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Locally indistinguishable states are useful to distribute information among spatially separated parties such that
the information is locked. This implies that the parties are not able to extract the information completely via local
operations and classical communication (LOCC), while it might be possible via LOCC when the parties share
entanglement. In this work, we consider an information distribution protocol using orthogonal states for m � 3
spatially separated parties such that even if any k � (m − 1) parties collaborate still the information cannot be
revealed completely. Such a protocol is useful to understand up to what extent the encoded information remains
locked. However, if required, the parties can share entanglement and extract the information completely by
LOCC. To make the process resource efficient, it should consume less number of entangled states. We show
that though the set of states, which are locally indistinguishable across every bipartition, are sufficient for the
above protocol, they may consume a higher number of entangled states when aiming for complete information
extraction. We establish this by constructing a class of locally indistinguishable sets of orthogonal states which
can be employed to accomplish the above protocol and these sets consume less number of entangled states,
compared with the former sets, for complete information extraction. In fact, this difference in the number of
required entangled states for complete information extraction grows linearly with the number of parties. This
study sheds light on suitable use of local indistinguishability property of quantum states as a resource, and thus
we demonstrate an efficient way of information distribution.
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I. INTRODUCTION

Distinguishing quantum states [1–4] is one of the key steps
in many information processing protocols. Such a step can be
thought of in the following way: Suppose a quantum system
is prepared in an unknown state, but the state is taken from
a known set. The goal is to identify the state of the quantum
system. If the states of the known set are pairwise orthogonal
to each other, then, in principle, it is possible to identify
the state of the system perfectly by performing an appropri-
ate measurement on the whole system. On the other hand,
nonorthogonal states cannot be distinguished perfectly [5].

We assume that a composite quantum system is distributed
among several spatially separated parties and the parties are
restricted to perform local quantum operations and classical
communication (LOCC) only. In such a situation, it may not
always be possible to identify the state of the system perfectly
even though the states of the known set are orthogonal to each
other [6–18]. For a given set, if it is not possible to identify
the state of the system perfectly then the set is said to be a
locally indistinguishable set, otherwise, the set is distinguish-
able. Locally indistinguishable sets find applications in data
hiding [19–22], secret sharing [23,24], etc.

In this work, we consider an information distribution task
and ask which type of locally indistinguishable sets are
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appropriate to complete the task. In this context, we keep in
our mind that local indistinguishability of quantum states is
a resource and one should use it suitably. Anyway, the task
can be described in the following manner: Suppose there is
a referee who wishes to distribute an N-level classical in-
formation among m spatially separated parties, N > 2 and
m � 3. But this should be done in such a way that, even if
certain number of parties k, 2 � k � (m − 1), collaborate, the
information is not revealed completely. These collaborating
parties are allowed to perform joint measurements on their
subsystems and the rest of the parties stand alone, i.e., they
are only allowed to perform measurements on their own sub-
systems. But to make strategies, any sequence of classical
communication is allowed among the parties. However, if
required, then there must be a way such that the parties can
extract the information completely by sharing entangled states
as resource among them along with LOCC. Now, sharing
entanglement among spatially separated parties is always a
difficult job to implement. Therefore, the referee should try to
accomplish the task in a way that consumption of entangled
states can be reduced for complete information extraction
when required. Here comes the role of suitably using local
indistinguishability of quantum states as resource.

We note that one way to implement the collaboration
among some parties is to allow them to share classical com-
munication (CC) while the noncollaborating parties do not
use CC. To beat any such collaboration, here we allow the
collaborating parties to use joint measurements. Thus, we
basically are in search of robust information distribution
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protocol. Clearly, such a protocol is also useful to understand
up to what extent the privacy of the encoded information
remains intact.

