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Quantum algorithm for the microcanonical thermal pure quantum state method
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We propose a quantum algorithm to investigate finite-temperature properties of quantum many-body systems
by implementing the microcanonical thermal pure quantum (TPQ) states [S. Sugiura and A. Shimizu, Phys. Rev.
Lett. 108, 240401 (2012)] on a quantum computer. In the formalism, the TPQ state is constructed by applying the
power of a rescaled Hamiltonian to a random state. We clarify that, using techniques based on quantum signal
processing, the power operation can be efficiently realized when the ground-state energy of a quantum system of
interest is given with some precision. Our algorithm has an advantage in calculating thermodynamic quantities
at low temperatures.
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I. INTRODUCTION

Studying thermodynamic properties of quantum many-
body systems is of great importance for not only improving
the fundamental understanding but also the designing of
complex quantum materials in condensed matter physics.
However, such systems are often difficult to simulate on clas-
sical computers since its Hilbert space grows exponentially
with respect to the system size. For example, when the S =
1/2 quantum spin model with the finite system size N is
considered, each quantum state is represented by a vector with
2N elements, which makes it hard to directly deal with the
larger system on classical computers. The quantum Monte
Carlo simulation is one of the most powerful methods to
treat the large systems since thermodynamic quantities are
evaluated by random samplings. However, in frustrated sys-
tems, the sign problem appears at low temperatures, making
it difficult to investigate thermodynamic properties except for
the special cases [1,2]. Therefore, another tool is desired to
examine thermodynamic properties in the generic quantum
systems with large clusters.

Quantum computers have been considered as potential
tools to simulate quantum many-body systems efficiently over
classical computers [3]. Hence, exploring finite-temperature
properties is one of the important applications of quantum
computers. Thermal states at finite temperatures are basically
expressed by the density matrices corresponding to thermo-
dynamic ensembles in statistical mechanics, which are the
mixed states of pure quantum states. There exist some algo-
rithms that prepare the Gibbs states in accordance with the
canonical ensemble by making use of phase estimation [4–7]
or variational method [8–10] via some purifications. In this
case, thermodynamic quantities can be calculated directly.

On the other hand, it is often computationally efficient to
use some random states according to statistical ensembles
rather than using the thermal density matrices. One example is
the Monte Carlo sampling method using a quantum computer
[11–15], which circumvents the sign problem. However, the
calculations for large systems require more resources as es-
timating thermal averages generally requires a large number

of samples with increasing the system size. Another com-
plementary method is the thermal pure quantum (TPQ) state
method [16,17]. In this method, one starts with a random
state that corresponds to the state at infinite temperature limit.
Applying an appropriate Hermitian operator according to the
desired ensemble to the initial state, one obtains a TPQ state,
which is a pure quantum state representing an equilibrium
state [16,17]. Remarkably, the TPQ states allow for efficient
calculation of thermodynamic quantities with a small number
of samples.

Recently, some applications of the canonical TPQ state
corresponding to the canonical ensemble, which is formed
by the imaginary time evolution (ITE), to quantum com-
putation have been proposed [18,19] using a quantum ITE
algorithm [14], Suzuki-Trotter decomposition [20], or poly-
nomial expansion [21]. On the other hand, in order to explore
thermodynamic properties in isolated systems, e.g., the effects
of the disorders and real-time dynamics in finite systems, the
microcanonical TPQ states corresponding to the microcanon-
ical ensemble should be important. In this formalism [16],
the TPQ state is obtained by iteratively applying a properly
rescaled Hamiltonian, i.e., by multiplying the power of the
rescaled Hamiltonian to a random state. It is known that, even
in small clusters that are available on classical computers,
the microcanonical TPQ state method reasonably describes
finite-temperature properties in the thermodynamic limit as it
has recently been applied to interesting systems such as the
Heisenberg model on frustrated lattices [16,17,22–26] and
the Kitaev models [27–34] with a classical computer. While
a hybrid quantum-classical algorithm for a different micro-
canonical TPQ state with specified energy has been proposed
recently [35], it is also instructive to construct the original
microcanonical TPQ states by means of a quantum algorithm.

