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Deep reinforcement learning for key distribution based on quantum repeaters

Simon D. Reiß * and Peter van Loock †

Institute of Physics, Johannes-Gutenberg University of Mainz, Staudingerweg 7, 55128 Mainz, Germany

(Received 20 October 2022; accepted 2 June 2023; published 6 July 2023)

This work examines secret key rates of key distribution based on quantum repeaters in a broad parameter
space of the communication distance and coherence time of the quantum memories. As the first step in this
task, a Markov decision process modeling the distribution of entangled quantum states via quantum repeaters is
developed. Based on this model, a simulation is implemented, which is employed to determine secret key rates
under naively controlled, limited memory storage times for a wide range of parameters. The complexity of the
quantum state evolution in a multiple-segment quantum repeater chain motivates the use of deep reinforcement
learning to search for optimal solutions for the memory storage time limits, typically referred to as memory
cutoffs. The main contribution in this work is to explore very general cutoff strategies which dynamically adapt
to the state of the quantum repeater. An implementation of this approach is presented, with our focus on four-
segment quantum repeaters, achieving a proof of concept of its validity by finding exemplary solutions that
outperform the naive strategies.
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I. INTRODUCTION

In the past century, the discovery and progress of quantum
physics fundamentally reshaped the understanding of the
world. In the 21st century, the scientific community started
to utilize quantum mechanics to develop new technologies
emerging as an entire field of quantum technology. In this
field, quantum cryptography is of high relevance and the first
technology to be on its way to broader commercialization.
Common classical cryptography relies upon computational
hardness assumptions to ensure the security of the transmitted
information. This is an inherently vulnerable concept, since
advances in the computational power can break the condition
on which the security was built. Quantum cryptography,
however, offers unconditional security based on fundamental
laws of physics [1,2]. In recent years, substantial research has
been put into realizing practical quantum cryptography. While
fiber-based quantum key distribution (QKD) over 400 km
has already been successfully implemented and employed
[3,4], achieving high transmission rates over longer distances,
up to 1000 km and beyond, remains an ambition for the
foreseeable future. Complementary satellite-based quantum
communication transmitting quantum information through
free space is another promising approach [5,6]. Ultimately,
global quantum networks [7–10] are expected to be based
upon a combination of fiber and satellite links [11,12].
Another interesting option is the concept of twin-field QKD
reaching distances beyond 400 km with standard optical
fibers [13] and up to about 800 km by using low-loss fibers
(0.1419 dB/km), as was recently demonstrated in Ref. [14].

Fundamentally, the secret key capacity of a lossy bosonic
channel is −log2(1 − η) [15,16], and so for long-range point-
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to-point quantum communication it drops linearly with the
transmission parameter η [17] and exponentially with the
channel distance. The solution is to extend the range of
quantum networks to larger distances by means of a quan-
tum repeater [18,19]. Similar to classical communication, the
optical fibers used in quantum communication suffer from
channel losses that exponentially grow with distance. Quan-
tum repeaters are designed to overcome these losses and
preserve transmission rates at long distances by dissecting
the communication channel, distributing entangled quan-
tum states over sufficiently short segments, and eventually
connecting the elementary links via quantum teleportation
(entanglement swapping) [19]. The ongoing development of
quantum repeaters has seen significant progress in recent
years in the theoretical concepts [18,20–23], proposals for im-
plementations [24–26], and the engineering of the necessary
hardware [27–30].

Besides the experimental implementations, suitable strate-
gies operating the quantum key distribution over quantum
repeaters have to be developed. This turns out to be a very
challenging task, since the complexity of analyzing multiple-
segment quantum repeaters grows quickly with the number of
repeater stations and hence the distance [23,31].

Memory-based quantum repeaters store intermediate states
in quantum memories and are currently the most experi-
mentally feasible approach that is scalable to large distances
by concatenating sufficiently many quantum repeater nodes
[27,32]. Hence, one task of the operating protocol is to
manage and control the quantum states stored in the quan-
tum memories. Physical implementations of today’s quantum
memories suffer from degradation of the stored quantum
states [27,33,34].

There are at least two established, similar approaches to
counteract the memory degradation and improve the fidelity of
the distributed states at the cost of lower rates. One approach
is based upon a memory cutoff where quantum states are
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discarded when their storage times exceed a chosen threshold
[21,33–40]. An approach to simplify the computation is to use
a memory buffer instead (sometimes referred to as memory
access time) where the generation of initial entangled states
between adjacent repeater stations is restarted at fixed times
[41,42]. A memory buffer is distinct from a memory cutoff,
since two neighboring segments, even when ready, must wait
until a predetermined time resulting in an unnecessary de-
phasing of the states. In the case of a cutoff, states that have
waited for any duration below the cutoff are swapped as soon
as possible.

The motivation of this work is to optimize the quantum
repeater strategies in quantum key distribution tasks. Exact
analytical or even numerical optimization approaches often
seem computationally infeasible in the treatment of multiple-
segment quantum repeaters [36,38,41–44]. In the following
we will use the typical terminology of machine learning where
strategies are termed policies.

In Ref. [40] a numerical optimization of the cutoff to
maximize the secret key rate was presented. In that work
the cutoff was optimized per nesting level. The results pre-
sented in Ref. [40] used a fixed (doubling) swapping scheme,
which differs from the present work where quantum states are
swapped as soon as possible. More importantly, the policies
presented in our work are more versatile in their ability to
dynamically adapt to the state of the repeater chain and hence
are significantly more complex to analyze.

On the way towards optimizing large-scale quantum net-
works incorporating a vast parameter space, methods able to
handle this level of complexity remain of particular interest.
Reinforcement learning (RL) is a method capable of find-
ing near-optimal solutions to problems where an analytical
treatment is infeasible. Deep reinforcement learning (DRL)
extends RL by the use of artificial neural networks in order
to handle high-dimensional state spaces. In recent years, DRL
has made significant advances in optimizing control tasks for
problems which where previously unsolvable [45,46]. Notable
examples include training a computer to play Atari games
from raw game pixels [47] and performing locomotion tasks
[48,49]. More recently, the application of DRL methods to
complex video games, which start to capture the complexity
and continuous nature of the real world, was successfully
demonstrated [50–52]. This motivates the application of these
methods to quantum communication networks, offering solu-
tions even for scenarios where the complexity exceeds what is
achievable with other numerical optimization approaches.

Most recently, RL was successfully applied to some quan-
tum information tasks. For example, in Refs. [53,54] agents
autonomously developed well-known quantum information
protocols and completed quantum error correction strategies,
respectively. In Ref. [55] RL was used to optimize quantum
error correction codes.

The above-mentioned references as well as the present
work make use of classical algorithms to solve quantum prob-
lems. This should not be confused with quantum machine
learning approaches where the optimization itself has quan-
tum aspects to it.

In the present work, DRL will be applied to QKD via
quantum repeaters [56]. As the first step, we formulate a
memory-based multisegment quantum repeater as a Markov

decision process (MDP). This MDP incorporates the full de-
scription of the quantum states and incorporates channel loss
and Pauli errors as well as the option to discard any interme-
diate quantum state. Based on this, a simulation is employed,
including a simple uniform memory cutoff. We present a
broad range of results on the dependence of the secret key
rate of the experimental parameters for the memories, the seg-
ment lengths, and the uniform cutoff parameter for the special
class of four-segment quantum repeaters. The simulation also
serves as the necessary groundwork for our DRL approach.

We adapt a public implementation of a proximal policy
optimization DRL algorithm to the simulation in order to
find sophisticated memory policies optimizing the secret key
rate. The major obstacle in this application of DRL is that
the optimization merit is nonadditive in terms of the fidelity
of the distributed quantum states. We offer an elegant solu-
tion in proposing a generalized objective function, expanding
common RL algorithms while maintaining the applicability of
convergence improving techniques related to value functions.
This improves computational feasibility compared to a simple
solution via an episodic reward. The search space consists
of the full memory control over discarding individual quan-
tum states, based on the entire information available at any
moment.

In this dynamic adapting of the policy lies the contribution
of our work, extending prior work which considered static
fixed cutoffs that were assigned to nesting levels of a doubling
scheme or a single point-to-point link. Furthermore, DRL is
the enabling method to achieve this versatility. It has proven
to excel in optimization tasks whose complexity exceeds the
capabilities of other numerical approaches [45,46], thus offer-
ing an approach for large-scale networks including numerous
interleaving processes and errors. This proves to be an already
nontrivial task for the four-segment quantum repeaters as
considered here. In principle, the state space of our MDP mod-
eling the quantum repeater is infinite. By setting a maximum
accumulated storage time tm, which will be further defined in
Sec. II, one could limit the size of the state space to t9

m for
a four-segment quantum repeater. Thus, even when assuming
tm as low as tm = 10 the number of states is 109. Taking into
account that there are at least two possible actions for any
relevant state of the MDP and at least two possible transitions
for each action, this lower estimation illustrates that analytical
approaches are infeasible to solve this optimization problem.
The present work can be understood as a proof of concept of
a DRL-based optimization method for four-segment repeaters
that is equally applicable to larger repeater chains where we
expect it to be even more powerful compared with the standard
approaches.

Ultimately, we find policies for the quantum memory treat-
ment, which outperform the naive approaches used in the
simulations. Therefore, we demonstrate a successful proof-of-
concept application of a DRL approach in a first step towards
solving complex optimization tasks in quantum networks.
The paper is organized as follows. In Sec. II we present our
abstract model of a multisegment quantum repeater chain.
In Sec. III we describe and discuss the results of simu-
lating four-segment quantum repeaters using this model. In
Sec. IV we present our DRL approach and its results, espe-
cially in comparison with the simulations without DRL. We

012406-2



DEEP REINFORCEMENT LEARNING FOR KEY … PHYSICAL REVIEW A 108, 012406 (2023)

FIG. 1. Multiple-segment quantum repeater chain. Each box
depicts a quantum repeater node. Entangled two-qubit states are
initially distributed within the segments. As soon as two neighboring
segments are ready, i.e., their memory pairs share a successfully
distributed state, the entanglement swapping is performed. After sub-
sequent swappings, synchronized via storage at the memory nodes,
eventually an entangled state is shared between the two outermost
nodes.

summarize in Sec. V. Appendixes A–F provide additional
technical details.

II. QUANTUM REPEATER MODEL

This section presents our model of a multisegment quan-
tum repeater including the relevant errors. We will use an
MDP to describe the evolution of quantum states in a quan-
tum repeater. We briefly introduce the secret key rate as a
figure of merit to evaluate the performance of a quantum
repeater. Finally, we will discuss a memory cutoff policy, in
which quantum states in the memories of a quantum repeater
are discarded in order to improve the fidelity of the states
distributed between the communicating parties.

A. Physical model and parameters

Let us now introduce a simplified model of a multisegment
quantum repeater. This offers the possibility to obtain fairly
general and conceptual results independent of any specific
implementation.

A simple, generic multisegment quantum repeater chain is
depicted in Fig. 1. Quantum repeaters are used to distribute
entanglement between two distant parties by segmenting their
connecting channel. Initial entanglement is generated in each
segment, for instance, employing a source of entangled pho-
ton pairs at a node (or placed in the middle between two
memory nodes) and sending one photon to each adjacent
node. At each repeater node an entanglement swapping op-
eration, which is essentially a Bell measurement for quantum
teleportation, is performed on the memory qubits transferring
the entanglement step by step over the entire distance to the
communicating parties.