Implementing the above task might be easier if we drop the
condition that one has to reduce the consumption of entangled
states for complete information extraction (we say this con-
dition as “resource-efficient” condition). A quick solution is
given as follows: We consider a set of N orthogonal pure m-
partite states. The classical information is encoded against the
states of the set. We also assume that the set is locally indistin-
guishable across every bipartition. [For sets which have local
indistinguishability across bipartition(s), one can go through
the Refs. [18,25–34] and the references therein.] Such a set is
always sufficient for the implementation of the present task.
Here the orthogonality is to preserve the condition that there
must be a way for complete information extraction when it
is required. Now, given a set of orthogonal quantum states, if
the states cannot be perfectly distinguished by LOCC across
every bipartition, then these states must also not be perfectly
distinguished by LOCC in any multipartition. So, for such a
set, it does not matter how many parties are collaborating, in
the newly produced partition the set always remains locally
indistinguishable and thus the information encoded against
the states of the set cannot be extracted completely. Probably,
we are now ready to rephrase the main question which is
addressed in this work: Is it possible to find more suitable
sets to implement the present task compared with the sets
which are locally indistinguishable across every bipartition?
This question is particularly important when we do not drop
the resource-efficient condition.

The answer to the above question is not obvious. In fact,
when the number of parties is three, the sets which can be
used to accomplish the present task are indeed locally indis-
tinguishable across every bipartition. This can be understood
in the following way: Suppose, there are three parties A, B,
and C. Then, in this case the only value of k is two. So, if any
two of the three parties collaborate, then the partitions, which
are produced due to collaboration, are A − BC, B − AC, and
C − AB. Again, in a tripartite system these are the only pos-
sible bipartitions. Therefore, the tripartite sets of orthogonal
states which are locally indistinguishable across the aforesaid
bipartitions are indeed locally indistinguishable across every
bipartition.

Nevertheless, when the number of parties increases, i.e.,
m � 4, it is possible to show that there are sets which are
not only sufficient to accomplish the present task but they
may also be resource-efficient compared with the sets which
are locally indistinguishable across every bipartition. For the
construction of the present sets, we use pairwise orthogonal
Greenberger–Horne–Zeilinger-type (GHZ-type) states [35]
(for distinguishability of the GHZ basis, see Ref. [36]). We
mention that, here within a set, the states are pure and they are
equally probable. We also mention that the entangled states,
which are available as a resource, are two-qubit maximally
entangled states, which can be shared between two parties.

The main contributions of this paper is given as follows:
(i) We construct a class of sets which contains maximally
entangled multiqubit GHZ states. These sets are locally in-
distinguishable across some bipartitions but not in every
bipartition. Again, these sets are sufficient to accomplish the

present task for certain values of N . (ii) We show that this sets
can be more resource-efficient than the sets which are locally
indistinguishable across every bipartition. (iii) We define a
quantity �E as the difference in the number of entangled
states which are consumed for complete information extrac-
tion in case of the present sets and the sets which are locally
indistinguishable across every bipartition. We also show that
�E increases with increasing m, m � 4 and m is either even
or odd.

Due to above findings, a few things are clear now. If for a
given m-partite (m � 4) set of orthogonal states, any (m − 1)
parties collaborate and they are not able to extract the infor-
mation completely, then it does not mean that all parties have
to collaborate for complete information extraction. This fact
can be utilized in an information processing protocol. In fact,
equivalently, for the present protocol, it is not necessary to
use an m-partite (m � 4) set which is locally indistinguishable
across every bipartition. Our task and corresponding examples
also exhibit instances where more local indistinguishability
cannot guarantee more efficiency.

II. RESULTS

We consider an m-partite system where each party holds
only one qubit. To encode N-level classical information, one
needs a set of N quantum states. Therefore, the cardinality of
the considered set is N . In fact, N changes with increasing m
as N = m + 2 in our case. We also mention that we consider
only orthogonal pure states and perfect discrimination of these
states is considered.

A. Four-qubit case

We consider a four-partite qubit system (C2 ⊗ C2 ⊗ C2 ⊗
C2) shared between four parties, A1, A2, A3, and A4. Let us
construct a set (say, S4

1) of four-qubit states which only con-
tains pure maximally entangled GHZ states. The form of the
set is given below:

S4
1 : {|0000〉 ± |1111〉,

|1000〉 + |0111〉,
|0100〉 + |1011〉,
|0010〉 + |1101〉,
|0001〉 + |1110〉}. (1)

Note that, for simplicity, we do not consider the normaliza-
tion factors. These factors do not have any relevance in the
discrimination process. For now on, we can use the notation
d ⊗ d ′ instead of Cd ⊗ Cd ′

. For S4
1, the value of N is six.

Proposition 1. S4
1 is locally indistinguishable across ev-

ery 2 ⊗ 23 bipartition but locally distinguishable across every
4 ⊗ 4 bipartition.

