as does any chain with FR),
but does not provide any speed advantage over state transfer.
Moreover, following Ref. [6], one can prove that this is also
the fastest symmetric chain with a given FR angle between the
chain ends. One simply replaces the bounds

λ2n − λ2n+1 � π

τ
−→ λ2n − λ2n+1 � 2(π − θ )

τ0

λ2n−1 − λ2n � π

τ
−→ λ2n−1 − λ2n � 2θ

τ0
.

We conclude that

Jmaxτ0 �
√

(N2 − 1)θ (π − θ )

2
,

which is saturated by the solution in Ref. [21] for any θ such
that the largest coupling is the central one.

When N is odd, solutions are not required to be sym-
metric. In the asymmetric case, a chain with a θ -revival
is symmetric apart from the middle two coupling strengths
J(N−1)/2 = √

2J cos η and J(N+1)/2 = √
2J sin η. H1 is similar

to H ′ = UH1U † with

U =
∣∣∣∣N + 1

2

〉〈
N + 1

2

∣∣∣∣
+

(N−1)/2∑
n=1

sin

(
π

4
− η

)
(|n〉〈n| − |N + 1 − n〉〈N + 1 − n|)

+ cos

(
π

4
− η

)
(|N + 1 − n〉〈n| + |n〉〈N + 1 − n|).

H ′ is a symmetric chain with central coupling J , and all other
parameters equal to those of H1. The evolution of the two are
related by

e−iH1τ0 |1〉 = U †e−iH ′τ0U |1〉.
These can only be equal if H ′ possesses FR by some angle θ ′.
Thus, the right-hand side is entirely known thanks to Eq. (6).
Hence, the two FR angles are related by

sin θ = sin(2η) sin θ ′.

The expected state transfer time can then be evaluated relative
to that of the symmetric chain,

E[JmaxT ] = E[J ′
maxT ′] ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2 cos η

sin2 2η
Jmax = √

2J cos η
√

2 sin η

sin2 2η
Jmax = √

2J sin η

1
sin2 2η

otherwise.

In all these cases, E[JmaxT ] > E[J ′
maxT ′]–the symmetric so-

lution has the best expected transfer time, which we have
already shown cannot break the speed limit.

V. ENCODING IN THE SINGLE EXCITATION SUBSPACE

A standard implementation of quantum state transfer
encodes an initial state α|0〉 + β|1〉 across the 0- and 1-
excitation subspaces,

(α|0〉 + β|1〉)|0〉.
The dual-rail approach provides the alternative encoding

α(|1〉|0〉)A(|0〉|0〉)B + β(|0〉|0〉)A(|1〉|0〉)B

across two chains, A and B. Our monorail instead encodes on
a single chain as

(α|01〉 + β|10〉)|0〉.
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Both the monorail and dual-rail encodings encode within the
single-excitation subspace, which means they have many fea-
tures and practical benefits in common. Indeed, if you allow
the two chains in a dual-rail scheme to be the same and have
engineered couplings, instead of the default case of uniform
couplings, one option is to use exactly the FR chains chosen
here. We get exactly the same transfer fidelity and expected
transfer time, and can therefore also beat the state transfer
speed limit using the dual-rail encoding. What are these ben-
efits, and why might one select a monorail versus dual-rail
solution?

Simplicity. It is clearly easier to have just a single chain
rather than two identical copies. While the dual-rail scheme
can function if the two chains are different, there is a severe
cost to the expected transfer time and the classical calculation
to find optimal measurement times, which are no longer the
simple regular measurements that the FR structure permits.
In previous experimental realizations of state transfer [10,11],
the photonic nature of the implementation lends itself very
naturally to being in the single excitation subspace. There
would be no need for an encoding-decoding step.

Stability against perturbations. The dual-rail method can
function (eventually) whatever the two chains are, while the
monorail is heavily dependent on the precise nature of the
couplings. When compared to the uniformly coupled dual-rail
scheme, the unperturbed fidelity of the engineered scheme
is so much higher that there is a modest regime where the
perturbed monorail outperforms it.

Initial state of chain. While we have dealt with the specific
case that the rest of the chain is initialized as |0〉, our encoding
is exactly that used to tolerate any initial state [20,23], and
hence this carries over immediately so long as the sites N and
N − 1 are prepared in |0〉. The Hamiltonian must be of the XX
type, as specified in Eq. (1), and not include any ZnZn+1 terms.
The dual-rail encoding does not benefit from this.

Heralded arrival. One can detect the presence or ab-
sence of a single excitation and determine whether the state
has arrived without disturbing the contents of the state. This
is exactly the point of the decoding procedure in both the
dual-rail and monorail systems. This can minimize the ef-
fect of a range of fault types, such as imperfect preparation
of the Hamiltonian. Numerical tests indicate that this is in-
sufficient to combat the fact that both components of the
qubit have to transfer under the faulty Hamiltonian, whereas
the usual state transfer protocol encodes one of those com-
ponents in |0〉, and is therefore unaffected by many such
faults (e.g., if the perturbed Hamiltonian remains excitation
preserving).