Throughout this work, quantum repeaters with the follow-
ing properties are considered.

(i) The quantum repeater may in principle consist of
an arbitrary number of segments. For simplicity, only one-
dimensional concatenated segments are treated here, i.e.,
quantum repeater chains (an extension to multidimensional
repeater networks would also be possible with our methods,
but this will not be demonstrated in this work). Eventually, we
will focus particularly on four-segment quantum repeaters.

(ii) Each repeater node contains one quantum memory for
each adjacent node.

(iii) The repeaters are “clocked repeaters,” where the clock
times are determined by the classical communication times
between nodes.

(iv) All errors of the implementation can be described as
Pauli channels,

N (ρ) =
3∑

j=0

a jPjρP†
j , (1)

where ρ is the density operator of a quantum state, Pj are
the Pauli operators, {Pj} j∈{0,1,2,3} = {1, X, Z, XZ}, and a j are
real-valued non-negative probabilities satisfying the normal-
ization property

∑3
j=0 a j = 1.

(v) Elements for active entanglement purification [57,58]
and more general quantum error correction are not included
throughout. The only mechanism to suppress errors on the
memories is a finite memory cutoff.

The parameters characterizing the implementation of a
quantum repeater in our model are n, the number of segments;
L0, the length of one segment, which is the distance between
adjacent repeater nodes; νi ∈ [0, 1], the probability of any
error to occur in a given situation, in particular, the probability
of a phase flip to occur on a quantum state stored in a mem-
ory; c, the signal speed for classical communication between
repeater nodes (typically, the signal speed in an optical fiber,
which can be employed for transmitting both quantum and
classical signals); and Latt, the attenuation length of the optical
fibers for realizing the quantum channels between the repeater
nodes. The following additional parameters can be obtained
from those listed above: τ0 = L0

c , one round of quantum and
classical communication, which is the time it takes for a node
to send qubits and classical information to an adjacent node;
τc, the memory coherence time for a bipartite quantum state
[see Eq. (8)], which corresponds to half of the commonly used
parameter of the single-qubit dephasing channel for the quan-
tum memories; η = e−L0/Latt , the transmissivity of the optical
fibers connecting the repeater nodes, inducing an exponential
photon loss with distance; and p = pxη, the probability of
generating an initial two-qubit entangled state in a segment in
one time step. The parameter px incorporates the photon cre-
ation efficiency of the spin-photon or photon pair source, fiber
channel in- and out-coupling, and detector efficiencies, as
well as memory write-in efficiencies. The attenuation length
Latt is a physical parameter of the optical fiber dependent
on the employed wavelength of the transmitted photons. The
preferred wavelength is that of telecommunication (1.55 μm,
potentially requiring wavelength conversions) and a typical
value for Latt is 22 km. Note that the particular form of the
transmissivity η relies on the assumption of constant photon
losses, which is the case for optical fibers and this would have

012406-3



SIMON D. REIß AND PETER VAN LOOCK PHYSICAL REVIEW A 108, 012406 (2023)

to be changed for different channel implementations (such as
fluctuating loss in a free-space channel).

B. Markov decision process

For the purpose of adequately describing a quantum re-
peater, we designed an MDP to model the propagation and
evolution of the quantum states stored in the quantum mem-
ories of a multisegment quantum repeater in our physical
model. An MDP is defined as a tuple (S, A, P, R), where S is a
set of states of the environment, A is a set of actions performed
by the agent on the environment, P : S × A × S → [0, 1] is
the transition probability in a time step between states depen-
dent on the applied action in this time step, and R : S × A ×
S → R is the immediate reward received from a transition.

In practice, besides photon losses, Pauli channels include
the most common errors in quantum repeaters and networks
[19]. This is fortunate from a mathematical perspective, since
Pauli channels commute with the entanglement swapping op-
erations [59,60]. Thus, in the case of memory dephasing,
which is a Pauli channel, the number of accumulated error
operations is proportional to the accumulated storage time,
i.e., additively propagating the storage times of quantum states
through the swapping operations gives the correct accumu-
lated dephasing. Therefore, instead of rigorously calculating
the density matrix of every intermediate quantum state, it is
sufficient to treat the undisturbed quantum states that are only
subject to channel loss and count the accumulation of errors
separately. Then all these accumulated errors can be applied
to the final quantum state distributed between the communi-
cating parties. Hence, the states of the MDP can be encoded in
a triangular matrix where each entry corresponds to a pair of
repeater nodes storing the accumulated errors of the bipartite
quantum state. One time step of the MDP is the time it takes
to send quantum and classical information between adjacent
repeater nodes (corresponding to τ0 in our physical model).
Note that in our treatment here we only consider the simplest,
still to some extent idealized scenario with only two effects
determining the final rates: channel loss and memory dephas-
ing. This channel-loss-and-memory-dephasing-only model is
similar to that of Ref. [27], however here extended from two
to four repeater segments. Additional experimental (error)
parameters have been included in the analytical treatment
of Ref. [23]. As opposed to the present work, Ref. [23] did
not focus on optimizing the memory cutoff (for a discussion
on other existing works and approaches for optimizing the
memory cutoff, see Sec. II D 1).

The set of possible actions of the agent consists of arbitrary
combinations of swapping and discarding operations. The
action applied in one time step may perform entanglement
swapping on any subset of repeater stations and discard any
subset of the stored quantum states. In the event that the two
outer nodes of the repeater share an entangled state, this state
is discarded and its fidelity is returned as a reward. A detailed
description of the MDP can be found in Appendix A.

C. Quantum key distribution: Secret key rate

The secret key rate R is a suitable measure to evaluate the
performance of a quantum repeater, as it combines the relevant

properties, namely, quantum state fidelity and raw transmis-
sion rate, into one convenient figure of merit. Furthermore,
long-range QKD is one of the main applications motivating
the development of quantum repeaters. The secret key rate is
defined as the number of secret bits distributed between two
communicating parties, commonly denoted by Alice and Bob,
in bits per time and can be written as

R = Y r, (2)

where Y is the raw rate and r the secret key fraction. The
raw rate is the number of raw bits distributed between Alice
and Bob per time and the secret key fraction is the potential
number of secret key bits that can be extracted per raw bit via
post-processing.

Throughout this work the Lo-Chau BB84 [2,61] protocol is
used to determine the secret key rates. The asymptotic secret
key rate of the Lo-Chau BB84 protocol (see, for example,
Ref. [62]) reads

RBB84 = Y rBB84(e1, e2), (3)

with the secret key fraction

rBB84(e1, e2) = 1 − h(e1) − h(e2), (4)

where h is the binary entropy function defined on the interval
[0, 1] as

h(p) = −p log2 p − (1 − p)log2(1 − p). (5)

The quantum bit error rates e1 and e2 are the probabilities
of noncoinciding measurements performed by the two parties
on the shared data qubits in the respective coinciding basis.
Commonly, the Pauli X and Pauli Z bases are chosen. In a
realistic scenario, Alice and Bob have to estimate the bit error
rates on a finite set of test data. In the proposal of Ref. [61] it
was shown that the number of test bits can be chosen on the
order of �(log k), where k is the length of the final key, while
still achieving unconditional security. Thus, the fraction of test
data can be chosen asymptotically close to zero. The concrete
derivation of the asymptotic secret key rate for our physical
model, including only fiber losses and memory dephasing [see
later Eq. (8)], can be found in Appendix B and it takes the
simple form

RBB84 = Y
(
1 − h

{
1
2

[
1 − E

(
e−t/τc

)]})
, (6)

where τc is the coherence time of the quantum memory for
a bipartite quantum state and t is the storage time of the
quantum state, which is a random variable with an arbitrary
but generally unknown probability distribution.

D. Memory dephasing: Cutoff and swapping strategies

1. Overview of existing approaches

One of the most significant error sources in practical
implementations of memory-based quantum repeaters is the
degradation of quantum states in the memories. The distri-
bution of entanglement via a quantum repeater typically is
a highly probabilistic process. Thus, the level of degradation
caused by memory dephasing can become very large, with
some nodes having to wait for others for so long that entan-
glement can hardly be preserved.
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As already mentioned in the Introduction, limiting the time
during which the quantum states are stored is a common
strategy to improve the fidelity of the distributed quantum
states. This concept adapted to quantum repeaters based on
imperfect memories was first introduced in Ref. [35]. In terms
of resources, this is the least expensive approach to sup-
press memory errors compared to entanglement purification
strategies relying on the distribution of additional entangled-
state copies and extra classical communication rounds or,
alternatively, strategies based on the implementation of more
complicated quantum error correction codes. Again, the pro-
cesses in a quantum repeater are highly probabilistic and
computing the corresponding probability distributions for
complex repeater schemes quickly becomes infeasible. In re-
cent years, significant research has been devoted to this and
results under various simplifying assumptions have been re-
ported. In order to put our work and results in context, we will
give a brief overview of some of the existing literature.

The distributed entangled quantum states in a two-segment
repeater including cutoffs were thoroughly analyzed in the
presence of various error models in Refs. [27,33,34,59]. Ref-
erence [59] also considered more than two segments, however,
adapted to specific distribution protocols. In Ref. [37] a
closed compact formula was derived to efficiently compute
the raw rate of a quantum repeater with an arbitrary number
of segments, including a memory cutoff, with the constraint
of deterministic entanglement swapping operations and the
(practically suboptimal) assumption that all swappings are
performed at the end. In Ref. [36] an algorithm based on
Markov chains and solving linear-equation systems was pre-
sented which exactly computes the average waiting time of
quantum repeater chains with an, in principle, arbitrary num-
ber of segments including various swapping strategies. For
up to four segments, exact rate formulas are given. However,
this algorithm is practically limited as its runtime in O(cn)
growth rather quickly with the number of segments n and
the cutoff c. In [31] swapping strategies in the presence of
nondeterministic swapping operations were optimized for the
best possible raw rate, but no cutoff is included.

In a more numerical approach, in Ref. [44] an efficient
optimization over entanglement distribution schemes using
dynamical programming was proposed under the assumption
that there is no time-dependent decoherence in the quantum
memories. The algorithm recursively solves larger repeater
chains by dissecting them into smaller subchains which are
optimized requiring the idealizing simplification that the sub-
processes finish at the average time. In Ref. [41] the optimal
memory buffer maximizing the rate of distillable entangle-
ment of the average state at all nesting levels in a doubling
repeater scheme was computed. In another work, in Ref. [38],
algorithms to compute the probability distribution of the fi-
delity and waiting time for the first distributed entangled state
in a quantum repeater and a numerical optimization over a
cutoff were presented. Moreover, in Ref. [39] it was shown
that the optimal policy maximizing the accumulated fidelity
in a multiplexed repeater segment can, in the finite-horizon
setting, be computed via a dynamical programming algorithm.
In Ref. [42] a heuristic algorithm was developed which op-
timizes quantum repeater schemes in order to minimize the
generation time of an entangled state between communicating

parties for a fixed minimum success probability and fidelity.
Their schemes also include memory buffers and entanglement
distillation. To overcome the computational complexity the
schemes are restricted to those that succeed at all levels near
deterministically. This is enforced by repeating all probabilis-
tic processes a sufficient number of times to ensure a high
probability of at least a single success. In Ref. [63] a genetic
algorithm was presented and applied to NetSquid simulations
[22], providing insights into the necessary hardware parame-
ters for viable quantum repeaters. Recently, in Ref. [23], an
exact rate analysis for quantum repeaters including experi-
mental errors was presented. However, the cutoff was included
primarily in a sequential repeater scheme and no optimization
of the cutoff was made. Reference [40], as most relevant to the
present work, was already discussed in the Introduction.