Proof. Let us first consider the bipartition as A1 − A2A3A4.
We denote the three-qubit basis of A2A3A4 (or A′

3) as {|i′3〉}7
i=0,

where |0′
3〉 ≡ |000〉, |1′

3〉 ≡ |001〉, and so on. Hence the states
in S4

1 can be rewritten as {(|0〉|0′
3〉 ± |1〉|7′

3〉), (|1〉|0′
3〉 +

|0〉|7′
3〉), (|0〉|4′

3〉 + |1〉|3′
3〉), (|0〉|2′

3〉 + |1〉|5′
3〉), (|0〉|1′

3〉 +
|1〉|6′

3〉)}. Now, the side A′
3 performs a measurement on the

three qubits. Note that while it is possible to distinguish the
last three states by LOCC, it is impossible to distinguish
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among the first three. The reason behind this indistinguisha-
bility is that the three states resemble three Bell states of two
qubits. Now it has already been shown in the literature that it
is not possible to distinguish three or four Bell states perfectly
via LOCC [7]. Following similar technique, if we consider
any 2 ⊗ 23 bipartition, it is always possible to find three Bell-
like indistinguishable states. Thus, the above set cannot be
perfectly distinguished by LOCC in these bipartitions.

On the other hand, when we consider the bipartition
of the form A1A2 − A3A4, we show that it is possible
to distinguish the states of S4

1 with local measurements.
Here, we denote the two-qubit basis of the first subsys-
tem A1A2 (or, A(1)

2 ) as {| j (1)
2 〉}3

j=0 such that |0(1)
2 〉 ≡ |00〉,

|1(1)
2 〉 ≡ |01〉, and so on. Similarly, for the second subsystem

A3A4 (or, A(2)
2 ) as {| j (2)

2 〉}3
j=0 such that |0(2)

2 〉 ≡ |00〉, |1(2)
2 〉 ≡

|01〉 and so on. Hence, the states in S4
1 can be rewritten

as {(|0(1)
2 〉|0(2)

2 〉±|3(1)
2 〉|3(2)

2 〉), (|2(1)
2 〉|0(2)

2 〉+|1(1)
2 〉|3(2)

2 〉), (|1(1)
2 〉

|0(2)
2 〉+|2(1)

2 〉|3(2)
2 〉), (|0(1)

2 〉|2(2)
2 〉 + |3(1)

2 〉|1(2)
2 〉), (|0(1)

2 〉|1(2)
2 〉 +

|3(1)
2 〉|2(2)

2 〉)}. Notice that, when A(2)
2 performs the projec-

tive measurements where the projectors are (|0(2)
2 〉〈0(2)

2 | +
|3(2)

2 〉〈3(2)
2 |) and (|1(2)

2 〉〈1(2)
2 | + |2(2)

2 〉〈2(2)
2 |), it is possible to

distinguish between the subspaces, spanned by the first four
states and the last two. Now, for the last two states, being
orthogonal pure states, they are always locally distinguishable
[37]. On the other hand, for the first four states, one can
consider projective measurement on A(1)

2 , where the projec-
tors are given by (|0(1)

2 〉〈0(1)
2 | + |3(1)

2 〉〈3(1)
2 |) and (|1(1)

2 〉〈1(1)
2 | +

|2(1)
2 〉〈2(1)

2 |). This is to separate out the subspaces, spanned
by the first two and last two states. Finally, after subspace
discrimination, only two orthogonal pure states are left, which
can be distinguished by LOCC [37]. This analysis also holds
for other 4 ⊗ 4 bipartition. These complete the proof. �

Here we consider four parties: A1, A2, A3, and A4. We
suppose that k parties among them collaborate then either
k = 2 or k = 3. If k = 3 then the possible bipartitions are
A1 − A2A3A4, A2 − A1A3A4, A3 − A1A2A4, and A4 − A1A2A3.
Again, if k = 2, then the possible partitions are tripartitions
which are given by A1A2 − A3 − A4, A1A3 − A2 − A4, A1A4 −
A2 − A3, A1 − A2A3 − A4, A1 − A2A4 − A3, and A1 − A2 −
A3A4. Clearly, we can encode the information against the four-
qubit states of a set which is locally indistinguishable across
all 2 ⊗ 8 bipartitions. Such a set can be found from Eq. (1).
Now, we want to think about the complete information ex-
traction part. The set S4

