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Noise-induced gate errors remain one of the main obstacles to realizing a broad range of quantum information
technologies. Dynamical error suppression using carefully designed control schemes is critical for overcoming
this challenge. Such schemes must be able to correct against multiple noise sources simultaneously afflicting
a qubit to reach error-correction thresholds. Here we present a general framework for designing control fields
that simultaneously suppress both noise in the fields themselves as well as transverse dephasing noise. Using
the recently developed space curve quantum control formalism, in which robust quantum evolution is mapped
to closed geometric curves in a multidimensional Euclidean space, we derive the minimal conditions necessary
to guarantee the simultaneous cancellation of both types of noise to leading order. In particular, we find that the
cancellation of control field noise requires the derivative of the space curve to have zero-area projections, which
is a much more subtle property compared to the closed-curve condition needed to suppress transverse dephasing.
We present several techniques for solving both these conditions simultaneously and provide explicit examples
of error-resistant control fields. Our work also sheds light on the relation between holonomic evolution and the

suppression of control field errors.
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I. INTRODUCTION

Quantum information technologies require control
schemes that satisfy both reachability and robustness criteria.
Reachability refers to the set of achievable unitary evolutions
under a given control scheme [1], while robustness refers to
noise insensitivity, which is critical for reaching quantum
error-correction thresholds [2]. In recent years, the field of
quantum optimal control has put forward several techniques
for implementing a desired target evolution or logical
gate operation while maintaining a certain level of noise
robustness, including both analytical and numerical methods
[3-26]. While purely numerical approaches have been
shown to be quite powerful in many contexts, with their
convergence typically guaranteed, supplementing these with
analytical information about the control landscape can further
boost performance and potentially lead to globally optimal
solutions.

Holonomic quantum computation [27-36] is one example
of an analytical technique that was proposed to design robust
control schemes. In this approach, gates are realized via the
accumulation of geometric phases under holonomic evolution.
Since such phases depend only on geometric properties of
the path traversed in Hilbert space, and not on the rate of
traversal, the resulting gates should be insensitive to noise that
leaves the path invariant [37,38]. Evidence of such robustness
against certain types of control field noise has been shown
in both theoretical [39—-47] and experimental work [48-51].
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However, whether or not these methods really provided ro-
bustness to noise across a broad range of practical settings has
been a matter of contention, and several explicit examples of
holonomic gates that did not exhibit the desired robustness
were known [31,38,39,52-57]. It was later found in Ref. [58]
that, for a large class of holonomic gates, it is possible to
construct an equivalent nonholonomic gate with the same
noise sensitivity, suggesting that even when robustness was
achieved, holonomy may not be the underlying cause. On
the other hand, it was shown in Ref. [59] that, under certain
conditions, single-qubit gates that were simultaneously robust
to multiplicative control field noise and transverse dephasing
noise were necessarily holonomic.

Another analytical approach to building noise-robust gates
is through the space curve quantum Control (SCQC) for-
malism [57,60-64]. This method makes use of geometric
space curves to design gates that are robust to transverse
dephasing noise. Because this method provides access to the
entire solution space of robust pulses, it offers the highest
possible degree of flexibility in finding control waveforms
that conform to experimental requirements. Most importantly,
this approach does not rely on a conjecture, robustness is
guaranteed by construction. However, so far SCQC has only
been applied to transverse dephasing noise, while in most
qubit platforms, including quantum dot spin qubits [65-69],
superconducting transmons [70-72], and trapped ions [73,74],
control field noise is of comparable importance. The authors
of Ref. [75] took a first step in addressing this issue by
showing how to incorporate holonomy into the SCQC formal-
ism, yielding holonomic gates with guaranteed insensitivity
to transverse noise. However, this approach is still suscepti-
ble to the usual uncertainties regarding whether holonomic
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evolution is robust to control field errors, leaving open the
question of whether it is possible to guarantee the simulta-
neous cancellation of both transverse dephasing errors and
control field errors in quantum gates.