The paper presents a quantum algorithm for the micro-
canonical TPQ state method [16]. In our scheme, multiple
products of the rescaled Hamiltonian for constructing the TPQ
states are realized by taking advantage of some techniques
based on quantum signal processing (QSP) [36,37]. Specifi-
cally, we employ three techniques called the block encoding
[38,39], quantum eigenvalue transformation (QET) [21,37],
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and uniform spectral amplification [37,40]. We demonstrate
that the squared norm of the TPQ state, deeply related to
the complexity of the quantum simulations, decreases with
increasing the number of iterations, but reaches a certain rea-
sonable value if the precise value of the ground-state energy is
given. This enables us to explore finite-temperature properties
of quantum systems with a quantum computer.

The paper is organized as follows. In Sec. II, we briefly
explain the TPQ method. In Sec. III, we explain the quantum
techniques used in our scheme. We introduce our TPQ scheme
and clarify its complexity in Sec. IV. Some numerical results
for the frustrated spin systems are also addressed. A summary
is given in the last section.

II. MICROCANONICAL TPQ STATE

In this section, we briefly explain the microcanonical TPQ
state proposed in Ref. [16]. Let H be the Hamiltonian describ-
ing the system of interest with lattice sites N on a Hilbert space
of dimension D = 2N , and let en and |en〉 for n = 1, 2, . . . , D
be the eigenvalues and the corresponding eigenstates, re-
spectively, of the Hamiltonian per site h ≡ H/N such that
h |en〉 = en |en〉. Without loss of generality, we assume that
emin ≡ e1 � e2 � · · · � eD ≡ emax.

In the microcanonical TPQ state method [16], we first
prepare a random state |ψ0〉. While the initial state is a Haar
random state in the original definition in Ref. [16], the prepa-
ration of the state on a quantum computer would require an
exponentially large number of gates as it contains D = 2N ran-
dom variables. Instead, one can employ unitary t-designs with
t � 2 that replicates Haar integrals up to the second or higher
statistical moment. It is known that a random unitary drawn
from the n-qubit Clifford group yields a unitary 3-design and
requires only O(N2/ log N ) quantum gates [41].

By applying the power of the rescaled Hamiltonian (l −
h)k with a constant value l � emax to the initial state, the TPQ
state is constructed. The unnormalized kth TPQ state and cor-
responding density operator of the microcanonical ensemble
are given as [16]

|k〉 ≡ (l − h)k |ψ0〉 , (1)

ρk ≡ (l − h)2k

Tr(l − h)2k
. (2)

Namely, the kth normalized TPQ state |ψk〉 ≡ |k〉 /‖ |k〉 ‖ sat-
isfies, for an arbitrary positive number σ ,

Pr[|〈ψk| A |ψk〉 − TrρkA| � σ ] � ‖A‖2ησ (N ), (3)

where A is an arbitrary observable with polynomially large
‖A‖2 and ησ (N ) is a function that vanishes exponentially fast
with increasing N . This inequality means that since the failure
probability of the evaluation of the TPQ states exponentially
vanishes, only a single realization of the TPQ state is suffi-
cient to evaluate equilibrium values of observables with high
probability for large N . Thus, this method allows one to effi-
ciently obtain the equilibrium values of observables without
diagonalization. The proof of the inequality is given in the
original paper [16], but is included in Appendix A along with
the description of the microcanonical TPQ states for com-
pleteness. Equation (3) leads to the fact that |ψk〉 represents

the equilibrium state specified by the energy density

uk ≡ 〈ψk|h|ψk〉 ≈ Tr hρk . (4)

One can also obtain genuine thermodynamic variables such
as the temperature and entropy of the equilibrium state with
the TPQ states. In the TPQ state formalism [16], the inverse
temperature β and entropy density s at the energy density uk

are calculated by the following formulas:

β(uk ) = 2k

N (l − uk )
+ O(N−1), (5)

s(uk ) = 1

N
ln 〈k|k〉 − 2k

N
ln(l − uk ) + ln 2 + O(N−1). (6)

Here, we note that k = O(N ) as β = O(1).
A key of this method is that one can sequentially calcu-

late thermodynamic quantities of the equilibrium state over
a wide range of energies by just applying the power of the
rescaled Hamiltonian to the random state. The energy den-
sity uk decreases gradually down to emin as k increases, i.e.,
u0 > u1 > · · · > emin, and low-temperature properties of the
systems can be investigated in accordance with Eq. (5). In
addition, the errors of the genuine thermodynamic variables in
Eqs. (5) and (6) vanish with increasing N . Therefore, the TPQ
state method may be suitable for quantum computation since
it has the potential to treat much larger systems compared with
classical computation.