As was stated in the Introduction, our policies can dynam-
ically adapt to the state of the repeater and decide for any
individual quantum state if it should be discarded or not. Thus,
we include an extended toolbox which offers the possibility
of more sophisticated and, as we will present in Sec. IV E,
better policies than previous approaches. In order to handle the
complexity introduced by this generalization we use a DRL
algorithm. We will distinguish the two policies by referring
to the simpler policy as the cutoff policy and to the more
sophisticated, better policy as learned policies.

2. Policies in this work: Cutoff and swapping strategies

In this paper the cutoff policy is defined such that any
quantum state whose accumulated storage time exceeds a
chosen cutoff value c will be discarded. Accumulated storage
time here refers to the storage time that propagates additively
through the swapping operations leading to the final quantum
state shared between the most distant stations. If, for example,
a state is stored for n1 time steps and swapped with a state
stored for n2 time steps, the state after the swapping has an
accumulated storage time of n = n1 + n2 time steps. Note
that this differs from other common definitions of the cutoff,
which often only use the time the state is stored in the current
nesting level. However, as was explained in Sec. II B, our
accumulated storage time does in fact correctly describe the
propagated quantum state. This substantiates the choice of an
accumulated cutoff, since it determines the quality of a quan-
tum state more accurately than when only the storage time in
one nesting level is taken into account. Also, note that a cutoff
per nesting level was employed in Ref. [40], where it was
found that for the presented example parameters a nonuniform
cutoff, i.e., a different cutoff for each nesting level, does not
yield a significant improvement of the secret key rate. Our
best guess is therefore that this would also hold for our very
similar repeater model. However, a meaningful direct com-
parison to the numeric results of Ref. [40] is difficult, since
their error model assumes depolarizing errors as opposed to
our dephasing model. Furthermore, their doubling swapping
scheme differs from our swap as soon as possible strategy.
Later in this section we argue that our swapping strategy is
ideal for our repeater model, giving a further advantage to
the secret key rates computed in this work. These arguments
justify our uniform cutoff model to be used as a reasonable
benchmark.
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The cutoff policy as defined in our work, based on an
accumulated storage time, actually ignores the fact that the
information on which the decision to discard quantum states
is based might not be directly available at the node performing
the operation at the corresponding time. Our basic assumption
that the necessary information is indeed available is not obvi-
ous and may even seem unreasonable. Also, an argument that
this serves as a bound is invalid, as classical communication
is not an obstacle one could possibly circumvent. First, one
should note that this does not physically contradict anything
about how the quantum repeater is operated and functions.
The only but clearly idealizing element of this is that decisions
for the controlled part of the process, namely, the discarding
of the quantum states, are generally based on the entire state
of the MDP. This means decisions of the policy performing an
action in one node might be based on information that cannot
be possibly accessible in this particular node. In the context
of examining fully realistic quantum repeaters, all necessary
classical communication must be taken into account. How-
ever, in this work, in order to allow for optimal comparability
between unlearned and learned policies, we choose these to
be all-knowing to give the algorithm at any time complete
information to discover new policies. Therefore, imposing the
same conditions on the unlearned policies, simulated in the
following section, as those imposed on the learned policies,
described later, ensures that any advantage of the learned
policies must be based on their better strategy and will not
be based on any better assumptions.

Next we want to briefly discuss swapping strategies. As a
simplification, throughout this work we assume the entangle-
ment swapping to be error-free and deterministic. In the case
that memory dephasing is the only error acting on the quan-
tum states, the ideal swapping strategy is to perform the Bell
measurement at any repeater node immediately when both ad-
jacent segments have successfully distributed entanglement.
This follows from the fact that a swapping operation reduces
the number of bipartite quantum states that are simultaneously
stored and thus the accumulated dephasing. (For a rigorous
and more mathematical treatment of these aspects, together
with a systematic formalism to exactly calculate the secret key
rate in such protocols that deterministically swap as soon as
possible, see Ref. [23]. Among the fastest repeater schemes
giving the highest raw rates, i.e., those with parallel entangle-
ment distributions, the analytical proofs of Ref. [23] include
and even go beyond a repeater size of four segments as used
in our models; when sequential entanglement distributions are
also allowed, there is an optimality proof for three identical
segments and numerical evidence for up to eight segments.)

All schemes simulated in this work are what we call over-
lapping schemes. This means that, opposed to other common
analysis which often only considers the first distributed state,
we consider the generation of many distributed states in an
overlapping fashion. This further means that in the lower
nesting levels states will be continued to be generated for
future processing while other memories are still occupied for
the next distributed state. In the four-segment case treated
in this work, this might not have a significant effect on the
performance of the repeater, as the only case where this
is actually beneficial is when an entangled state over three
segments is shared. In this case, the segment in the middle

of this connection can again start entanglement generation
attempts.

III. SIMULATING KEY DISTRIBUTION BASED ON
QUANTUM REPEATERS

In this section the cutoff policy is examined via simulations
with respect to its effect on the secret key rates. The primary
purpose of this is to provide benchmarks of achievable secret
key rates to be surpassed, for the policies later considered with
the RL algorithm in Sec. IV. Before presenting in detail the
results of the simulation, we will briefly describe the specific
errors included in the simulation, extending the discussion on
our physical model and errors from Sec. II A.

A. Errors and imperfections

A realistic quantum repeater is a complex system with nu-
merous parameters. The more realistic effects are included in a
simulation, the more meaningful the results become regarding
the assessment of a practical quantum repeater. On the other
hand, excluding some sources of errors allows for a more
focused view of the most important ones. Another way to
look at this is that the results considering fewer errors serve
as upper bounds for what is achievable.

The focus of this work is on strategies to counteract the
dephasing of quantum memories. For many of the commonly
used physical realizations of quantum memories, especially
those based on solid-state systems, such as color centers
in diamonds, spin dephasing is the dominant error [27,64].
Therefore, the only two imperfections that we choose to in-
clude are the dephasing of the quantum memories and the
finite transmissivity of the quantum channel (while without
the latter quantum repeaters would be pointless).

We model the degradation of the quantum states that are
stored in the memories as a dephasing channel

NZ (ρ) = (1 − ν)ρ + νZρZ, (7)

which we further specify as exponential decay at time t ,

NZ (ρ, t ) = 1
2

(
1 + e−t/2τc

)
ρ + 1

2

(
1 − e−t/2τc

)
ZρZ, (8)

where Z is a Pauli operator and τc is the coherence time of
the quantum memory [33]. Note that the dephasing channel
as defined in Eq. (8) is a single-qubit channel. In a quantum
repeater, both qubits of a stored entangled bipartite state are
subject to this error channel (individually, i.e., locally and
independently) prior to entanglement swapping. This is also
the reason for the factor 2 multiplied with the coherence time
τc, which was defined as the coherence time for a bipartite
quantum state. The second imperfection included is the pho-
ton loss in the optical fibers, which was already described in
Sec. II A.

B. Results

This section presents the results of our numerical simu-
lations. In the simulations, the secret key rates for a BB84
protocol are computed. A discussion of the required formulas
can be found in Appendix B. Two-segment quantum repeaters
have already been analyzed rather thoroughly [33,34] and,
being structurally simple, do not offer extra insights for our
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FIG. 2. Secret key rates of four-segment quantum repeaters without memory cutoff. The secret key rate is plotted in secret bits per second
dependent on the segment length L0 and the memory coherence time for a bipartite quantum state τc. The secret key rate and the coherence
time of the memories are displayed on a logarithmic scale.

treatment. In this work we choose to consider the class of
four-segment repeaters. This is partially motivated by the ex-
isting literature, which often considers doubling the number
of repeater segments, making four segments the logical next
step beyond two. Here it is also worth noting that the more
segments are included, the less feasible it can become in our
model without entanglement purification and error correction
that meaningful practical or even nonzero secret key rates can
be obtained [23]. For repeaters of a larger scale, such extra
tools will have to be included.

For the attenuation length Latt we choose 22 km, which
is today’s experimental standard for the telecom wavelength
of 1550 nm [65,66]. The speed of classical communication is
assumed to be 2 × 108 m/s, which corresponds to the typical
value in optical fibers. The segment lengths are chosen within
a commonly considered range of 20–70 km, and the coherence
time of the memories is assumed to be within the scope of
today’s experimental possibilities [27].

1. Uncertainties

In the simulations, since overall minimal uncertainties
were achieved, 3-σ confidence intervals (approximately equal
to 99.73%) are displayed in all plots with uncertainty bars,
instead of the more commonly chosen σ intervals (approxi-
mately equal to 68.27%). However, note that the uncertainty
bars are still small enough for many data points not to be easily
visible, as they can be smaller than the displayed points of the
data. One should not be misled by their width in the horizontal
direction, since this axis corresponds to a discrete quantity
and does not display an uncertainty. The style of displaying
the uncertainties was chosen to increase their visibility. Their
height corresponds to the 3-σ confidence interval of the secret
key rate.

It is also worth noting that the uncertainties get larger for
a sparser entanglement distribution in time, thus for longer

segment length and smaller cutoff parameters. The reason is
that the sparser the received quantum states are, the larger the
required sample size is to obtain an equally good estimation
of the average fidelity. Hence, the precision of some values
with more significant uncertainties is limited by the same
computational time needed to simulate larger sample sizes.

2. Quantum repeater without cutoff

In this section the secret key rate of quantum repeaters
that are not controlled by a policy including memory cutoff
is examined. The results are presented in Fig. 2.

In order to deepen our understanding, we now further elab-
orate some implications of the parameters. One should note
that since the classical communication time τ0 = L0

c scales
linearly with the segment length L0, a larger segment length
L0 not only decreases the transmissivity of the channel, but
also decreases the effective coherence time per channel use.
Furthermore, an increase in classical communication time
results in lower raw rates per second for identical raw rates
per channel use, thus reducing the efficiency of a channel use.
However, these drawbacks are reasonable taking into account
that the overall communication distance increases with the
segment length, thus fundamentally lowering the transmission
rate.

The results obtained in our simulations are what one would
intuitively expect, as the secret key rate increases with smaller
repeater segments and better coherence time of the memories.
The secret key rate saturates for sufficiently large coherence
times, because the fidelity of the distributed quantum states
approaches unity, and it drops to zero for short coherence
times when the fidelity approaches a value of 1

2 . With longer
segment length the maximum secret key rate decreases. The
larger the segment length, the higher the requirements on the
quantum memories to achieve reasonable secret key rates.
The increase of the secret key rates with the quality of the
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(a) (b)

(c) (d)

FIG. 3. Secret key rates of four-segment quantum repeaters in secret bits per second dependent on the memory cutoff parameter c for
segment length L0 = 20 km and different coherence times of the memories for a bipartite quantum state τc, (a) τc = 0.1 ms, (b) τc = 1 ms,
(c) τc = 10 ms, and (d) τc = 100 ms, plotted with 3-σ confidence intervals.

memories is steeper for worse memories and gets less signifi-
cant as the secret key rate saturates towards perfect memories.
The decrease of the secret key rate with increasing segment
distance is significantly steeper for worse memories.