In this work, we extend the SCQC formalism to con-
struct single-qubit gates that are simultaneously robust to both
transverse dephasing noise and multiplicative control field
noise. SCQC has not previously been applied to control field
noise due primarily to the subtle way in which it appears
within the formalism. We do this in the context of a qua-
sistatic noise model that is widely applicable across multiple
qubit platforms and show how to use this method to obtain
waveforms that generate the desired noise-robust logic gates.
Suitable control waveforms are obtained by designing space
curves that satisfy certain constraints and then computing
their curvatures. We show that, in addition to being closed,
which guarantees the cancellation of transverse noise errors,
the derivative of the curve must also satisfy a zero-area con-
dition to ensure multiplicative control field errors are also
suppressed. We prove that these conditions are both neces-
sary and sufficient in that any robust pulse will be associated
with curves satisfying these conditions. Unlike prior works on
dynamically corrected gates [11,76—78], we make no assump-
tions about the pulse waveforms that are used and our gate
designs are based on single, continuous pulses. We also give
several methods for constructing explicit examples of curves
obeying these criteria and we present a mathematical theorem
that allows one to easily check whether a given curve deriva-
tive integrates to a closed curve. Additionally, we demonstrate
how the freedom to switch between the dynamical and geo-
metric phase without changing the robustness of gates, as first
discussed in Refs. [58,59], manifests in the SCQC formalism.
This, in turn, sheds light on the relation between holonomic
evolution and the cancellation of control field errors.

The paper is organized as follows. In Sec. II we utilize
the SCQC formalism to derive space-curve conditions that
facilitate the construction of gates simultaneously robust to
transverse noise and multiplicative control field noise. We also
compare and contrast these conditions with the parallel trans-
port condition associated with holonomic evolution. In Sec. III
we discuss general methods for constructing space curves
that yield noise-robust gates and compare the performance of
gates generated using this approach. It is here that we also
present a theorem that allows one to check if a given tangent
curve produces a corresponding closed curve. We conclude
in Sec. IV.

II. NOISE-CANCELLATION CONDITIONS, SPACE
CURVES, AND RELATION TO HOLONOMIC EVOLUTION

In this section, we consider a general single-qubit Hamil-
tonian simultaneously subject to two types of noise, one
additive, the other multiplicative. Although the SCQC formal-
ism is extended to include the cancellation of time-dependent
noise [63], in this work we focus solely on the case of qua-
sistatic noise, which is pervasive in solid-state qubits, where
control timescales are fast compared to noise fluctuations
[79-82]. Since, in most, qubit platforms, the bulk of the noise
is concentrated at low frequencies, the quasistatic model is
already sufficient for designing high-fidelity control schemes.

While further refinements can be achieved by accounting for
noise coloration, we leave this to future work. Here, our goal
is to derive conditions on space curves that guarantee the
simultaneous cancellation of both types of quasistatic noise.
In this section, we also examine the connection between these
noise-cancellation conditions and the conditions that define
holonomic evolution.

A. Noise-cancellation conditions
We begin with a three-field control Hamiltonian of the form

Q) . A(r)
Hy(t) = T[COS ®(t)oy + sin O(t)oy] + —

where we refer to Q(z), ®(¢), A(¢) as the driving, phase, and
detuning fields, respectively, and oy, oy, o, are Pauli matrices.
We consider multiplicative errors in 2(¢) and additive errors
in A(z):

o, (D

Q) = (1 4+e)2), 2)

A(r) — A1) + 6, 3)

where € and §, are unknown, stochastic noise parameters that
are assumed to be small and constant during the evolution.
This model captures the common situation in which noise
causes a slow, random rescaling of the driving field, as occurs
for instance in exchange pulses in quantum dot spin qubits
subject to charge noise [79]. Additive fluctuations in A(z)
are a widely used model of dephasing noise in qubit energy
levels, where the dephasing time 7, is set by the width of
the distribution from which §, is sampled [81]. Both types
of noise are non-Markovian (both in experiments and in our
model), and here we make no assumptions about whether
these fluctuations obey Gaussian or non-Gaussian statistics.
Although in experiments, it is known that the noise carries a
nontrivial time dependence, the quasistatic model considered
here serves as a good approximation in most cases since the
bulk of the noise is typically concentrated at low frequencies
[79,81,83—86]. In particular, the noise usually has a 1/f type
spectrum. Pulses that cancel quasistatic noise will thus cancel
the majority of the colored noise seen in experiments. The
SCQC formalism has also been extended to the case of time-
dependent transverse noise in Ref. [63], where it was shown
that pulses that suppress such noise correspond to sequences
of closed space curves.