Decoherence-free subspace. As observed in Ref. [16], and
formalized in Ref. [24], the evolution of a single excitation
under the effects of amplitude damping noise can simply be
modeled as its evolution under the Hamiltonian for time t ,
with probability e−γ t , and otherwise is returned to the |0〉
state. (γ is the strength of the noise.) Hence, any encoding
of a qubit into the single excitation subspace either has the
qubit arriving correctly, modulated by a probability e−γ t , or
fails in a manner that is detected by the heralded arrival
(because there is no longer an excitation present). We are

using a decoherence-free subspace. The simple fact that the
monorail has a much faster runtime than the dual-rail scheme
(without engineering) means that it achieves vastly higher
success probabilities. The failure probability of the monorail
is approximately (working in the limit where the transfer
probability is close to 1)

∞∏
l=1

(1 − e−γ lπN/(4Jmax ) ),

while the equivalent for the dual rail was given in Ref. [16]:
∞∏

l=1

(1 − 1.35N−2/3e−γ lN/(2Jmax ) ).

For instance, if we take γ N/Jmax = 1, then the failure proba-
bility of the monorail is about 0.36. That of the dual rail still
depends on the size, but even for an extremely short chain,
such as N = 11, the failure probability is 0.93, only getting
worse for larger N .

One feature that the dual-rail encoding offers [16] that is
not present in the monorail is some protection against dephas-
ing noise—if the dephasing noise is symmetric between the
two chains of the dual rail, and if the Hamiltonians of the
two chains are identical, then the quantum information is in a
decoherence-free subspace. If the state arrives, it arrives with-
out error. However, it must be noted that the arrival probability
is still adversely affected by dephasing noise, with a dominant
term of the form e−γ t . Hence, the much longer run time of the
(uniform) dual rail still yields vastly inferior performance to
the monorail.

VI. CONCLUSIONS

In this work, we have designed a specific spin chain that
works in concert with a probabilistic protocol for perfectly
transferring an unknown quantum state with provable speedup
over any deterministic perfect state transfer chain with the
same maximum coupling strength.

The speedup that we achieve is minuscule, only reducing
the state transfer time from τ by an amount O(τ/N2), at
the cost of nondeterministic arrival. Were we to use current
experimental systems [11,13], the difference between the her-
alded and perfect transfer systems is well inside the limits of
experimental accuracy. Nevertheless, the essential insight is
that the speed limit can be broken thanks to the anti-Zeno
effect. FR provides a particularly elegant method allowing us
to compress the dual-rail encoding onto a single chain, and
also yielding information about what state the chain is reset to
in the case of failure. Its disadvantage is that, after a failure,
the state is reset such that it has to travel the full length of
the chain again before the next possible arrival, which is why
the use of FR for values of θ far from perfect state transfer is
impractical.

While we have proven that we have found the most effi-
cient FR-based monorail scheme, there may be other systems
which are more efficient from this perspective, and yield
greater advantages—now that we know this advantage exists,
it would be interesting in the future to establish how large an
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advantage can be obtained. Equally, it is possible to achieve
some speedup in the dual-rail system and engineered chains
(e.g., use two parallel FR chains). This has the potential to
facilitate a fairer comparison between the two methods. Other
particularly fast state transfer chains might be beneficial in this
scenario, such as Ref. [7]—having an arrival probability of
over 99% in only 76% of the comparable perfect transfer time
appears very promising in terms of the expected arrival time.
However, gathering the tails of the distribution in a reasonable
time appears to be a challenging task. A simple numerical
test was unable to find a sequence of measurement times that
permits an expected arrival time below the perfect transfer
time.

If we have more information to transport, such as a qutrit,
one simply uses a superposition over the states {|1〉, |2〉, |3〉},
and detects arrival by looking for the presence of a |1〉 on
the final three sites. This requires a minimal update to our
encoding-decoding procedures.

The speedup that we achieve is so small that if we account
fully for the time required for the decoding operation before
measurement, this outweighs the speedup. As an alternative
option, the encoding and decoding operations can be built
into the Hamiltonian without costing any time. Instead, we
are required to use three-body terms, by making the following

replacements:

X1X2 �→ X1, XN−1XN �→ XN

Y1Y2 �→ −X1Z2, YN−1YN �→ ZN−1XN

Y2Y3 �→ −Z1Y2Y3, YN−2YN−1 �→ YN−2YN−1ZN .

These are just derived by defining a unitary U that includes
both the encoding and decoding operations, and hence the
overall evolution is U †e−iHtU = e−iU †HUt . Each term h in the
Hamiltonian is replaced by U †hU . As U only acts on four
qubits, the majority of the terms are unchanged. In doing so,
we lose some of the protection against amplitude damping
noise.
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