3. Quantum repeater with cutoff

In this section the secret key rates of quantum repeaters that
are controlled by the cutoff policy are examined. In Figs. 3–7
the relation between the secret key rate and the cutoff param-
eter is displayed for various parameter choices of the segment
length L0 and the coherence time of the memories τc.

In the limit of large cutoff parameters, the policy is iden-
tical to the case without cutoff. This is apparent in all plots,
as the secret key rate converges to the no cutoff rates for large
cutoff parameters.

For all segment lengths, a similar behavior with respect to
the coherence time of the memories is visible. In the regime
of low coherence times (i.e., τc = 0.1 ms), the secret key rates
drop to values near zero, with the ideal cutoff parameter being
the lowest possible value, which is one. This observation

coincides with the results from Ref. [41]. With increasing
coherence time, the optimal cutoff parameter shifts towards
larger values, and its peak of the secret key rate for the op-
timal cutoff decreases relative to the secret key rate of the
asymptotically converging quantum repeater without cutoff.
This decrease causes the peak to vanish for larger coherence
times. At this point, the coherence time reaches a quality value
beyond which the cutoff policy does not offer any improve-
ments on the secret key rate.

This behavior moves towards longer coherence times as
the segment distance increases. In other words, the shapes
of the simulated and plotted secret key rates are qualitatively
identical, interpreting the coherence time in relation to the
segment length. This indicates that, conceptually, the results
when conditioned on the relation between the parameters
should be qualitatively applicable to any parameter regime.

In Fig. 8 the ratio between the secret key rate of
the best cutoff policy and that without cutoff is shown.
This further illustrates the above observations. The advan-
tage of the cutoff vanishes for better quantum memories
and shorter segment lengths and it increases for worse
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(a) (b)

(c) (d)

FIG. 4. Secret key rates of four-segment quantum repeaters in secret bits per second dependent on the memory cutoff parameter c for
segment length L0 = 35 km and different coherence times of the memories for a bipartite quantum state τc, (a) τc = 0.1 ms, (b) τc = 1 ms,
(c) τc = 10 ms, and (d) τc = 100 ms, plotted with 3-σ confidence intervals.

quantum memories and larger segment lengths. These obser-
vations coincide with the results from Ref. [40].

C. Simulation: Conclusion

In this section the secret key rate of the BB84 protocol
has been examined via numerical simulations for various pa-
rameters of a four-segment repeater setup. The two included
imperfections were the dephasing of the quantum memories
and the signal attenuation in the optical fibers.

The main observation that can be made with our results is
that the worse the coherence time of the quantum memories
is in relation to the segment length, the more significant the
advantage of the cutoff is. This relation is steeper in the regime
of bad memories in relation to the segment length and flattens
for better memories until it converges to the point where the
cutoff offers no improvement.

IV. DEEP REINFORCEMENT LEARNING
APPLIED TO QUANTUM REPEATERS

In this section we present our DRL approach to optimize
secret key distribution employing quantum repeaters. The aim
is a proof of concept, showing that DRL offers the possibility

to provide sophisticated policies for memory treatment which
outperform the more naive approaches.

First we will introduce our algorithm and its implemen-
tation. For the nonexpert reader this includes a concise
self-contained introduction to some DRL theory. The ex-
pert reader may skip Sec. IV A and immediately proceed to
Sec. IV B. After a brief discussion about the experimenta-
tion process, the successful learning runs are presented. For
conclusion, some observations about the learned policies are
discussed.

A. DRL algorithm

In this section we discuss the algorithm that we have em-
ployed. Reinforcement learning is a class of machine learning
algorithms which train an agent to optimize its behavior in
an environment. This concept is illustrated in Fig. 9. Deep
learning uses artificial neural networks to learn hierarchical
representations in order to solve classification problems. In
DRL these methods are combined by using an artificial neural
network to model the agent and approximate value functions
[67]. For our DRL application the MDP described in Sec. II B
serves as the model of the environment.

There is a vast range of RL algorithms which could be
potentially used for our optimizations. It is not possible, even
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(a) (b)

(c) (d)

FIG. 5. Secret key rates of four-segment quantum repeaters in secret bits per second dependent on the memory cutoff parameter c for
segment length L0 = 50 km and different coherence times of the memories for a bipartite quantum state τc, (a) τc = 0.1 ms, (b) τc = 1 ms,
(c) τc = 10 ms, and (d) τc = 100 ms, plotted with 3-σ confidence intervals.

in principle, to definitely know beforehand what the optimal
algorithm for a given optimization problem is. However, we
will give some heuristic arguments to motivate our approach.
Our choice of a model-free approach over a model-based one
is made mainly because of the tendency of the model-free
approach to be easier to tune and since model learning is
fundamentally hard in complex environments. Model-based
approaches are also prone to training an agent performing well
in the learned model but badly in the actual environment for
the case when the learned model is biased. As a further choice,
we perform an on-policy optimization, since this type of op-
timization tends to be more stable compared with off-policy
methods. This, however, is at the cost of sample efficiency
[68]. In fact, the chosen approach is well adapted to our
application where achieving stable learning is significantly
more challenging than efficiently creating large amounts of
sample data.

The rest of this section is an introduction to some basic
RL concepts, model-free on-policy optimization methods, and
the specific algorithm used in this work. For the interested
reader Sutton and Barto’s book [69] can serve as a compre-
hensive introduction to RL. A shorter, possibly more practical

introduction can be found on the website in [68]. The intro-
duction presented in the following has also taken inspiration
from Ref. [68].

We denote the policy of the agent as the probabilistic policy
parametrized by a vector θ ,

πθ (s, a) : S × A → [0, 1]. (9)

The policy gives the probability of the agent taking the action
a ∈ A given the environment is in the state s ∈ S. In DRL the
agent (i.e., the policy) is encoded in a neural network. In this
case, the vector θ consists of the parameters (commonly called
weights) of the neural network.

Furthermore, we introduce the common definition of a
trajectory as a sequence of states and actions up to a time T
called the (time) horizon,

τ = (s0, a0, s1, a1, . . . , sT ). (10)

The central merit of the optimization is the accumulated dis-
counted reward of a trajectory τ up to a time T ,

R0 =
T∑

t=0

γ t rt , (11)
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FIG. 6. Secret key rates of four-segment quantum repeaters in se-
cret bits per second dependent on the memory cutoff parameter c for
segment length L0 = 50.6569 km and coherence times for a bipartite
quantum state τc = 1.452 71 ms, plotted with 3-σ confidence inter-
vals. (These values correspond to the probability to generate initial
entanglement in one segment p = 0.1 and the dephasing probability
in one time step ν = 0.08.)

where γ is called the discount parameter and rt the immediate
reward at time t .

The usual objective of the agent is to optimize the policy
πθ to maximize the expected accumulated discounted reward
over trajectories τ ,

maximize
θ

E
τ∼πθ

(R0), (12)

where Eτ∼πθ
expresses that the expectation value is taken

over all trajectories τ following the policy πθ . Note that the
trajectory implies all returned immediate rewards obtained in
the trajectory. Further, note that the dependence on γ and T
is left out of the expectation value, because it will be fixed
in the optimization. These parameters which are fixed in the
runtime of the algorithm are termed hyperparameters in order
to distinguish them from those parameters that the algorithm
optimizes.

Policy gradient algorithms optimize the policy in terms of
the objective via a gradient ascent,

θk+1 = θk + α∇θ E
τ∼πθ

(R0)|θ=θk , (13)

where α is a hyperparameter called the learning rate. This
already summarizes the concept of policy gradient optimiza-
tion. The policy gradient ∇θJ (πθ )|θ=θk is estimated on some
training data, usually obtained from a simulation, and applied
in an iterative fashion. One iteration is typically referred to as
an epoch. As this gradient usually cannot be computed exactly
and needs to be estimated, this introduces a finite variance into
the stochastic gradient ascent. The fact that this gradient can
be estimated is not obvious. The proof that this is in principle
possible and the computations to do so are beyond what we
want to cover in this section and so we refer the interested
reader to the aforementioned references [68,69].

Unfortunately, simple DRL algorithms often suffer from
slow and unstable convergence properties, i.e., they tend to
converge very slowly towards a local optimum and to over-
shoot in parameter updates, causing them to often drastically
lose progress in the learning process. In recent years novel,
improved DRL algorithms have been proposed to counteract

these issues [45,48,70]. Our algorithm of choice is a proxi-
mal policy optimization (PPO) [70], being arguably the most
advanced model-free, on-policy DRL algorithm. It has been
reported to achieve good results efficiently and in a stable
manner [71]. The PPO clip is one of the proposed variants of
Ref. [70] and is the one we use in this work. We will now
explain the concept behind some of the improvements that
were made in these algorithms.

A common approach is to generalize the objective of
Eq. (12),

maximize
θ

E
τ∼πθ

(�t ), (14)

where we call �t the (generalized) objective function. In
general, any objective function �t satisfying

∇θ E
τ∼πθ

(R0)|θ=θk = ∇θ E
τ∼πθ

(�t )|θ=θk (15)

is a valid objective function, since it leaves the gradient in
Eq. (12) invariant. Hence, one is free to choose this substitu-
tion while still solving the same optimization problem.

In order to discuss how �t will be chosen, we state the
standard definitions of the on-policy value function V π (st ),
the on-policy action-value function Qπ (st , at ), and the advan-
tage function Aπ (st , at ).

We define the accumulated reward after time t as

Rt =
T −t∑
l=0

γ l rt+l . (16)

Note that this is a generalization of Eq. (11), containing R0

as a specific case. This is already an improvement, since due
to the truncation of the reward in Eq. (16), the evaluation of
an action by the advantage function is independent of the
trajectory prior to the action. This makes intuitively sense,
because the evaluation of an action should only follow from
what happened in consequence of that action.

The on-policy value function V π (st ) is the expected reward
received after time t given that the environment at time t is in
the state st ,

V π (st ) = E
at ,st+1,...,∼πθ

(Rt ). (17)

The on-policy action-value function Qπ (s, a) is the expected
reward received after time t given the environment at time t is
in the state st and the action at is taken,

Qπ (st , at ) = E
st+1,at+1,...,∼πθ

(Rt ). (18)

The difference between these functions defines the advan-
tage function Aπ (s, a), which is a crucial merit in DRL,

Aπ (st , at ) = Qπ (st , at ) − V π (st ). (19)

Therefore, the advantage function evaluates how an action
performs relative to the current policy. It can be shown that
replacing the discounted reward R0 in the objective in Eq. (12)
by the advantage function leaves the gradient in Eq. (13)
invariant [72], as demanded in Eq. (15), i.e.,

∇θ E
τ∼πθ

(R0)|θ=θk = ∇θ E
τ∼πθ

[Aπ (st , at )]|θ=θk . (20)

To explain the appeal of this substitution, we first note again
that in most relevant applications the gradient in Eq. (13)
cannot be determined exactly. The solution is to perform
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(a) (b)

(c) (d)

FIG. 7. Secret key rates of four-segment quantum repeaters in secret bits per second dependent on the memory cutoff parameter c for
segment length L0 = 70 km and different coherence times of the memories for a bipartite quantum state τc, (a) τc = 0.1 ms, (b) τc = 1 ms,
(c) τc = 10 ms, and (d) τc = 100 ms, plotted with 3-σ confidence intervals.