On the other hand, the nonunitary operation is necessary to
prepare the TPQ state directly on a quantum computer where
operations basically consist of unitary ones. Also, multiple
products in Eq. (1) exponentially reduce the success proba-
bility in the TPQ state method, which will be discussed later.
This means that with the simple TPQ simulation it is hard to
study thermodynamic properties at low temperatures.

In the following, combining some techniques proposed
recently, we present a method that efficiently implements the
TPQ state on a quantum computer to calculate thermodynamic
quantities.

III. MAIN TECHNIQUES

In this section, we introduce three techniques called the
block encoding [38,39], QET [21,37], and uniform spectral
amplification [37,40] to implement the nonunitary operation,
i.e., the power operation (l − h)k . Hereafter, the rescaled
Hamiltonian l − h is denoted as h′ for notational simplicity.

A. Block encoding

Firstly, in order to implement the Hermitian operator h′(≡
l − h), we employ a block-encoding technique [37–39]. The
technique allows us to embed the input h′ on a N-qubit system
register into a larger unitary U by adding an ancillary Na-qubit
register. Specifically, for any N-qubit state |ψ〉, the block-
encoding unitary W is defined such that

W
∣∣0Na

〉 ⊗ |ψ〉 = ∣∣0Na
〉 ⊗ h′

α
|ψ〉 + |0ψ⊥〉 , (7)

where |0ψ⊥〉 is an orthogonal state in the ancillary and
system qubit register that satisfies (〈0Na | ⊗ 1⊗N ) |0ψ⊥〉 = 0
with an identity matrix 1 and α is a constant satisfying
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α � ‖h′‖ (= l − emin). It is also convenient to represent the
unitary in matrix form as

W =
(

h′/α ∗
∗ ∗

)
, (8)

where the top-left block denotes the |0Na〉 〈0Na | component.
An example of block encoding is the linear combination of

unitaries (LCU) method [38]. The LCU method offers a way
to block encode h′ when h is expressed as a linear combination
of unitaries {Ui}NU

i=1 such that h = ∑NU
i=1 αiUi with coefficients

{αi}NU
i=1. Here, we assume that the coefficients αi are positive

by incorporating the sign into each unitary Ui. The block-
encoding unitary U by LCU consists of two unitary operators.
The first one is a state preparation unitary operator G such that

G
∣∣0Na

〉 =
√

l |0〉 + ∑NU
i=1

√
αi |i〉a√

l + ∑
i αi

, (9)

where {|i〉}NU
i=0 are the computational basis. The second one is

a controlled unitary operator

U = |0〉 〈0| ⊗ 1 −
NU∑
i=1

|i〉 〈i| ⊗ Ui. (10)

One can readily show that W = G†UG gives a block encoding
of h′, i.e., satisfies Eq. (7) with α = l + ∑

i αi. In this case,
the number of the ancillary qubits is �log2 NU . According to
Ref. [42], the state preparation unitary G can be implemented
with a circuit depth �(log NU ) and another O(NU ) ancillary
qubits, and the controlled unitary U can be realized with a cir-
cuit depth O[log(NU N )] and another O(NU N ) ancillary qubits
when each Uj is a product of single-qubit unitaries such as
Pauli operators. Such a set of Hamiltonians covers many kinds
of physical models including spin models. In addition, another
block-encoding method for general sparse matrices has also
been proposed [37,38] that may have advantages depending
on the Hamiltonian.

For simplicity, we quantify the complexity of an algorithm
with the number of queries of the block-encoding unitary
operator W .