To quantify the deviation away from the ideal evolution
caused by € and §;, it helps to switch to the interaction picture
defined by Uy(¢), the evolution operator generated by Hy ().
The Magnus expansion [87] of the interaction picture evolu-
tion operator is then controlled by the small parameters € and
8.. At first order we have

Up(e) = M@, @
with

t 8 t
I(r) = / di'H(t'") = EZ / dt'U; (t"o Up(t)
0 0
€ t
+3 / dr'uj (Hut')
0

x [cos @(t")oy + sin D (t")o, [Up(t"). )
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Following Ref. [60], we interpret the term proportional to &,
as a curve in three-dimensional (3D) Euclidean space that we
refer to as the “space curve” or “error curve” 7(t):

F(t)- 6 = / dt'Uy (t o Up(t)). (6)
0

By construction, it then follows that canceling transverse de-
phasing noise to first order in §, corresponds to ensuring that
7(t) is a closed curve. To study these 3D space curves, we
define an orthonormal frame called the Frenet-Serret frame
[88], consisting of the tangent vector T = 7, the normal vector

N=T / ||T||, and the binormal vector B=T x N. (Note that
throughout this work 7' denotes a tangent vector, while 7' de-
notes a gate time.) These vectors then satisfy the Frenet-Serret
equations

T =N,
N =—«T + 1B, %)
B = —1N.

The functions x and t are the curvature and torsion of the
curve, and via the Frenet-Serret equations they uniquely de-
termine the curve up to rigid rotations in an interval where
k # 0 (see Appendix A). Once we find a closed space curve,
we can find the corresponding control fields €2, ®, and A from
the curvature « and torsion 7 of the space curve

K =Q, ®)

T=0—A. €))

We see that any closed space curve yields control fields that
generate a quantum evolution that is insensitive to quasistatic
transverse dephasing errors. Note also that ® and A are not
uniquely determined by the geometry of the space curve.

The second term in Eq. (5) can also be written in terms
of the space curve. From the definition of the space curve in
Eq. (6) we see that

- L od .
Ira)-¢= Z(UO o:Uo)

= iU, [Ho, 0:1Uo

Q@) ,—id(t)
Al ¥ 0 2 ¢
=—2l(UOUzU0)U0 Q) U()
—-—€
2

id(r) 0
Q) —id
_ idwy -l ERA U
= =2i(T()- o)V, 20 v () 0 o
2
(10)

which implies that
Q(1) UJ([)[COS ®(t)o, + sin ©(t)oy |Up ()
—i(T()-3)T@)-&)
— —T)xT@) 5. (11)

Thus, we see that the leading-order errors from both types of
noise can be expressed in terms of the tangent curve 7 (¢), with

Eq. (5) becoming

() = / di'(—e T x T + 8.7). (12)

0

[\SRST)

A doubly robust qubit evolution [U;(T) ~ 1] then requires
that the following two conditions be simultaneously satisfied:

T —
/ dt T =0,
0

T .
/ dt (T xT)=0.
0

13)

(14)

The second condition is proportional to the area swept out by
the projection of the tangent vector onto each plane. (Inter-
estingly, it was found in Ref. [60] that if the same condition
is satisfied by the error curve itself, the dephasing error is
suppressed to second order.) Therefore, to cancel both types
of error to first order, we must find a closed space curve 7
whose tangent vector 7' sweeps out zero area when projected
onto any plane.

B. Relation to the holonomic evolution

Much of the previous work on designing robust quantum
gates focused on making the evolution holonomic, mean-
ing that the dynamical phase vanishes at the final gate time
[37,38,75]. Here, we express the dynamical phase in terms
of the tangent vector 7, and by comparing this to the noise-
cancellation conditions Eqgs. (13) and (14), we show that
holonomic evolution is neither necessary nor sufficient to
guarantee robust evolution.

The dynamical phase is given by [89]

Otd(t)=f (Y EOIHo ()Y (")t
0

t
=f (W (O)Uy Y Ho(tYUo () (0))dr’. (15)
0
Defining the initial Pauli vector as P(0) = (¥ (0)|6 ¥ (0)) and
using Eq. (11), the dynamical phase may then be written as

1 [ A -
aq(t) = 5_/0 (WOI(-T xT + AG"T) - 3|y (0))

PO) [ . o
=T~'/O(—T><T+A(t)T)dt. (16)
Despite the striking resemblance to Eq. (12), canceling the
dynamical phase does not necessarily lead to error robustness.
To elaborate on this, we first observe from Eq. (16) that the
dynamical phase involves a projection of the integral onto the
Pauli vector of the initial state. Making this vanish requires
either a special choice of the detuning field A(#) or a carefully
designed tangent vector 7' to ensure the integral in Eq. (16)
is orthogonal to P(0) at the final time. Another approach one
can take is to impose the parallel transport condition, which
is tantamount to requiring that the integrand in Eq. (16) is
orthogonal to P(0) at all times [75]. Regardless of which ap-
proach is taken to make o, (7) vanish, it does not necessarily
follow that Eqgs. (13) and (14) are satisfied. Therefore, the
condition that the evolution be holonomic does not guarantee
that either type of noise is canceled.
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Conversely, it also holds that a robust evolution does not
necessarily have to be holonomic. To see this, consider taking
a holonomic evolution U(¢) and forming a new evolution
U(t) = ZaoyU (1) Z-p0). where Zy) = e"2°% and A(r) is
an arbitrary differentiable function. This new evolution has
the initial condition U (0) = 1 and evolves under the effective
Hamiltonian