1 is distinguishable across A1A2 − A3A4

bipartition. In this case, if the parties A1, A2 and A3, A4 share
two-qubit pure maximally entangled states (Bell states), then
it is sufficient to locally distinguish the states perfectly. It is
due to a teleportation [38] based protocol. A1 can teleport the
qubit to the location of A2. Similarly, A3 can teleport the qubit
to the location of A4. In this way, the bipartition A1A2 − A3A4

is produced.
On the other hand, it is already explained that given any

set which is locally indistinguishable across every biparti-
tion, are also sufficient to accomplish the present task. Now,
for four qubits, two entangled states cannot be sufficient for
complete information extraction using such sets. Because
for a four-qubit set S4

2 which is locally indistinguishable
across every bipartition, if one uses two bipartite maximally

entangled states and follow a teleportation based protocol,
then ultimately, a new bipartition will be produced in which
S4

2 is again, locally indistinguishable. So, entangled states
required for complete information extraction when the set
is S4

1, given by E (S4
1 ) = 2 and similarly, E (S4

2 ) = 3 (at least
necessary). Thus, �E = E (S4

2 ) − E (S4
1 ) = 1.

B. Six-qubit case

Now we consider the case consisting of six qubits (C2 ⊗
C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2) shared between six parties A1, A2,
A3, A4, A5, and A6. We construct a set (S6

1) of six-qubit states
which only contains pure maximally entangled GHZ states.
The form of the set is given below:

S6
1 : {|000000〉 ± |111111〉,

|100000〉 + |011111〉,
|010000〉 + |101111〉,
|001000〉 + |110111〉,
|000100〉 + |111011〉,
|000010〉 + |111101〉,
|000001〉 + |111110〉}. (2)

For simplicity we discard the normalization as before because
it does not play any important role in our protocol.

Proposition 2. S6
1 is locally indistinguishable across ev-

ery 2 ⊗ 25 bipartition but locally distinguishable across every
4 ⊗ 4 ⊗ 4 tripartition.

Proof. Following the similar mechanism as used in the
proof of the previous proposition, we consider first the
bipartition as A1 − A2A3A4A5A6. We then define the five-
qubit basis of A2A3A4A5A6 (or,A′

5) as {|i′5〉}31
i=0 where |0′

5〉 ≡
|00000〉, |1′

5〉 ≡ |00001〉, . . . , |31′
5〉 ≡ |11111〉. Hence, the

set S6
1 can be rewritten as {(|0〉|0′

5〉±|1〉|31′
5〉), (|1〉|0′

5〉+|0〉|31′
5〉), (|0〉|16′

5〉+|1〉|15′
5〉), (|0〉|8′

5〉+|1〉|23′
5〉), (|0〉|4′

5〉 +
|1〉|27′

5〉), (|0〉|2′
5〉 + |1〉|29′

5〉), (|0〉|1′
5〉 + |1〉|30′

5〉)}. Note
that, if on the second composite system, i.e., on A′

5 projective
measurements are performed then the last five states (last five
states of the above equation) can be distinguished. But the first
three states can be seen as three Bell states in the bipartite
system A1 − A′

5 which cannot be perfectly distinguished by
LOCC [7]. Following a similar technique, if we consider any
2 ⊗ 25 bipartition, it is always possible to find three Bell-like
indistinguishable states. Thus, the above set cannot be per-
fectly distinguished by LOCC in these bipartitions.

On the other hand, while considering the tripartition,
the subsystems can be grouped as A1A2 (or A(1)

2 ), A3A4

(or A(2)
2 ), and A5A6 (or A(3)

2 ). We define the new basis
of the corresponding subsystems as, { j (1)

2 }3
j=0, { j (2)

2 }3
j=0,

and { j (3)
2 }3

j=0 respectively (as defined in the proof of the
Proposition 1). Hence the states in the set S6

1 can be rewritten
as {(|0(1)

2 〉|0(2)
2 〉|0(3)

2 〉±|3(1)
2 〉|3(2)

2 〉|3(3)
2 〉), (|2(1)

2 〉|0(2)
2 〉|0(3)

2 〉+
|1(1)