FIG. 8. Simulated ratio between the secret key rates of the scheme with the best memory cutoff policy and schemes entirely without
memory cutoff. This ratio and the coherence time of the memories for a bipartite quantum state τc are plotted logarithmically.
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FIG. 9. Conceptual framework of an RL algorithm.

a stochastic gradient ascent, i.e., for each parameter update
θk → θk+1 the gradient is estimated on a finite sample size.
The benefit of using the advantage function in the objective
is then to decrease the variance of these estimations, which
results in better convergence properties.

This can be intuitively understood by interpreting the ad-
vantage function as a rescaling of the reward relative to the
expected performance of the current policy. In the case where
Qπ (st , at ), i.e., the performance merit conditioned on the ac-
tion at , is better than the expectation value over all possible
actions V π (st ), the advantage function is positive; otherwise
it is negative. It seems reasonable that we can think of the
advantage function as a rescaled reward that becomes posi-
tive for any better-than-expected actions and negative for any
worse-than-expected actions.

This is just one way in which DRL algorithms such as PPO
can attempt to improve their convergence properties. More
details can be found in the original PPO proposal [70]. We
should also note that the advantage function is just one choice
for the objective, as any function satisfying Eq. (15) would be
a valid candidate. A detailed discussion on objective functions
can be found in Ref. [72].

B. Adaption of the DRL algorithm to nonadditive rewards

We will now discuss how our model of QKD via quantum
repeaters can be applied to the DRL approach presented in the
preceding section.

A first approach could be to assign the fidelity of an en-
tangled quantum state distributed between the communicating
parties to the immediate reward in a time step and return
zero reward if no entangled state was distributed in this time
step. This approach was, for example, chosen in Ref. [39] to
optimize the distributed entanglement in a multiplexed point-
to-point quantum communication channel.

In our case, we aim to optimize the secret key rate be-
tween the communicating parties. The distributed secret key,
however, is not equivalent to the sum of the fidelities of the
distributed entangled states. In fact, it is impossible to find
an immediate reward function whose sum over time steps
evaluates to the secret key rate of an arbitrary trajectory. We
prove this in Appendix D. A simple solution consistent with
the presented theory of DRL would be to consider an episodic
process where the reward of a trajectory is assigned to the last
time step. Thus, one could assign the reward as

rt =
{

0, t < T
RBB84(τ ), t = T,

(21)

where RBB84(τ ) is the secret key rate of the distributed quan-
tum states in the trajectory τ . In Eq. (6) it was shown how
this can be calculated using the (accumulated) storage time of
the distributed entangled quantum states in the trajectory τ .
A more detailed explanation of how this is computed using
our MDP (described in detail in Appendix A) can be found in
Appendix B 2.

The essence of the problem with this approach is often re-
ferred to as the credit assignment problem [69,73]. Intuitively,
this form of reward includes little information about the
causal connection between a specific action and its influence
on the reward. Mathematically, this results in an increasing
variance of the estimation of the gradient with longer time
horizons. Note that the key feature of the advantage function
introduced in the preceding section is that it uses a time-
grained evaluation of the process. Hence, an episodic reward
severely hinders the means with which the convergence of
the algorithm is improved. We were not able to achieve good
convergence with this approach.

Therefore, in this work we propose an approach where we
incorporate a nonadditive reward into the standard mathemat-
ical framework of RL. We redefine the optimization objective
as

maximize
θ

E
τ∼πθ

[RBB84(τ )]. (22)

Therefore, the value functions now read

V π (st ) = E
at ,st+1,...∼πθ

[RBB84(τt )] (23)

and

Qπ (st , at ) = E
st+1,at+1,...∼πθ

[RBB84(τt )], (24)

where τt = (st+1, at+1, . . . , sT ) is the trajectory after time
step t .

This generalization replaces the accumulated reward af-
ter a time step by the secret key rate after that time step.
Even though within the scope of this work we did not find
a rigorous proof that this fulfills the condition of Eq. (15)
and thus is an equivalent optimization, it did deliver well
converging results empirically. Based on this approach, we
achieved reasonable convergence with good results, which we
will present in Sec. IV E. It is important to note that the lack
of a rigorous proof for the optimization does not weaken the
numerical results obtained, since the performance of a policy
is evaluated independent of how the policy is found.

In our implementation, as is common practice, we used an
actor-critic function At to estimate the advantage function,

At = RBB84(τt ) − V π (st ), (25)

where an artificial neural network is employed to approximate
V π (st ), which is trained on the same training data the agent is
trained on. More details on the implications and properties
of our advantage function and on the topic of discounting
rewards can be found in Appendix C. Algorithm 1 shows the
pseudocode of our implementation. Finally, we would like to
stress that generally this adaption could be applied to other
optimization problems with nonadditive rewards.
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Algorithm 1. PPO algorithm adapted from Ref. [68].

while not converged do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1. Collect set of trajectories Dk = {τi} by running policy πk = π (θk ) in the environment.
2. Compute reward functions Rt = RBB84(τ |t ′�t ) for every trajectory τ ∈ Dk and time step t ∈ [0, T ].
3. Compute At = Rt − Vφk (st ).
4. Update the policy by maximizing the RL objective

θk+1 = arg max
θ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at |st )

πθk (at |st )
At , clip

(
πθ (at |st )

πθk (at |st )
, 1 − ε, 1 + ε

)
At

)
(26)

via Adam stochastic gradient ascent [74].
5. Fit value function by regression on mean-square error,

φk+1 = arg min
φ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

[Vφ (st ) − �t ]
2 (27)

via Adam stochastic gradient descent [74].

C. Application of the algorithm to our physical model

In every time step the agent is given the decision to discard
any of the bipartite quantum states stored in the quantum
repeater based on the observation of the current state of the
environment. It should be pointed out that this allows the
agent to develop a vast range of complex policies. The agent is
able to make decisions about each quantum state based on an
arbitrary selection of the available information.1 The decision
about when to perform a swapping operation is not under the
control of the agent. As discussed in Sec. II D, the chosen
swapping strategy is fixed to swap as soon as possible.

For the present work, we decided to give the agent at
any time the entire information about the current state of the
environment. This means that the agent can make decisions
on how to operate a quantum memory based on information
that physically would not be immediately available at that
time for a local operation on the memory. This assumption
can be motivated by two primary reasons. The first is that
the all-knowing agent can more easily find good solutions.
When trying to implement algorithms that are sensitive to
their tuned hyperparameters, it is usually a good approach to
start with simpler problems and increase the complexity when
the first results are obtained. The second reason is that one can
possibly learn more about the behavior of the problem within
the parameter space when as much information as possible is
given into the analysis. This may also be considered as a first
step towards methods where an agent is trained to mimic the
behavior of the all-knowing agent as well as possible while
having only the restricted information of a realistic scenario
available. This two-step training of an agent could prove more
efficient than trying to learn directly on the realistically re-
stricted information. Finally, it would be highly nontrivial to
also include all classical communication in the simulation.

1These policies can even emulate other repeater schemes, for exam-
ple, a sequential repeater scheme like that in Refs. [23,59]. This case
is exactly emulated by discarding any quantum states that are gener-
ated in segments where the sequential scheme would not attempt any
entanglement generation.

The benchmarks for the agents to surpass are the best naive
strategies as determined in Sec. III B, which includes schemes
both with and without cutoff.

Remark. It is not a priori known for which experimental
setup the cutoff policy does not provide any benefit. There-
fore, there is no reasonable measure for which the no-cutoff
approach is as good as the cutoff approach. The cutoff pol-
icy can never become worse, as it emulates the no-cutoff
approach for large cutoff parameter. Thus, we chose to take
the maximum of all data points simulated in Sec. III for each
experimental setup as the benchmark. This includes cutoff and
no-cutoff strategies. For those cases where the cutoff does
not offer an improvement, this means that the approximately
optimal cutoff was run multiple times as the secret key rate
converged for larger cutoffs, as discussed in Sec. III B. Since
from these runs the maximum and not the average was taken,
the benchmark is slightly biased towards better secret key
rates for these cases. We expect this bias to be negligible for
the comparison, since the uncertainties are small enough to
prevent significantly overestimated rates.

D. Implementation and experimentation

1. Implementation

The learning algorithm of this work is a PYTHON imple-
mentation within the open-source DRL framework OpenAI
Spinning Up [68], which uses the Open AI GYM [75]. The
Spinning Up framework provides some standard learning al-
gorithms, a logger to store a variety of diagnostics during a
learning run, and plotting tools to display them. Our imple-
mentation is a modified version of the PPO implementation
provided by Spinning Up. Internally, the neural network and
the sampling of actions are implemented using the TENSOR-
FLOW [76] library.

The features that had to be modified and added to the
implementation of the Spinning Up software are explained in
the following.

(a) The calculation of the secret key rate, raw rate, and
average fidelity of a trajectory was implemented and included
in the main loop of experience collection and storage.
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(b) The neural network implemented in the framework did
not support multidimensional action spaces. Therefore, the
architecture of the neural network and the calculation of the
action probabilities πθ were generalized and adjusted.

(c) The PPO algorithm used a generalized advantage es-
timation [72], which is incompatible with the nonadditive
rewards of QKD. Hence, this was replaced by our generalized
actor-critic function of Eq. (25).

The experience collection loop and the Adam stochastic
gradient ascent support multiprocess parallelization via Open
MPI [77].

The final evaluation of the performance of a learned policy
was performed by loading its neural network into the simu-
lation framework of Sec. III. Each agent was evaluated over
100 trajectories, each of length T = 105. Moreover, a program
was implemented to store all the states seen by an agent and
the count of actions it took separated for each state. This will
be used later to analyze the behavior of the agents.

Remark. The implementation also stores the neural net-
work representing the agent at intermediate epochs. Thus, one
could analyze the agent at predetermined points in the learning
process.

2. Hyperparameters

The following is a list of the tuned hyperparameters of the
implemented algorithm (for details of those parameters which
are not discussed in this section, we refer the reader to the
original proposal of the algorithm [70] and the documentation
of the original implementation [68]): the number of hidden
layers, as well as the number of neurons for each hidden
layer for the neural networks of the agent and value function
estimation (note that the numbers of neurons in the input
and output layer are fixed by the state and action space of
the environment, respectively); activation functions for each
layer of the two neural networks; the horizon of the simulated
trajectories; the number of simulated trajectories per epoch;
the learning rate for the policy; the learning rate for the
value function V π (st ); εclip, the hyperparameter of the clipped
objective of PPO in Eq. (26); the number of gradient steps
in the policy update in one epoch; the number of gradient
steps in the value function update in one epoch; the maxi-
mum Kullback-Leibler divergence which stops the gradient
update steps of the policy early if exceeded; and εAdam, a
parameter in the Adam optimization to improve numerical
stability.

The agent and the value function estimation are represented
by a four-layer (output and input layer and two hidden layers)
artificial neural network. The hidden layers consist of 32 neu-
rons each. For the activation function of the hidden layers of
the agent, the hyperbolic tangent was chosen. The output layer
of the agent uses a sigmoid activation in order to interpret
the outputs as probabilities. These hyperparameters yielded
good convergence properties empirically. The dimension of
the input and output layers of the agent corresponds to the
dimensions of state and action space of the MDP, respectively.
This is 10 and 9 for a four-segment quantum repeater, respec-
tively. The input layer of the value function estimation is also
determined by the dimension of the MDP state space and the
output dimension is one, thus yielding a scalar value of the

value function. The choices for the rest of the hyperparameters
are listed in Table IV of Appendix F.