. . d
H=i00"=2Z\HZ] + i(EZA>Zj\

Q - s A
= E(COS ®o, + sin doy) + EO'Z, a7

where ® = ® + A, A = A+ A. Therefore, changing the
driving fields from {®, A} — {®, A} will implement the gate
U rather than U . Changing the control fields in this way leaves
the curvature and torsion 7 = ® — A invariant, and thus 7 can
only differ from 7 by a rigid rotation. However, since the error

Hamiltonian can be written as H; = %(—GT x T + SZT) -,
changing the phase and detuning fields in this way can only
change H; and U; by a constant rotation and so such a change
does not affect the robustness of the evolution to any order.
This does, however, change the dynamical phase since A(z),
and hence A(t), can be chosen arbitrarily. A similar obser-
vation was made by the authors of Ref. [58] using the filter
function formalism. Additionally, we note here that U(T)
does not have to be equal to U(T). By properly choosing
A(T) and A(0), we can add arbitrary z rotations before and
after a robust gate without affecting its robustness.

One exception to the above analysis occurs in the case
of a constant detuning field A, where robustness to both
types of noise does imply that the evolution is holonomic, as
first pointed out in Ref. [59]. This is readily seen from the
SCQC formalism by observing that, if a space curve satisfies
Egs. (13) and (14), then from Eq. (16) it immediately follows
that oy(T") = 0. Note, however, that the dynamical phase is
only guaranteed to vanish if A is constant. Transformations
Z that change the detuning field from one constant value to
another, i.e., ones for which A(¢) is linear in ¢, will preserve
the holonomic condition.

III. CONSTRUCTION OF DOUBLY ROBUST EVOLUTIONS

We now proceed to construct several classes of curves
satisfying the conditions given in Eqgs. (13) and (14). These
conditions ensure that the driving pulses produced from these
curves are doubly robust to first-order multiplicative driv-
ing field noise and additive transverse dephasing noise. We
present three different methods for constructing curves that
satisfy these conditions. The first method utilizes an ansatz
consisting of even and odd parity space curve components
comprised of trigonometric functions with frequencies fixed
such that both robustness conditions are satisfied. We refer
to such curves as “parity curves.” The second method ac-
complishes the cancellation of errors by instead utilizing an
ansatz for the tangent curve for which Eq. (14) is enforced
by symmetry. Choosing parameters equal to Bessel function
roots guarantees closure of the space curve so that Eq. (13)
is also satisfied, yielding “Bessel curves.” The third method
consists of constructing the tangent curve on a sphere such

that it traces out “tilted circles” that sweep zero area while
also containing the origin in its convex hull. We prove that
the later condition ensures the corresponding space curve is
closed, and so both Eqgs. (13) and (14) are again satisfied.

For each example curve presented below, we confirm the
robustness of the resulting gate by numerically simulating the
evolution in the presence of both types of errors and com-
puting the gate infidelity Z using the definition introduced in
Ref. [90] (see also Ref. [75])

F = iTe(UU,) + LITe(UUI. (18)

A. Parity curves

First, we consider the approach that utilizes the parity and
periodicity of trigonometric functions. This class of curves
can be written in the form

F(A) = frlwxM)E + filoyh)) + f(wA)2, 19)

where each function f;(w;A) is periodic with period 27 /w; and
either even or odd in A. Parameterizations of this sort make it
straightforward to impose symmetries in the space curve, and
this in turn can make it easier to satisfy the noise-cancellation
conditions. In particular, curves whose components are all odd
or all even functions satisfy these conditions. These “parity
curves” are related to the trigonometric curves considered in
the literature on the differential geometry of curves [91]. The
periodicity of such functions guarantees the curve is closed,
provided we choose all the ratios of the frequencies to be ra-
tional numbers so that a least common multiple always exists.
The parity property of the trigonometric functions ensures the
curves have vanishing projected areas for both the space and
tangent curves. For instance, if we start with a curve whose
components are of the even type, then 7 will be comprised
of odd functions and 7 will be comprised of even functions.
Therefore, the integral of the cross product Eq. (14) will only
contain odd functions and will, therefore, vanish over the
period of the curve.