2 〉|3(2)
2 〉|3(3)

2 〉), (|1(1)
2 〉|0(2)

2 〉|0(3)
2 〉+|2(1)

2 〉|3(2)
2 〉|3(3)

2 〉), (|0(1)
2 〉

|2(2)
2 〉|0(3)

2 〉+|3(1)
2 〉|1(2)

2 〉|3(3)
2 〉), (|0(1)

2 〉|1(2)
2 〉|0(3)

2 〉+|3(1)
2 〉|2(2)

2 〉
|3(3)

2 〉), (|0(1)
2 〉|0(2)

2 〉|2(3)
2 〉+|3(1)

2 〉|3(2)
2 〉|1(3)

2 〉), (|0(1)
2 〉|0(2)

2 〉|1(3)
2 〉+

|3(1)
2 〉|3(2)

2 〉|2(3)
2 〉)}. First, the subsystem A(3)

2 per-
forms projective measurement with projectors given

012405-3



SUCHETANA GOSWAMI AND SARONATH HALDER PHYSICAL REVIEW A 108, 012405 (2023)

as,(|0(3)
2 〉〈0(3)

2 | + |3(3)
2 〉〈3(3)

2 |) and (|1(3)
2 〉〈1(3)

2 | + |2(3)
2 〉〈2(3)

2 |)
revealing the subspaces consisting the first six states and
the last two. Note that the last two states can be seen as a
pair of orthogonal maximally entangled states in the newly
defined basis for the grouped subsystems and hence can
be distinguished via LOCC [37]. Similarly, for first six
states when the subsystem A(2)

2 performs the projective
measurement with projectors (|0(2)

2 〉〈0(2)
2 | + |3(2)

2 〉〈3(2)
2 |) and

(|1(2)
2 〉〈1(2)

2 | + |2(2)
2 〉〈2(2)

2 |) to separate out between the first
four and last two states, the last two are again distinguishable
by performing LOCC [37]. Following a similar logic when
we consider only first four states, on the first subsystem A(1)

2
a suitable projective measurement can be performed. The
corresponding projectors are (|0(1)

2 〉〈0(1)
2 | + |3(1)

2 〉〈3(1)
2 |) and

(|1(1)
2 〉〈1(1)

2 | + |2(1)
2 〉〈2(1)

2 |). Then, it is possible to distinguish
between the first two and the other two states of the first
four states. Note that the two pure states in the groups
are mutually orthogonal to each other and hence can be
distinguished perfectly via LOCC [37]. This analysis also
holds for other 4 ⊗ 4 ⊗ 4 tripartitions. These suffice to prove
the proposition. �

In this case we consider a six-qubit system consisting of
parties A1, A2, A3, A4, A5, and A6. As can be seen from the
above proof, the set of states S6

1 in Eq. (2) cannot be distin-
guished locally in any 2 ⊗ 25 bipartition. As a result of which
if any k parties collaborate and (m − k) parties stand alone,
in the produced bipartition the set remains locally indistin-
guishable. On the other hand, it can be locally distinguished in
the tripartition A1A2 − A3A4 − A5A6. Note that, following the
similar logic as of the four-qubit system in this case, the sub-
systems can be grouped to produce any 4 ⊗ 4 ⊗ 4 bipartition
and for this it is required to share three bipartite maximally
entangled states. This is to reveal an eight level information
perfectly. Hence, in this case, E (S6

1 ) = 3 for complete infor-
mation extraction. On the other hand, when we have a set (say,
S6

2) which is locally indistinguishable across every bipartition,
then following the similar logic as in the case of four qubits,
we have E (S6

2 ) = 5 for revealing the information perfectly.
Hence, for six qubits we have �E = E (S6

2 ) − E (S6
1 ) = 2.

Notice that the difference �E is increased as the number of
qubits is increased from four to six.

C. Generalisation to m-qubit case

In this section we try to generalize the above findings for
an m-qubit (considering m to be even) (C2

1 ⊗ C2
2 ⊗ · · · ⊗ C2

m)
system shared between parties {Ai}m

i=1. Following the same
trajectory as before we construct a set Sm

1 of m-qubit states
and it is given as follows:

Sm
1 : {|0102 · · · 0m〉 ± |1112 · · · 1m〉,

|1102 · · · 0m〉 + |0112 · · · 1m〉,
|0112 · · · 0m〉 + |1102 · · · 1m〉,

...

|01 · · · 1m−10m〉 + |11 · · · 0m−11m〉,
|0102 · · · 1m〉 + |1112 · · · 0m〉}. (3)

For simplicity we discard the normalization as before as it
does not interrupt our findings. Now, we are ready to state
the proposition for the general m-qubit system.