B. Quantum eigenvalue transformation

The QET [21,37] is a framework for a polynomial trans-
formation of the eigenvalues of a Hermitian matrix encoded
in a unitary matrix via QSP [36,38,43]. We define a signal-
processing rotation operator via [21]

Sφ ≡ ( 〈0| ⊗ 1⊗Na
)
C|0Na 〉NOT

(
e−iφσz ⊗ 1⊗Na

)
×C|0Na 〉NOT

( |0〉 ⊗ 1⊗Na
)

(11)

∝ eiφ(2|0Na 〉〈0Na |−1⊗Na ), (12)

where a single ancillary qubit is introduced and C|0Na 〉NOT is a
|0Na〉-controlled-NOT gate as

C|0Na 〉NOT ≡ σ x ⊗ ∣∣0Na
〉 〈

0Na
∣∣ + 1 ⊗ (

1⊗Na − ∣∣0Na
〉 〈

0Na
∣∣ ).
(13)

The operator Sφ acts as a z rotation by angle φ in the subspace
spanned by the basis vectors {|0Na〉 ⊗ |ψ〉 , |0ψ⊥〉}. With the
block-encoding unitary W and the rotation operator Sφ , QET

is realized, i.e., for any degree-d polynomial f (x) such that
[36,38,43]

(i) f has parity-(d mod 2),
(ii) | f (x)| � 1 for all x ∈ [−1, 1],
(iii) | f (x)| � 1 for all x ∈ (−∞,−1] ∪ [1,∞),
(iv) f (ix) f ∗(ix) � 1 for all x ∈ R if d is even,

there exists a phase sequence � = (φ1, φ2, . . . , φd ) ∈ Rd

such that (Theorem 3 in Ref. [21])

U� ≡
⎧⎨
⎩

∏d/2
j=1 Sφ2 j−1W

†Sφ2 jW for even d

Sφ1W
∏(d−1)/2

j=1 Sφ2 jW
†Sφ2 j+1W for odd k

(14)

=
(

f (h′/α) ∗
∗ ∗

)
, (15)

namely,

( 〈
0Na

∣∣ ⊗ 1⊗N
)
U�

( ∣∣0Na
〉 ⊗ 1⊗N

) = f

(
h′

α

)
, (16)

where f (h′/α) = ∑D
n=1 f ( l−en

α
) |en〉 〈en| is a polynomial

transformation of the eigenvalues of h′. To implement the
power of the Hamiltonian h′k , we can directly make use of
f (x) = xk for odd k as the degree-k polynomial while for
even k, the function does not satisfy the condition (iv). To
implement a real polynomial g(x) of degree k satisfying only
the conditions (i) and (ii), we can instead add another single
qubit and use

V� = |0〉 〈0| ⊗ U� + |1〉 〈1| ⊗ U−�, (17)

which satisfies

g(h′/α) = ( 〈+| ⊗ 〈
0Na

∣∣ )V�

( |+〉 ⊗ ∣∣0Na
〉 )

= f (h′/α) + f ∗(h′/α)

2
. (18)

The unitary V� can be constructed with 2k queries to
controlled-W [38]. Also, the corresponding phase sequence
� for a desired function can be efficiently calculated using
classical computers.

The QET technique provides a way to efficiently apply
polynomial transformations to the Hamiltonian embedded in
a block-encoding unitary. However, after applying U� (V�)
to an input state |ψ〉 in the system register, to complete the
h′k operation, the state must be projected into |0Na〉 in the
ancillary qubits, as can be seen from Eq. (16). Hence, if
|0Na〉 is observed, the desired state f (h′/α)|ψ〉

‖ f (h′/α)|ψ〉‖ is obtained
directly on a quantum computer, and the success probability
is given by ‖ f (h′/α) |ψ〉 ‖2. Hence, the probability of obtain-
ing the normalized TPQ state is given by ‖〈ψ0|( h′

α
)2k|ψ0〉‖2,

which decays exponentially with increasing k since ‖ h′
α
‖ < 1.

This means that it is computationally hard to study low-
temperature properties with just the use of QET. To overcome
this problem, we utilize the following technique called uni-
form spectral amplification [37,40].

C. Uniform spectral amplification

We employ the uniform spectral amplification technique,
which uniformly amplifies the eigenvalues of the embedded
Hamiltonian via QET, to avoid the exponential decay of the
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success probability. According to Theorem 30 in Ref. [37]
(which is a generalization of Theorem 2 in Ref. [40]), for any

 ∈ (‖h′‖, α], δ ∈ (0, 1 − ‖h′‖



], and ε ∈ (0, 1/2), there exists

an m = O( α



1
δ

log( α



1
ε

)) and W̃ = V� operator corresponding
to the phase sequence � ∈ Rm such that

( 〈
0Na

∣∣ ⊗ 1N
)
W̃

( ∣∣0Na
〉 ⊗ 1N

) = h̃′



=

D∑
n=1

l − ẽn



|en〉 〈en| ,

(19)

where the right-hand side is the spectral decomposition of h̃′
with the eigenvalues {l − ẽn}D

n=1, each of which satisfies

|ẽn − en|



< ε. (20)