3. Experimentation

The process of the simulated quantum repeaters is highly
probabilistic, resulting in high variances for the results of sim-
ulated trajectories of short length. This, together with the lack
of discounting, leads to slow convergence of the algorithm.

In consequence, hyperparameter tuning turned out to be an
extensive task in the setting of this work. The final tuning
achieved visible learning progress in the order of an hour,
which gives an impression of how time consuming and chal-
lenging examining the vast hyperparameter space is where
learning progress is significantly less.

With computation time being a major limiting factor and
the algorithm being inherently well suited for parallelization,
the use of a high-performance computation cluster could very
well enable significantly more efficient experimentation.

The TENSORFLOW implementation of the Adam optimizer
used was not always numerically stable. That caused the
neural network to have “not a number” entries, forcing the
learning algorithm to stop. This was counteracted by em-
pirically adjusting the hyperparameter εAdam, which helped
but did not solve the problem entirely. As the functionality
to resume aborted learning processes was not implemented
within the scope of this work, the occurrence of this case
was the reason that some of the learning processes presented
in this section were not continued, even though they did not
converge.

E. Results

The DRL implementation was applied to some of the pa-
rameter points of Sec. III B. The neural network of all stored
agents of the learning runs as well as the GYM environment
simulating the quantum repeaters are publicly available in
Ref. [78].

1. Performance and learning progress of the agents

The learned policies can be classified into two categories.
In the limiting cases where the naive cutoff offers no improve-
ment on the secret key rate or where the optimal cutoff is
one, the learning algorithm approximately reproduced these
results. The learning process of these runs is plotted in Fig. 10.
In other cases where the naive cutoff offered a significant
improvement, the learning algorithm found a policy with even
better performance. These cases are plotted in Fig. 11. The
list of hyperparameter choices for each run, as well as some
discussion on the runtime, can be found in Appendix F.

Tables I and II display the comparison of the learned poli-
cies with the benchmark strategies and a no-cutoff strategy.

Table I shows for the first category that the performance
of the learned policies is approximately the same as the
benchmark. The cases where the benchmarks were matched
are exclusively those cases where the parameters correspond
to limiting cases identified in Sec. III B, where the optimal
strategy is having either no cutoff or the minimal possible
cutoff. Therefore, it seems reasonable that in these regimes,
there is no more room for improvement for the policies.
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(a) (b)

(c) (d)

FIG. 10. Learning progress where the performance of the learned policies approximately matched the benchmark marked by the red dashed
line. The average over the secret key rate of all trajectories for each epoch is plotted. An epoch is one iteration of the main loop of the algorithm.
The runs in (a), (b), and (d) converged without breaking numerically. For these, a long stagnating part after the displayed epochs is not shown.
The segment length is (a) and (b) L0 = 20 km, (c) L0 = 35 km, and (d) L0 = 50 km. Here τc is the coherence time of the memories for a
bipartite quantum state: (a) τc = 0.1 ms, (b) and (c) τc = 10 ms, and (d) τc = 100 ms.

Table II presents the advantage of the learned policies that
surpassed the benchmark. The narrow confidence intervals
of the ratios indicate that the learned policies outperform
the benchmarks. This is further shown via the quantity r−1

�r ,
which is the difference between the measured ratio and the
ratio a strategy with no benefit over the benchmark would
yield in units of its uncertainty. This therefore prevents the
conclusion that the result is a statistical fluctuation. The im-
provements over the benchmarks range from 2% to 38%.
Furthermore, apparently the more improvement the naive cut-
off offers over a quantum repeater without cutoff, the more
potential lies in the learned policies for this quantum repeater,
since this correlation is visible in the achieved and presented
examples. It is worth mentioning that this is an analogous
result to what was stated in Sec. III C for the naive cutoff
policy.

2. Discussion of the learned policies

Extracting an in-depth understanding of a policy from the
neural network of the agent is a nontrivial task and an open
question of current research [79]. Nevertheless, some aspects
gained by looking at the policies of the presented results are
discussed in this section.

The DRL algorithm optimizes probabilistic policies, where
the probability can be interpreted as how certain an agent is
about the optimality of an action for a given state. In order
to output probabilities, a sigmoid function is applied to the
output layer of the neural network representing the policy. The

sigmoid function converges asymptotically to one and zero for
large absolute output weights. First, this means that in order
to get an approximately guaranteed probability, comparably
large parameter changes are necessary. Second, a real guaran-
teed probability can, in theory, never be achieved. This causes
even well converged policies to take actions that they evaluate
to be nonideal occasionally. This is useful in the learning
process, as the agent occasionally reviews these actions, but
slightly reduces the final performance of the agent. A sug-
gestion to improve this is to map probabilities above a high
threshold to one and analogously for low probabilities to zero
in the final policies. Nonetheless, this has not been done in
this work.

The actions of those policies that matched the benchmark
were confirmed to reproduce their respective benchmark strat-
egy approximately. The agents that surpassed the benchmark
are more challenging to comprehend. A complete under-
standing of the policies could not be achieved in this work.
Nevertheless, three observed patterns give insights about how
the policies achieved better performance.

(i) The policies keep quantum states with higher storage
times shared between nodes that are farther apart compared
to quantum states shared between closer nodes, which are
discarded much earlier.

(ii) The policy’s decision to keep or discard appears to
be influenced by the existence and quality of other quantum
states in the repeater. If, for example, in the proximity of a
quantum state another quantum state exists, the agent is more
likely to keep the quantum state.
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(a) (b)

(c) (d)

(e)

FIG. 11. Learning progress where the performance of the learned policies surpassed the benchmark marked by the red dashed line. The
average over the secret key rate of all trajectories for each epoch is plotted. An epoch is one iteration of the main loop of the algorithm. The
segment length is (a) L0 = 20 km, (b) L0 = 35 km, (c) and (d) L0 = 50 km, and (e) L0 = 50.6569 km. Here τc is the coherence time of the
memories for a bipartite quantum state: (a)–(c) τc = 1 ms, (d) τc = 10 ms, and (e) τc = 1.45271 ms.

(iii) The policy discards a quantum state comparably early
if a single bipartite quantum state is shared between the two
nodes surrounding the first quantum state.

TABLE I. Comparison between the learned policies and the
benchmarks for those cases where the benchmark was approximately
matched. Here τc is the coherence time of the memories for a bipartite
quantum state.

Figure L0 (km) τc (ms) Ragent

Rno cutoff

Ragent

Rbenchmark

10(a) 20 0.1 18.0 ± 0.2 0.984 ± 0.006
10(b) 20 10 1.001 ± 0.002 0.997 ± 0.002
10(c) 35 10 1.014 ± 0.004 1.001 ± 0.004
10(d) 50 100 0.996 ± 0.003 0.984 ± 0.003

These strategies might seem intuitive or even obvious and
could probably be thought of without a machine learning
approach. The advantage of the machine learning approach,
however, is the scaling of these strategies. Even though the
concept might be clear, finding exact numbers remains a task
on its own, for which DRL is used here.

On the other hand, some decisions of the agents were
obviously unreasonable. This includes decisions of well-
converged probabilities. It shows that the full potential of the
DRL approach has not been achieved yet in this work and
that there is still room for improvement in the algorithm and
policies. The following examples are two decisions that an
agent made with high probability that fall into this category.

(a) In the case mentioned above, where a policy would
discard a quantum state A if it is the only one left in the
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TABLE II. Comparison between the learned policies and the benchmarks in the cases where the benchmark was surpassed.

Figure L0 (km) τc (ms) Ragent (s−1) Ragent

Rno cutoff
r = Ragent

Rbenchmark

r−1
�r

11(a) 20 1 350 ± 8 1.172 ± 0.004 1.068 ± 0.003 20.4453
11(b) 35 1 15.1 ± 0.7 2.67 ± 0.03 1.31 ± 0.01 32.2178
11(c) 50 1 0.51 ± 0.01 12.3 ± 0.1 1.382 ± 0.009 42.9056
11(d) 50 10 50.3 ± 0.8 1.180 ± 0.003 1.024 ± 0.002 10.4957
11(e) 52.6569 1.45271 1.43 ± 0.04 6.45 ± 0.04 1.218 ± 0.005 40.0445

repeater but then keeps it because of another quantum state B
in the proximity, some unreasonable actions occurred. In some
cases, it kept the state A but discarded the state B, even though
the decision to keep state A was dependent on the existence of
state B.

(b) In a scenario where two bipartite states with exactly
symmetric positions in the repeater where stored, the agent
decided to discard the one with the lower storage time and to
keep the one with the higher storage time.

Another observation worth mentioning is that the policies
tended to be asymmetric in the sense that two symmetric
segments were often treated differently. This might happen
because of nonideal convergence, but one should note that
nothing contradicts the possibility that an asymmetric policy
might be optimal, despite the structure of a four-segment
repeater being symmetric.

Furthermore, the policies were less converging in their
probabilities than their convergence in performance might
suggest. This could be explained by the fact that two different
actions do not necessarily cause different secret key rates.
Some actions might be equivalent or very close in perfor-
mance. Thus, the agent will not, or will only very slowly, learn
to choose one action over the other.

F. Future work

One suggestion for further improvements is based on the
fact that states of the environment have significantly different
frequencies in a trajectory. Therefore, the agent has super-
fluous experience about prevalent states of the MDP while
having very sparse information about others. This creates
an imbalance and thus sample inefficiency. A suggestion to
counteract this is to create an environment that uses a random
initial state of the trajectory in ways that flatten the distribution
of the states the agent sees.

The next step towards analyzing more realistic repeater
chains would be to include classical communication by having
multiple cooperating agents where each agent has access only
to the information available at one corresponding repeater
node.

G. Deep reinforcement learning: Conclusion

A proof of concept that DRL can be exploited for QKD
via quantum repeaters to find sophisticated policies that im-
prove the secret key rate over naive approaches has been
achieved. The results of the learned policies ranged from a
reproduction of performance up to a 38% improvement over
the naive simulation approach of Sec. III. Furthermore, we
have identified shortcomings of the policies and suggested

enhancements to the algorithm to further optimize policies,
showing potential room for improvement. Additionally, utiliz-
ing a high-performance computation cluster would probably
go a long way in enhancing the effectiveness with which
solutions can be found. This provides motivation to further
pursue DRL algorithms in control problems of multisegment
quantum repeaters.

The improvements of the learned policies as presented here
might seem small for making a strong impact on long-distance
QKD applications. This, however, could be misleading, as the
examined repeaters only had four segments. Practical applica-
tions most likely will use considerably more segments. This
increases the number of possible policies and in particular
the asymmetry between the repeater nodes. Therefore, we
would intuitively expect the improvements to increase for
more segments, as the parameter space grows in complexity.
Additionally, the complexity of quantum repeaters generally
grows with the number of segments, making other approaches
less feasible, while DRL is especially suited for problems
that can be simulated but no longer analytically analyzed.
This emphasizes the meaning of a proof of concept. It has
been conceptually shown that DRL can lead to improvements,
while the full potential of the approach remains to be seen.

V. CONCLUSION

In this work a Markov decision process to model the gen-
eration of spatially distributed, entangled quantum states via a
memory-based quantum repeater was developed. In principle,
the model can describe quantum repeaters with arbitrary num-
bers of segments and include arbitrary qubit Pauli and erasure
channels as error sources. Moreover, entanglement swapping
and discarding of quantum states are actions available to op-
erate the quantum repeater.