Proposition 3. Sm
1 is locally indistinguishable across every

2 ⊗ 2(m−1) bipartition but locally distinguishable across every
4 ⊗ 4 ⊗ · · · ⊗ 4m/2 partition.

Proof. The sketch of the proof relies on the good
old method of mathematical induction. First we con-
sider the bipartition as, A1 − {Ai}m

i=2. We define the (m −
1)-qubit basis of {Ai}m

i=2 (or, A′
m−1) as {|i′m−1〉}(2m−1−1)

i=0 .
Therefore, the states in the set Sm

1 can be rewrit-
ten as, {(|01〉|0′

m−1〉 ± |11〉|(2m−1 − 1)′m−1〉), (|11〉|0′
m−1〉 +

|01〉|(2m−1 − 1)′m−1〉), · · · }. Note that the first three states in
the set are three orthogonal maximally entangled bipartite
states (Bell-like states) while (m − 1) parties collaborate be-
tween themselves to form the second composite subsystem
A′

m−1. Hence these states can never be distinguished via LOCC
[7]. Following a similar technique, if we consider any 2 ⊗
2m−1 bipartition, it is always possible to find three Bell-like in-
distinguishable states. Thus, the above set cannot be perfectly
distinguished by LOCC in these bipartitions.

Now, on the other hand, we consider the m/2-partition
(4 ⊗ 4 ⊗ · · · ⊗ 4) and see if the states remain locally
indistinguishable. For this purpose following the similar
technique used in the previous propositions, we group the
subsystems as A1A2 (or A(1)

2 ), A3A4 (or A(2)
2 ), . . . , and

Am−1Am (or A(m/2)
2 ). Now we define the basis of the newly

defined subsystems as {| j (1)
2 〉}3

j=0, {| j (2)
2 〉}3

j=0, . . . , and

{| j (m/2)
2 〉}3

j=0, respectively. Hence the states in Sm
1 can be

rewritten as, {(|0(1)
2 〉|0(2)

2 〉 · · · |0(m/2)
2 〉±|3(1)

2 〉|3(2)
2 〉 · · · |3(m/2)

2 〉),
(|2(1)

2 〉|0(2)
2 〉 · · · |0(m/2)

2 〉+|1(1)
2 〉|3(2)

2 〉 · · · |3(m/2)
2 〉), . . . , (|0(1)

2 〉
|0(2)

2 〉 · · · |2(m/2)
2 〉+|3(1)

2 〉|3(2)
2 〉 · · · |1(m/2)

2 〉), and (|0(1)
2 〉|0(2)

2 〉 · · ·
|1(m/2)

2 〉 + |3(1)
2 〉|3(2)

2 〉 · · · |2(m/2)
2 〉)}. We claim that these states

are locally distinguishable in this given partition. Note
that, when the subsystem A(m/2)

2 performs the projective
measurement given by the projectors, (|0(m/2)

2 〉〈0(m/2)
2 | +

|3(m/2)
2 〉〈3(m/2)

2 |) and (|1(m/2)
2 〉〈1(m/2)

2 | + |2(m/2)
2 〉〈2(m/2)

2 |), it
separates the last two states in the set and these two states
are mutually orthogonal to each other as can be easily seen.
Hence, they can be distinguished via LOCC [37]. Next
we consider the subsystem A(m/2−1)

2 and it performs the
similar projective measurement separating two more mutually
orthogonal states, and hence they are locally distinguishable.
The procedure can be repeated until the subsystem A(1)

2
while finally separates between four remaining states into
two sets of a pair of pure orthogonal states which are again
locally distinguishable [37]. This analysis also holds for other
4 ⊗ 4 ⊗ · · · ⊗ 4 (m/2) partitions. Hence the claim. �

D. Resource efficiency of the task

Here, we see how the introduced set of states for m-qubit
system (m being even) Sm

1 is more useful than a set of states
say, Sm

2 which is locally indistinguishable across every bipar-
tition. Note that, for a m-party system when they have access
to the set Sm

2 , to perform the task efficiently they need to share
at least (m − 1) bipartite entangled states. The logic is the
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same as for the two previously discussed cases. We assume
that the shared states are maximally entangled and they are
used in a teleportation based protocol. Then, if the number
of such states is less than (m − 1) for the set Sm

2 , it will give
rise to a new bipartition along which the set would be locally
indistinguishable again. On the other hand, if the set is Sm

1
then it is possible to reveal the information completely with
less number of maximally entangled states.