As the above statement is slightly different from the origi-
nal theorem only in terms of the notation, a brief derivation
of it is provided in Appendix B. Constructing W̃ requires
O( α



1
δ

log( α



1
ε

)) queries to controlled-W . This technique is
derived from an approximate polynomial of the truncated
linear function α



x through the error function [37,40]. Because

of the uniform spectral amplification, the normalization factor
α of the encoded Hamiltonian can be reduced to 
 with
exponentially small error ε with respect to the complexity.
However, it requires knowledge of the upper bound 
 of
‖h′‖ = l − emin, i.e., the lower bound of the minimum eigen-
value of h.

IV. QUANTUM ALGORITHM AND THE COMPLEXITY

Our algorithm is straightforwardly constructed by combin-
ing the three techniques introduced in Sec. III hierarchically.
We realize the operation h̃′k through the QET of a polynomial
xk using the amplified block-encoding unitary W̃ , which is
constructed from W . For odd k, we can implement V = U�

such that

( 〈
0Na

∣∣ ⊗ 1⊗N
)

V
( ∣∣0Na

〉 ⊗ 1⊗N
) =

(
h̃′




)k

. (21)

For even k, we have to instead use V� with controlled-W̃ . After
the operation, if |0Na〉 is observed in the ancillary qubits, we
obtain the normalized approximated kth TPQ state

|ψ̃k〉 ≡ h̃′k|ψ0〉
‖h̃′k|ψ0〉‖

, (22)

which somewhat differs only in the eigenvalues of the Hamil-
tonian, and the probability of success, i.e., the probability of
observing |0Na〉 is

〈ψ0|h̃′2k|ψ0〉

2k

, (23)

which depends on the initial random state. Averaging over the
random state we roughly evaluate the probability for suffi-
ciently large k required for the calculation of thermodynamic
quantities at low temperatures as

O

[
1

D

D∑
n=1

(
l − ẽn




)2k
]

= O

[
1

D

(
l − emin




)2k
]
, (24)

where we have assumed that ε � 1/k to neglect the small
error.

Since the probability given in Eq. (24) is still tiny in any
case as the denominator is the dimension of the system, we
also use the amplitude amplification technique [37,44] to
complete the implementation of h̃′k . The technique allows for
amplifying the success probability to a constant O(1). In this
case,

O

[√
D

(



l − emin

)k
]
, (25)

iterations of amplitude amplification are required, and this can
be implemented via an additional layer of QSP [37].

Thus, our algorithm provides an efficient way to multiply
a random state by h′k and obtain the approximate normalized
TPQ state on a quantum computer with constant probability.
Specifically, we can implement a quantum algorithm V̄ that
satisfies ( 〈

0Na
∣∣ ⊗ 1N

)
V̄

( ∣∣0Na
〉 ⊗ |ψ0〉

)∥∥( 〈
0Na

∣∣ ⊗ 1N
)

V̄
( ∣∣0Na

〉 ⊗ |ψ0〉
)∥∥ = |ψ̃k〉 (26)

and is constructed by three layers of QSP: the amplitude
amplification, QET, and uniform spectral amplification. The
approximate TPQ state |ψ̃k〉 represents an ensemble of the
density matrix ρ̃k ≡ h̃′2k

Tr h̃′2k by which ρk is approximated, and
it is noted that the difference between |ψ̃k〉 and ρ̃k is exponen-
tially small from Eq. (3). Thus, the error in the approximate
TPQ state is evaluated by the error between the corresponding
density matrices: for ε′ ∈ (0, 1)

1
2‖ρ̃k − ρk‖1 < ε′, (27)

where ‖ · ‖1 denotes the trace norm. From the relation be-
tween ε and ε′ discussed in Appendix C, one can get the TPQ
state with the desired precision as in Eq. (27) if the error ε

satisfies

ε <
l − emax

2k

ε′(1 − ε′). (28)

Therefore, we can conclude our algorithm in terms of the
query complexity of the block-encoding unitary W as

O

[(



l − emin

)k√
D k

α




1

δ
log

(
2kα

l − emax

1

ε′

)]
, (29)

where each term represents the contributions from the am-
plitude amplification, QET of xk , and uniform spectral
amplification, respectively in that order.