The following is an example of a parity curve, where we
choose each component to be odd:

7(A) = sin(A/2)x 4 sin(A) cosz(k)jz + sin(A) cos(L)z. (20)

Here, A € [0, 47]. Before we can extract a pulse from this
curve, we must first switch to the arc-length parametrization

t defined by ||%?[)L(t)]||2 = 1 and such that ¢ € [0, T'], where
A(T) = 4x. It follows immediately that #(T) = F[A(T)] = 0,
and because of the built-in parity symmetry, the corresponding
tangent curve 7 (r) = 7(¢) satisfies Eq. (14), implying that
both types of noise are canceled. In fact, this curve also
has vanishing projected areas fOT dt 7(t) x T(t) = 0, so trans-
verse dephasing noise is actually canceled up to second order
in this example. The control fields obtained from the curvature
and torsion of 7(¢) using Eq. (9) are shown in Fig. 1.

To demonstrate the improved performance of the gate
generated by this curve, we compare its infidelity is not
satisfied. These three curves have the following tangent
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FIG. 1. Control fields that generate an identity gate robust to both
control field noise and transverse dephasing noise obtained using the
parity curve given in Eq. (20). Here, Q, = Qcos &, Q, = Qsin &,
A =0, and T is the gate time.
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curves:
F(1) = sin(t) cos(1) + sin’(1)§ + cos(r)z, 1)

(1) = L(v/2 cos(2r) — 2 cos(1))x — 1(v/2sin(2r)
+2sin(1))p + 3,/v2cos(3t) + 32, (22)
7(1) = sin(r) cos(21)% + sin(r) sin(2)9 + cos(t)z,  (23)

where ¢ € [0, 2] and we set T = 1 to simplify the notation.
Here Eq. (21) is a nonrobust curve that breaks both conditions
(13) and (14), Eq. (22) has a vanishing area but generates
a nonclosed curve, and Eq. (23) does not sweep zero area
but does generate a closed curve. The space curves obtained
by integrating these tangent curves are shown in Figs. 2(a)
to 2(c). We also note that Eq. (22), which is built using the
technique given in Ref. [92], is a less trivial example of a
tangent curve with vanishing area that does not use the parity
property built into Eq. (20). The fully robust curve of Eq. (20)
is shown in Fig. 2(d). All four of these curves produce identity
gates.

The gate infidelities corresponding to all four of the
above curves are shown in Fig. 2 as a function of the
strengths of both types of noise. Figure 2(a) clearly shows
the reduction in performance that results when the space curve

breaks both conditions, Eqgs. (13) and (14), with the infidelity
growing rapidly as both noise strengths are increased. How-
ever, Figs. 2(b) and 2(c) both exhibit a clear robustness against
one type of noise depending on which noise-cancellation
condition is satisfied. Finally, Fig. 2(d) shows a marked im-
provement in suppressing both types of noise, where now
both noise-cancellation conditions are satisfied. The infidelity
in this case in fact scales better than the expected €2, (T(SZ)2
scaling. The improved scaling in 7'§, can be understood from
the fact that the projected areas of the space curve all vanish,
as noted above. The € scaling suggests that the €* term in
the Magnus expansion also vanishes for this example; this in
turn may be a consequence of the parity symmetry. Further
investigation of the higher-order terms of the Magnus expan-
sion would be needed to confirm this. Finally, we note that,
although the use of parity curves makes it easy to satisfy both
noise-cancellation constraints at the same time, the control
fields in this example as shown in Fig. 1 may be hard to
implement in practice due to their sharp (although nonsingu-
lar) features. Bandwidth constraints can still be enforced by
either rescaling the gate time 7' (and hence the pulse ampli-
tudes) or by restricting the frequency parameters in Eq. (19)
appropriately. However, both approaches may lead to longer
than necessary gate times. In the subsequent sections, we
present two other methods of constructing curves that satisfy
both noise-cancellation constraints while also yielding more
experimentally friendly pulse shapes.