Theorem 1. The number of bipartite entangled states re-
quired for the perfect simulation of the present task with Sm

1
is m/2 and hence the difference in resource requirement for
complete information extraction corresponding to the sets Sm

1
and Sm

2 grows with the number of parties among which the
composite quantum system is distributed.

Proof. As can be seen from Proposition 3 the states in Sm
1

are locally indistinguishable across every 1 vs (m − 1) bipar-
tition but locally distinguishable in every 4 ⊗ 4 ⊗ · · · ⊗ 4m/2
partition. Hence, if the two parties in the individual subgroups
of m/2 partitions share a two-qubit maximally entangled state
then it is possible to teleport one qubit to the other location.
This will enable the set Sm

1 to perform the task using only m/2
number of bipartite entangled states.

Now, the difference in resource requirement �E can be
defined as follows: The number of bipartite entangled states,
necessary for complete information extraction from Sm

2 , i.e.,
E (Sm

2 ) difference the number of bipartite entangled states,
sufficient for complete information extraction from Sm

1 , i.e.,
E (Sm

1 ):

�E = E
(
Sm

2

) − E
(
Sm

1

)

= (m − 1) − m

2

= m − 2

2
. (4)

Note that for m = 4, �E = 1; for m = 6, �E = 2 as obtained
in the previous individual cases. From Eq. (4) it is clear that
as the number of qubits m grows (m is even and m � 4), the
task can be made more resource efficiently by using the set of
states Sm

1 . �
Remark. For an odd number of parties, i.e., when m is

odd, similar results follow starting from m = 5 while the
set, which is considered, is locally indistinguishable across
every 1 vs (m − 1) bipartition but locally distinguishable
across some (m − 1)/2 partition. In this case also the dif-
ference in resource requirement for complete extraction of
information grows with the number of qubits compared with
a set of states which is locally distinguishable across every
bipartition.

Therefore, the type of sets, we are talking about, exist in all
qubit dimensions when m � 4.

III. CONCLUSION

In quantum information, when the system in consideration
is a composite one, advantages obtained in different tasks are
mainly governed by the presence of nonlocal correlations in
the system. Among these correlations quantum entanglement
is mostly responsible in speed ups of quantum domain than its
classical counterpart [39–41] but in reality it is an expensive
resource. Hence, it is always useful to reduce the use of the
same without hindering the effectiveness of the main protocol
[40,42].

In this paper, we have presented an efficient protocol for
information sharing such that the information remains locked
to a certain extent. Particularly, we have constructed a set of
states that are locally indistinguishable across some biparti-
tions. At the same time, the sets are locally distinguishable
across remaining bipartitions. Thus, to decode the information
encoded against the states of a present set, we need less
number of bipartite entangled states. Hence the set of states
prescribed are more useful than the states that are locally in-
distinguishable across every bipartition when the present task
is considered. Because in the latter case all the parties need to
collaborate together to reveal the information systematically.

Our construction also depicts the fact that even if (m −
1) parties collaborate, the information is not extracted
completely—this does not mean that to extract the informa-
tion completely all parties have to collaborate. Interestingly,
we have noted that the difference in the number of shared
bipartite entangled states required in these two types of sets of
states, to reveal the information completely, increases linearly
with the increasing number of parties. The present task and
corresponding examples also exhibit the instances where more
local indistinguishability cannot guarantee more efficiency.

For further research one may consider the following
problems: (a) applications of local indistinguishability in in-
formation distribution protocols—here one may consider to
implement the present task using mixed states or assuming
probabilistic setting, (b) understanding the instances like—
more resources may not guarantee more effectiveness, (c)
exploring entanglement as resource in complete information
extraction, etc.
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