Based on this MDP, a simulation was implemented. Among
the above-mentioned general error channels, the particular
error sources included in the simulation are the random
time-dependent dephasing of quantum states in the memories
and distance-dependent photon losses in the optical quantum
channels (as well as constant losses or inefficiencies at the
repeater stations and interfaces). The entanglement swapping
is assumed to be error-free and deterministic, and all schemes
in this paper swap as soon as possible (which is the optimal
strategy in the presence of memory dephasing). The simu-
lation was used to analyze the secret key rate of the BB84
quantum key distribution protocol via four-segment quantum
repeaters in a broad parameter space of the segment length
and the quantum memories’ coherence time. Moreover, the
simulation was used to analyze the behavior of the secret key
rate under the variation of a controlled limited storage time of
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the quantum states, the memory cutoff, in the same parameter
space. It was found that there exists a parameter regime in the
limit where the memory coherence times are so large or small
in relation to the segment length that the ideal control is to
discard no or all intermediate quantum states, respectively.

Furthermore, a deep reinforcement learning algorithm was
implemented to examine the possibilities of finding sophis-
ticated solutions for the control of the quantum memories
improving the secret key rate of quantum repeaters. The al-
gorithm of choice was a proximal policy optimization [70],
which was applied to the aforementioned simulated quan-
tum repeaters. First, the results of the limit parameter regime
were successfully reproduced. More specifically, and most
importantly, the algorithm found policies outperforming the
benchmarks provided by the previously employed naive simu-
lation (i.e., a standard simulation without the help of a learning
agent), serving as a proof of concept that DRL can indeed
offer a valid approach to optimize the memory storage times.
This proof of concept is a first step in laying the groundwork
to develop and apply DRL algorithms to realistic and practical
long-distance quantum key distribution.

The DRL algorithm introduced and employed here, though
adapted to the special problem of computing secret key rates
in quantum repeaters subject to memory dephasing, is not
yet an optimal algorithm. First, it suffers from rather slow
convergence properties due to the sparse entanglement dis-
tribution per time step for realistic parameters and the lack
of an additive reward model. Hence, a next step would be to
increase computational power to improve the efficiency with
which policies can be found. Another suggestion is to modify
the experience loop of the algorithm in a way that flattens
the distribution of environment states the agent interacts with
to improve the balance of the gradient steps for the different
states.

Examining the policies achieved, it is clear that these are
not perfect. This suggests that there still is further potential in
the approach, even for the examined repeater constellations. In
the future, one could expand the simulation to more realistic
scenarios, for example, by including more error sources and
classical communication, therefore finding solutions for prac-
tical settings. In conclusion, the full potential of optimizing
policies for quantum repeaters using DRL remains to be seen.

Long-distance key distribution based on quantum repeaters
and DRL are both rapidly moving and developing fields,
with their full future impact being unforeseeable. This work
contributes insights by combining the two fields and showing
viability, as well as problems and limitations of the approach.
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APPENDIX A: MARKOV DECISION PROCESS
MODELING A QUANTUM REPEATER

Here we will formulate the model by explaining each ele-
ment of the tuple (S, A, P, R).

1. States S

Any state of the Markov model is fully described by the
spatially separated bipartite quantum states stored in the quan-
tum memories. Thus, in a general treatment, the full density
matrices of all quantum states would be necessary to deter-
mine the state of the MDP. By restricting the errors to be
Pauli channels as defined in Eq. (1), it is possible to define
the states in a much more convenient form. In this restricted
scenario, it follows directly from the fact that Pauli channels
and entanglement swapping commute that treating the precise
development of all quantum states is equivalent to treating
a noiseless quantum repeater and applying any contributing
errors to the final quantum state. That means it is sufficient to
keep track of any error occurring and propagating the counts
additive through the swapping. Therefore, all possible states
of the MDP of an n-segment repeater can be encoded in a
triangular (n + 1) × (n + 1) matrix s, with rows and columns
corresponding to the repeater nodes. The entries si j are either
the symbol ξ , indicating that the two repeater nodes i and j
do not share an entangled state, or a vector with an integer
component for each error, storing its accumulated count on
the bipartite quantum state.

Generally, the number of possible states is infinite. In re-
alistic scenarios, the memory strategy restricts the transitions
between the states in a way that only a finite number of states
remain accessible with nonvanishing probability.

2. Actions A

The set of possible actions A can be separated into two
independent sets of actions A = As

⊗
Ad .

(i) The first set corresponds to entanglement swapping.
It is encoded in a vector As with a Boolean component for
each node. If a component is true, the entanglement swapping
operation is performed at that node. Otherwise, no action will
be performed at that node.

(ii) The second set corresponds to the discarding of states.
It is encoded in a triangular matrix Ad with a Boolean entry
for each pair of two different nodes. If an entry is true, the
bipartite quantum state of this pair is discarded. Otherwise, no
operation will be performed for this quantum state.

It is important to note that in the treatment of the MDP,
these actions are instantaneous. The reason for this is that
the MDP only models the development of the quantum states,
which is independent of classical communication. That does
include entanglement swapping. Even though entanglement
swapping requires classical communication, the time when
classical communication is performed is irrelevant for the
development of the quantum states and can thus be excluded
from the treatment.

3. Transitional properties P and R

To find a complete analytic expression for P and R is an
infeasible task. Fortunately, this is not necessary to simulate
the process. It is sufficient to find mathematical operations
realizing the simulated processes on the states. One time step
of the process is defined as a round of classical communica-
tion τ0, which is the time it takes for a node to send classical
information to an adjacent node. This time step is the time
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a quantum state will be stored between its initial distribution
and the arrival of the classical signals at the corresponding
nodes, indicating success. In the following, it will be described
how each process that takes place in one time step is simu-
lated.

(1) Initial entanglement is generated in each segment.
Within one time step in each segment, an attempt to dis-
tribute initial entanglement is performed. This is simulated
via sampling in each segment respective to an entanglement
generation rate p.

(2) Quantum states are developed in a natural and uncon-
trolled way: The count of any error that occurs on stored states
is increased by one in the tuples in the state matrix s. The
relevant example for this work is the dephasing channel.

(3) The following actions are performed.
(a) Swapping at each station j where (As) j is true is per-

formed. For any tuple {ik}, where si j �= ξ and s jk �= ξ , (i)
sik ← si j + s jk , where the plus sign is the elementwise ad-
dition of the two vectors, which follows from the fact that
Pauli channels and entanglement swapping commute with
each other; (ii) si j ← ξ and s jk ← ξ ; and (iii) the count of any
error that occurs due to entanglement swapping is increased
by one in the vector sik .

(b) The state is discarded: For each tuple {i j} where (Ad )i j

is true, set si j ← ξ .
(4) Return d (s) = s0n. As was stated in Sec. IV B an imme-

diate scalar reward is not suited for our optimization. In this
more general approach we return the entangled state between
the outer repeater nodes encoded in the matrix entry s0,n of the
state s ∈ S. Formally, we define

d (s) = s0n. (A1)

In Appendix B 2 we describe how this is used to compute the
secret key rate of a trajectory in the MDP.

(5) Since any entangled state between the two outer nodes
was used up in the preceding step we set s0n ← ξ .

4. Example step of the MDP

In Fig. 12 one example step of the MDP is illustrated. In
this example, the only error is the dephasing of the quantum
memories, which accumulates on a state for every time step it
is stored. Therefore, the entries s jk are the cumulated storage
time of the quantum state stored in the nodes j and k.

The state of the MDP prior to the step is shown in
Fig. 12(a). The state after the uncontrolled development,
which consists of generating initial entanglement and ac-
cumulating the storage time, is shown in Fig. 12(b). The
controlled swapping operation is depicted in Fig. 12(c), with
the resulting state in Fig. 12(d). The discarding action is
displayed in Fig. 12(e), with the resulting state in Fig. 12(f).

APPENDIX B: SECRET KEY RATE
OF ENTANGLEMENT-BASED BB84

IN THE PRESENCE OF DEPHASING

In the following we will calculate the secret key rate for
a BB84 protocol where the quantum states are subject to a
dephasing channel. In Appendix B 1 we derive the general

(a) (b)

(c) (d)

(e) (f)

FIG. 12. Illustration of one example step of the Markov decision
process.

expression of Eq. (6). In Appendix B 2 we apply this to a
trajectory of the MDP described in Sec. A.

1. General expression

Without loss of generality, we will choose the initially dis-
tributed, undisturbed entangled states as |�+〉 = 1√

2
(|00〉 +

|11〉). The form of a general degraded state follows directly
from Eq. (8) and reads

ρ = (1 − ν) |�+〉 〈�+| + ν |�−〉 〈�−| , (B1)

where

0 � ν < 1
2 (B2)

is the statistical dephasing fraction that depends on a random
dephasing time variable with an arbitrary, unknown probabil-
ity distribution. The bit error rates in the X and Z bases are
defined as

eZ = E(1 − 〈00| ρ |00〉 − 〈11| ρ |11〉) (B3)
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and

eX = E(1 − 〈++| ρ |++〉 − 〈−−| ρ |−−〉). (B4)

A straightforward calculation yields

eZ = 0 (B5)

and

eX = E(ν). (B6)

Inserting the bit error rates into Eqs. (3) and (4) gives

RBB84 = Y {1 − h[E(ν)]}. (B7)

Alternatively, by inserting the exponential dephasing channel
defined in Eq. (8), Eq. (B7) takes the form

RBB84 = Y
(
1 − h

{
1
2

[
1 − (

e−t/τc
)]})

, (B8)

where τc is the coherence time of the quantum memory for a
bipartite quantum state and t the storage time of the quantum
state, which is a random variable with an arbitrary unknown
probability distribution.2

2. Secret key rate of a trajectory

We will now show how the secret key rate RBB84(τ ) of a
trajectory τ = (s0, a0, s1, a1, . . . , sT ) is calculated,

RBB84(τ ) = Y (τ )rBB84(τ ). (B9)

In the following calculations the function d is defined as
in Eq. (A1). This function is used to return the distributed
entangled state in this time step. The raw rate Y (τ ) is the
number of entangled states distributed between the two outer
nodes within the trajectory τ ,

Y (τ ) =
∑T

t=0 θ (d (st ))
T + 1

, (B10)

where θ ,

θ (s) =
{

1, d (s) �= ξ

0, d (s) = ξ,
(B11)

checks if an entangled state state was distributed. Following
from Eq. (B8), the secret key fraction reads

rBB84(τ ) = 1 − h
[

1
2 (1 − w)

]
, (B12)

where the expectation value in Eq. (B8) is calculated via the
average over the trajectory,

w =
∑T

t=0 θ (st )e−d (st )τ0/τc∑T
t=0 θ (st )

. (B13)

For the general case with arbitrary Pauli error channels the
secret key fraction would read

rBB84(τ ) = 1 − h

(∑T
t=0 θ (st )e1{ρ[d (st )]}∑T

t=0 θ (st )

)

− h

(∑T
t=0 θ (st )e2{ρ[d (st )]}∑T

t=0 θ (st )

)
, (B14)

2In practical finite-size applications, one can use confidence inter-
vals for the estimation of the expectation value to determine an error
rate which is larger than the true expectation value with approxi-
mately guaranteed probability.

where e1 and e2 refer to the two error rates of the bases of the
BB84 protocol and

ρ(v) = N v1
1 · · ·N vD

D (|�+〉 〈�+|) (B15)

for a vector

v = (v1, . . . , vD)T ∈ ND. (B16)

However, this general form of the secret key fraction was not
needed for the applications in the present work.