B. Bessel curves

Our second technique for constructing curves that satisfy
Egs. (13) and (14) starts by defining the following ansatz for
the normalized tangent curve:

T0@)] = [cos(gf)sin 6, sin(gf) sin B, cos O], 24)

where ¢ is a proportionality constant between the azimuthal
and polar angles. This formulation provides a curve that is
already expressed in its own arc-length parametrization and
which is solely controlled by a function 6(¢). This ansatz
makes the pulse error constraint particularly simple:

oo, o(T) . T
'/dMTxﬁz/m M(Tx—)zo
0 0(0) 00

where examination of the third component forces us to require

(25)

6(0) = 6(T). (26)

This one boundary constraint is equivalent to the vanishing
area condition, Eq. (14), along all three projections. For the
curve to be closed, we additionally need three real integrals
to vanish. These integrals come from plugging Eq. (24) into
Eq. (13). However, to simplify the process of finding suitable
functions 6 (¢ ), we will upgrade these to three complex integral

constraints
T
/ e'Ddr =0
0

T
/ POUED gy — )
0

27)

(28)
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FIG. 2. Four space curves (top row) that correspond to identity gates and the corresponding gate infidelities Z (bottom row) as a function
of control field noise (¢) and transverse dephasing noise (8,). (a) The space curve defined in Eq. (21) which does not satisfy either of the
noise-cancellation constraints, Eqs. (13) and (14). (b) The space curve defined in Eq. (22) which satisfies Eq. (14) but not Eq. (13). (c) The
space curve defined in Eq. (23) which satisfies Eq. (13) but not Eq. (14). (d) The doubly robust “parity” space curve defined in Eq. (20) which

satisfies both Eqs. (13) and (14).

where Eq. (28) should be understood as two separate con-
straints, one for each choice of the sign in front of g. Although
Egs. (27) and (28) are generally stronger constraints than
Eq. (13), these complex constraints have the advantage that
they can be solved approximately using Bessel functions, as
we explain in more detail below.

We note in passing that if we choose ¢ = 0, then Eq. (28)
becomes redundant, and the one independent integral con-
straint that remains, Eq. (27), coincides with the closed-curve
constraint for plane curves [62]. This is to be expected since
setting ¢ = 0 in Eq. (24) restricts the tangent curve, and hence
the space curve, to the xz plane. In this case, 6(¢) can be inter-
preted as the curvature of the plane curve [64] and Eq. (13) is
equivalent to Eq. (27). The zero-area constraint on the tangent
curve, Eq. (14), remains equivalent to Eq. (26).

For any other value of g # 0, Eq. (28) imposes an inde-
pendent constraint on the space curve. The magnitude of the
curvature of the space curve is given by

k()] = /g sin? [0()] + 110(t)].

We see that if we impose 6(0) = 0 = 6(T), the resulting pulse
envelope Q2(t) = «(¢) will start and end at zero as should be
the case for a smooth pulse. This condition and Eq. (26) are
both satisfied by the following ansatz:

0(1) 2,
=x;cos [ —¢],
~ T

where x; is a real constant. We refer to the space curve ob-
tained from this choice of 6(¢) as a “Bessel curve.” Inserting
this ansatz into Egs. (27) and (28) and comparing the results
to the integral representation of the Bessel function of the

(29)

(30)

first kind [93], we see that all the space curve constraints are
satisfied by choosing x; and (1 & g)x; to be Bessel function
Zeros

Jo(x;) =0, €2y

Jol(1 £ g)x;] =0. (32)

In the case of a plane curve (¢ = 0), the resulting evolution
generated by the sinusoidal 2(¢) is robust to pulse errors since
Eq. (26) holds; more surprisingly, we see that there exist par-
ticular pulse amplitudes x; for which dephasing noise is also
suppressed. For more general values of g # 0, we have a 3D
space curve, and we must choose ¢ so that both (1 4 g)x; and
(1 — g)x; are also Bessel function zeros. Although we cannot,
in general, find values of g for which these quantities are both
exact zeros, we can make them approximate zeros by finding
a ¢ that minimizes [(1 — ¢)x; — xi—11> + [(1 + ¢)xi — x; 111>
For three consecutive exact Bessel zeros x;_j, x;, X1, this
function is minimized when

R
in

The parameters x; and g together give us discrete control over
the smoothness of the space curve, and hence, the bandwidth
of the resulting control field. The curve and associated control
fields for the choice x; = 5.5201, g = 0.5660 are shown in
Figs. 3(a) and 3(b), respectively. In Fig. 3(c), we confirm the
expected insensitivity of the resulting z gates to both trans-
verse dephasing noise and multiplicative control field noise.
Different z rotations are constructed by adjusting the gauge
choice for & and A as discussed in the previous section.
Figure 3(d) shows that this robustness persists across all

(33)
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FIG. 3. (a) The “Bessel curve” obtained from Egs. (24) and (30) with x; = 5.5201, g = 0.5660. (b) Control fields that implement a doubly
robust identity gate obtained from the curvature and torsion of the Bessel curve in (a). Here Q, = Qcos &, , = Qsin®, A =0, and T is the
gate time. (c) The infidelity of z rotations as a function of the strengths of transverse dephasing noise (8,) and multiplicative driving field noise
(e). The infidelity for each value of §, and € is averaged over the uniform distribution [0, 277] of z-rotation angles. (d) The fidelity F versus
z-rotation angle (divided by 2). Each line corresponds to different values of € and §, (both have the same value along each line). Starting
from the top, the error values are §,, € = 0, 0.1, 0.2, 0.3, and 0.4, respectively.

possible z rotations. It is noteworthy that in this example, the
particular space curve also happens to have vanishing pro-
jected areas, and so therefore second-order dephasing errors
are also suppressed.

C. Tilted circles

Another very general strategy for constructing curves that
satisfy the robustness conditions comes from the observation
that the integral giving the area swept out by the tangent curve
is independent of the parametrization of that curve

T .
/T"xf‘dt:/f"xdf.
0

Thus we can start by drawing a tangent curve that sweeps
out zero area and then try to find a parametrization such
that the space curve is closed. Let s be the arc length of T,
i.e., |dT /ds| = 1. Then after designing a tangent curve T (s)
that sweeps out to zero area, we must find a parametriza-
tion s(7) that gives a closed space curve upon integrating
Tls@)]=T@). .

The curvature k and torsion t of 7 are related to 7'(¢) as
follows:

(34)

T (35)
K = = —,
dt
Vb8 L Fxmy=—17 4717
T = — . = - - —_ X = —— — X —
dt K dt K
1d. . 1d\*. . dT d*T
=———T.T —— =kT - — x —. (36
Kk dt </cdt> s z- (0

The vector triple product above is the geodesic curvature of
the tangent curve kg 7, so this relationship can be written as
T/K =KgT-

Not every tangent curve can be reparameterized to give a
closed space curve, however. For instance, in Eq. (22) the z
component of 7' is always positive and so the z component of
7 will be nondecreasing regardless of how T is parameterized.
Fortunately, we find a simple visual criterion that can be used
to determine if a given 7' curve can yield a closed space curve.

Theorem 1. A tangent curve T(s) can generate a closed
space curve if and only if the convex hull of T'(s) contains the
origin.

A more precise statement of this theorem and its proof can
be found in Appendix B. We also note that this theorem has
appeared before in the mathematical literature [94].

We now use this general method to find a family of pulses
yielding x rotations Xy, which when combined with virtual
z rotations and/or phase ramping can give any single-qubit
gate. The pulses in Fig. 4(c) are derived from tangent curves
comprised of “tilted circles,” as shown in Figs. 4(a) and
4(b). The curve goes from To = [cos(6/2), 0, sin(@/2)]" to
Tf = [cos(—6/2), 0, sin(—8/2)]" along a great circle arc.
However, it goes around two smaller circles before and af-
ter to cancel the area swept out by the great circle arc.
The upper and lower circles are normal to the vectors 7y =
(0, —sine, cos)” and Ay = (0, —sina, —cos )’ respec-
tively. The sign of the normal vectors are chosen so that the
area contribution from the circle points along 7:

-

2 4 L2 A
Acircle = TTT&,ql = T SIn“y 1, (37)
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FIG. 4. (a) The “tilted circles” tangent curve, shown here for 6 = 7 /2. The hue of the curve indicates the manner in which it is traced.
We also show the origin (in red) to show that it is contained in the convex hull of this curve. (b) A closed space curve generated from the
tilted circle tangent curve in (a). The hue of this curve matches that of the tangent curve and shows the speed at which different sections of
the tangent curve are traversed. (c) Control fields for a doubly robust R(Z X ) gate extracted from the curvature and torsion of the curve in (b).
To achieve the desired z-rotation angle, a constant detuning field is chosen appropriately. (d) Infidelity of the tilted curve-based R(5X) gate
versus transverse dephasing noise strength (8,) and multiplicative driving field noise strength (¢).

where y is deﬁged as the angle between To and 71y (and the
angle between 7y and 7if):

- - 0
cosy =T0-ﬁ0=Tf~ﬁf=sin§cosa. (38)

The area contribution of the arc from To to Tf is A';,IC =6/29,
and the total area swept out is