APPENDIX C: DISCOUNTING REWARDS

1. Finite and infinite horizons and the relevance
of discounting rewards

The discounted reward function of Eq. (16) introduced in
Sec. IV A is a fundamental objective function in RL:

Rt =
T −t∑
l=0

γ l rt+l . (C1)

A discounting parameter ν smaller than one introduces the
discounting into the accumulated reward. This serves to
intuitive purposes. First, it ensures that the objective func-
tion remains finite for infinite-horizon trajectories (T → ∞).
Second, and maybe most importantly for most practical appli-
cations, it makes the agent weight sooner rewards more than
rewards farther in the future. This improves the evaluation of
an action as it is biased towards its short-term consequences
rather than being based on rewards in the distant future, which
is increasingly independent from the action at the time t . In
this way, discounting reduces noise in the objective function.

As was stated before, the nonadditive rewards in this work
are not suited for discounting in this way. Even more detri-
mental, non-negative rewards can actually decrease the secret
key rate of a trajectory. The lack of discounting necessitates
the use of a finite-horizon objective function, which makes
good gradient estimation difficult. This can be explained by
understanding that when the trajectory is too long, the objec-
tive function becomes very noisy, since for earlier actions the
long trajectory introduces rewards that are mostly independent
from early actions. On the other hand, if the trajectory is too
short, delayed rewards of an action might not be obtained,
causing the trajectory to end, causing a wrong evaluation of
the action. In consequence, good convergence is expected
to be significantly harder to achieve compared to a problem
setting where discounting can be used.

2. Proposal for generalized discounting

In this work an attempt was made to propose a discounted
objective function of an arbitrary (not necessarily additive)
reward function �(τ ) via

�t =
T −t∑
l=0

γ l�(τt ). (C2)

Applied to our optimization, this reads

�t =
T −t∑
l=0

γ lRBB84(τt ). (C3)
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This seemed like a reasonable approach intuitively but yielded
no useful results during the minimal testing we did. Therefore,
this method was not used further. Even though, unfor-
tunately, this could not be achieved here, with sufficient
hyperparameter tuning this method could possibly improve
the convergence properties of the optimization significantly,
for the reasons discussed above.

APPENDIX D: PROOF SHOWING THE SECRET KEY
RATE IS A NONADDITIVE REWARD

In this Appendix we will prove that it is impossible to
find an immediate reward function whose sum over time steps
evaluates to the secret key rate of an arbitrary trajectory.

To give some intuition, consider the case where many high-
fidelity states were distributed between the outer nodes. An
additional quantum state of mediocre fidelity might decrease
the secret key rate since its increasing of the error rate is more
severe than the gain in raw rate. On the other hand, if instead
initially very-low-fidelity states are distributed, the same addi-
tional mediocre state increases the secret key rate. Therefore,
assigning a fixed additive immediate reward independent of
the rest of the trajectory is impossible.

Corollary. Assume an MDP (S, A, P, R) as defined in Ap-
pendix A. Then there exists no function R : S × A × S → R
such that

T −1∑
t=0

R(st , at , st+1) = RBB84(τ ) ∀ τ = (s0, a0, s1, a1, . . . , sT ),

(D1)

where st ∈ S, at ∈ A, and RBB84(τ ) is defined in Eq. (B9).
Proof. We will prove this corollary via contradiction. First

assume there exists an R which satisfies Eq. (D1). Then, for
any trajectory τ = (s0, a0, s1, a1, . . . , sT ),

RBB84(τ ) =
T −1∑
t=0

R(st , at , st+1)

=
T −2∑
t=0

R(st , at , st+1) +
T −1∑

t=T −1

R(st , at , st+1)

= RBB84(τtrunc) + R(sT −1, aT −1, sT ), (D2)

where τtrunc = (s0, a0, s1, a1, . . . , sT −1). We obtain the equa-
tion

R(sT −1, aT −1, sT ) = RBB84(τ ) − RBB84(τtrunc). (D3)

Now we consider a second trajectory τ ′ =
(s′

0, a′
0, s′

1, a′
1, . . . , s′

T −1, a′
T −1, sT ) which is identical to τ

in the last state sT . Therefore, we again have a relation like

R(sT −1, aT −1, sT ) = RBB84(τ ′) − RBB84(τ ′
trunc). (D4)

It is easy to find examples for τ and τ ′ for which the right-hand
side of Eq. (D3) evaluates to a positive value and the right-
hand side of Eq. (D4) evaluates to a negative value, leading to
the contradiction.

For a simple example, we assume the channel-loss-and-
memory-dephasing-only model leading to the distributed
quantum state defined by a single variable ν of the form

TABLE III. Length of the trajectories T for different repeater
parameters of the simulations with and without cutoff and the final
evaluation of the agents.

L0 (km) τc (ms) T , no cutoff T , cutoff T , agent

20 0.1 104 104 105

20 1 104 104 105

20 10 104 104 105

20 100 104 104

35 0.1 104 104

35 1 104 104 105

35 10 104 104 105

35 100 104 104

50 0.1 106 106

50 1 105 104 105

50 10 105 104 105

50 100 104 104 105

50.6569 1.45271 105 105 105

70 0.1 105 106

70 1 105 105

70 10 105 105

70 100 105 105

in Eq. (B1). Furthermore, we assume in the trajectory τ ,
N entangled states were distributed before T , each with
dephasing parameter ν, and one entangled state was dis-
tributed in the last time step T with dephasing parameter νT .
Equation (D3) in this example reads

R(sT −1, aT −1, sT )

= N + 1

T

[
1 − h

(
Nν + νT

N + 1

)]
− N

T − 1
[1 − h(ν)] =: Rν .

(D5)

For the second trajectory τ ′ we simply assume a different
parameter ν ′ for the entangled states prior to time step T ,
leading to Rν ′ for Eq. (D4). Now we assume N = 3, T = 9,
vT = 1

4 , ν = 1
20 , and ν ′ = 9

20 and we obtain Rν ≈ −0.012 and
Rν ′ ≈ 0.014 and thus Rν �= Rν ′ . �

APPENDIX E: TRAJECTORY LENGTHS OF THE
SIMULATIONS

In this Appendix the lengths of the trajectories used in the
simulations and the final evaluation of the agents are given in
Table III.

APPENDIX F: HYPERPARAMETERS OF THE DRL RUNS

The DRL program was run with four processes on a desk-
top computer with a four-core CPU.3 An epoch with four
trajectories, each with 8000 simulated time steps, took about
13 s on average. Therefore, 1000 epochs take around 3.6 h.
In the operated hyperparameter space, the computation time
was roughly linear with the number of simulated time steps

3Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz.

012406-22



DEEP REINFORCEMENT LEARNING FOR KEY … PHYSICAL REVIEW A 108, 012406 (2023)

TABLE IV. Hyperparameters of the learning runs presented in Sec. IV E.

Figure L0 (km) τc (ms) T N απ αV εclip nπ nV KL εAdam

10(a) 20 0.1 800 4 1 × 10−4 1 × 10−3 0.2 120 80 0.015 0.01
11(a) 20 1 8000 4 4 × 10−4 1 × 10−3 0.2 120 80 0.015 0.01
10(b) 20 10 8000 4 1 × 10−3 1 × 10−3 0.2 120 80 0.015 0.01
11(b) 35 1 8000 4 1 × 10−3 1 × 10−3 0.2 120 80 0.015 0.01
10(c) 35 10 8000 4 4 × 10−4 1 × 10−3 0.2 120 80 0.015 0.01
11(c) 50 1 8000 4 8 × 10−4 1 × 10−3 0.2 1000 80 0.015 0.1
11(d) 50 10 8000 4 4 × 10−3 1 × 10−3 0.2 1000 80 0.015 1
10(d) 50 100 8000 4 4 × 10−3 1 × 10−3 0.2 1000 80 0.015 1
11(e) 50.6569 1.45271 8000 4 4 × 10−4 1 × 10−3 0.2 120 80 0.015 1 × 10−8

within the epoch. This serves as an orientation for the required
computation time of each run.

The architecture of the neural networks representing the
policy and the value function was chosen to be identical for
every learning run as it seemed sufficient in complexity and
degrees of freedom for the task and smaller architectures did
not empirically improve computation time significantly. The
architecture consisted of two hidden layers with 32 neurons
each. The activation function of the hidden layers was chosen
to be the hyperbolic tangent. The neural network representing
the policy applies a sigmoid function as the activation on
the output layer so that the final output can be interpreted as
probabilities.

The following abbreviations are used for the hyperparam-
eters: T , the horizon of the simulated trajectories; N , the
number of simulated trajectories per epoch; απ , the learning
rate for the policy; αV , the learning rate for the value function;
εclip, the epsilon of the clipped objective of PPO in Eq. (26);
nπ , the number of gradient steps in the policy update in one
epoch; nV , the number of gradient steps in the value function
update in one epoch; KL, the maximum Kullback-Leibler
divergence which stops the gradient update steps of the policy
early if exceeded; and εAdam, the parameter in the Adam opti-
mization to improve numerical stability. The hyperparameters
for each learning run presented in Sec. IV E can be found in
Table IV.

[1] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
[2] C. H. Bennett and G. Brassard, Theor. Comput. Sci. 560, 7

(2014).
[3] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H.

Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen,
M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang,
X.-B. Wang, and J.-W. Pan, Phys. Rev. Lett. 117, 190501
(2016).

[4] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M.
Caloz, M. Perrenoud, G. Gras, F. Bussières, M.-J. Li, D. Nolan,
A. Martin, and H. Zbinden, Phys. Rev. Lett. 121, 190502
(2018).

[5] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q.
Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong,
Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia
et al., Science 356, 1140 (2017).

[6] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri,
G. Bianco, and P. Villoresi, Phys. Rev. Lett. 115, 040502
(2015).

[7] H. J. Kimble, Nature (London) 453, 1023 (2008).
[8] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288

(2018).
[9] J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti,

Comput. Netw. 213, 109092 (2022).
[10] A. S. Cacciapuoti, J. Illiano, S. Koudia, K. Simonov, and M.

Caleffi, IEEE Netw. 36, 6 (2022).
[11] C. Harney and S. Pirandola, PRX Quantum 3, 010349 (2022).
[12] C. Harney, A. I. Fletcher, and S. Pirandola, Phys. Rev. Appl. 18,

014012 (2022).

[13] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields,
Nature (London) 557, 400 (2018).

[14] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y.
Zhou, G.-J. Fan-Yuan, F.-X. Wang, Y.-G. Zhu, P. V. Morozov,
A. V. Divochiy, Z. Zhou, G.-C. Guo, and Z.-F. Han, Nat.
Photon. 16, 154 (2022).

[15] S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd,
Phys. Rev. Lett. 102, 050503 (2009).

[16] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat.
Commun. 8, 15043 (2017).

[17] M. Takeoka, S. Guha, and M. M. Wilde, Nat. Commun. 5, 5235
(2014).

[18] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, Sci. Rep. 6, 20463 (2016).

[19] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[20] S. Slussarenko and G. J. Pryde, Appl. Phys. Rev. 6, 041303
(2019).

[21] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, Phys.
Rev. Res. 1, 023032 (2019).

[22] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten,
J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpędek,
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[33] F. Rozpędek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli,
A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, Quantum
Sci. Technol. 3, 034002 (2018).
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