.0 . . .
A:Ey—l—nsmzy(no—i—nf)

0 . .o (0 2 .
= E—Znsmot 1 —sin 3 cos“a ) (9. 39

To cancel driving error, we require A= 0, which
gives an implicit equation defining «(f): 2w sino(l —
sin?(0/2)cos> @) = 0/2. We also see that the origin is
contained in the convex hull of this curve and so it can be
reparameterized to give a closed space curve. In Fig. 4, we
validate the inclusion of the origin in the convex hull of
the tangent curve and present the infidelity of the resulting
evolution. The area of low infidelity is the largest among
all our results, which emphasizes the fact that the degree
of error-cancellation affects the rate at which the quality of
the gate degrades with increasing noise strength and not its
absolute fidelity.

IV. CONCLUSION

In conclusion, we presented the description of the geomet-
ric control in the language of the (SCQC) formalism defined in
the error interaction picture. Utilizing the Magnus expansion,

we can transfer the noise suppression problem entirely to a
geometric space curve where each order of error is associated
with a respective geometric property. Specifically, a zero total
area of the tangent curve leads to cancellation of first-order
multiplicative error and a closed curve reduces the contribu-
tion of a static error. The relationship to the dynamical phase is
subsequently revealed and manifests the fact that its cancella-
tion does not necessarily imply total tolerance to (first-order)
errors in the driving field. The validation of our theoretical
results are supported by simulation of three types of curves:
Trigonometric “parity curves,” “Bessel curves,” and the “tilted
circles” approach, which are curves satisfying both geometric
conditions. Analysis of the infidelity plots reveaed the signif-
icantly greater performance of such gates compared to gates
that did not satisfy either robustness condition. Mediated by
the gauge freedom provided by the torsion, any desired phase
accumulation did not degrade the level of robustness of this
geometric scheme.
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APPENDIX A: SIGNED CURVATURE
AND INFLECTION POINTS

The introduction of the moving frame allows us to uniquely
map the control fields to the Frenet-Serret vectors, in an

012407-8



DESIGNING DYNAMICALLY CORRECTED GATES ROBUST ...

PHYSICAL REVIEW A 108, 012407 (2023)

interval free of inflection points, essentially «(¢) # 0. In gen-
eral, Eq. (9) implicitly assumes the differentiability of €(¢),
despite the fact that €2(¢) does not appear explicitly. When in-
flection points (points where the curvature vanishes) arise, the
curvature function contains cusps at these points; therefore, a
gauge transformation allows us to use a generalized version of
the curvature which changes sign at every inflection point in
the interval of evolution, ensuring the continuity of the normal
vector [95]. If ¢ are points of zero curvature, then the driving
field is given by

N
Q1) = K(I)Z(—l)’@(t —1)0(tiy1 — 1).

i=1

(A)

Essentially, this is a form of signed curvature. Similarly, the
phase field exhibits a 7 discontinuity at such points, yielding
the same behavior for the fields along o, and o,. The same
technique was introduced in the context of the SCQC formal-
ism in Ref. [57].

APPENDIX B: CONVES HULL THEOREM

Here we give a more precise statement and proof of Theo-
rem 1 from the main text.

Theorem 2. A tangent curve T'(s) can generate a closed
space curve if and only if the convex hull of T (s) contains the
origin. Additionally, in order for x(¢) to be finite at all times

(no delta function pulses), the origin must be in the interior of
the convex hull of 7 (s).
The convex hull of T'(s) is the set of vectors

C= {/[ dsh()T (s) : A(s) = 0, /1 dsi(s) = 1}. (B1)
0 0

Given some particular parametrization s(t), we can write
R(T) as

_ T S dt .
R(T):/ dtT(t):/ ds—T(s)
0 0 ds

S |
:T</o dsTK(s)T(s)>,

where S = s(T'). We can therefore identify ﬁ(T)/ T as a point
in C, with A(s) = 1/T«(s); clearly, 1/Tx > 0 since « > 0,

and
§ 1 1S5 de 1 [T
ds = — ds— = — dr =1. (B3)
0 TK(S) T 0 ds T 0

Thus in order for the space curve to be closed, i.e., I?(T) =
0, there must be some choice of A(s) = 1/T«(s) such that
f(ff dsi(s)T(s) = 0, i.e., the origin must be in the convex hull
of T.

Additionally, if « is finite at all times, then A(s) =
1/Tk(s) > 0. The points in C with A(s) > O for all s are points
in the interior of C.
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