In addition, if the ground-state energy is given with some
precision, we can set 
 = l − emin(1 ± δ′) where δ′ > 0 is
a precision parameter, and the sign is taken so that 
 >

l − emin. When δ′ is chosen to be small as δ′ � 1/k, the
exponential increase with respect to k can be neglected and
the complexity is then given as

O

[√
Dk

α




1

δ
log

(
2kα

l − emax

1

ε′

)]
. (30)

This means that the precision of the ground-state energy of
the Hamiltonian plays a crucial role and the exponential in-
crease of the complexity can be suppressed in the case with
δ′ = O(1/k). We note that if the ground-state energy is not
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given with such precision, the overall complexity grows expo-
nentially with k in our method, making it almost impossible
to construct the low-temperature TPQ states. The problem
of estimating ground-state energies of local Hamiltonians is
QMA (Quantum Merlin Arthur) complete, which means that
obtaining the ground-state energies cannot be done efficiently
even on a quantum computer. However, quantum algorithms
using the variational method [45], adiabatic evolution [46],
the filtering method [47,48], and Lanczos methods [49–52]
have been proposed that can efficiently find the ground-state
energy with some additional assumptions. Therefore, by us-
ing the value obtained with the algorithms, the exponential
decay of the probability with respect to k can be suppressed,
and exploring low-temperature properties might be performed
efficiently on a quantum computer.

More specifically, we consider the S = 1/2 quantum spin
systems, where the Hamiltonian is, in general, represented by
a linear combination of tensor products of Pauli operators.
Then, the block-encoding unitary W is implemented by means
of the LCU method with α = O(1), NU = O(N ). Noting
that δ < |δ′| = O(1/k) and 
 = O(1), the gate complexity is
given as

O

[
Nk2

√
D log

(
k

ε′

)]
. (31)

Since the computational complexity for one iteration of the
TPQ method on a classical computer constructed by vector
and (sparse) matrix operation is O(ND), a quadratic speedup
should be realized more or less except for the logarithmic
factors. Therefore, our scheme has a potential method to in-
vestigate low-temperature properties of quantum systems in
large systems.

Now, we calculate the squared norm 〈k|k〉

2k using the clas-

sical TPQ state method to simply confirm that the success
probability is O(D−1) if δ′ is chosen to be O(1/k) by using
the uniform spectral amplification. To this end, we consider
the Heisenberg model on a kagome lattice (KH model) and
Kitaev models with a coupling constant J , as examples of
frustrated quantum spin systems. In these cases, the corre-
sponding Hamiltonians can be easily encoded into unitary
by the LCU method with α = l + 6J and α = l + 3J/2, re-
spectively. The details of these models will be explained in
Appendix D. Here, the TPQ state simulations are performed
from 25 independent Haar random states of |ψ0〉 on a classical
computer, by setting the parameter l = emax + 0.001. Figure 1
shows the squared norm 〈k|k〉/
2k for both models with
N = 30. When the bare TPQ state method is applied with-
out the uniform spectral amplification technique, the squared
norm rapidly decreases since l − emin < α, which is clearly
shown as the dotted line in Fig. 1. On the other hand, we
find that the squared norm decreases slowly with small δ′,
and is O(D−1) in a region k ∈ [0, O(1/δ′)] for any δ′. This
suggests that the knowledge of the ground-state energy emin

with a precision of O(1/k) suppresses the exponential de-
cay in the success probability or the exponential increase in
complexity. The inset of Fig. 1 shows the temperature as a
function of k in the TPQ state simulations. It is found that
the increase of k monotonically decreases the temperature.
In general, there exists the characteristic temperature T ∗ that
depends on the model. Namely, T ∗ ∼ 0.2J for the KH model

FIG. 1. The squared norm 〈k|k〉/
2k as a function of k in
the (a) KH and (b) Kitaev models with N = 30 when δ′ =
0, 10−4, 10−3, and 10−2. The shaded areas stand for the standard
deviation of the results. The TPQ results without the uniform spectral
amplification are represented by the dotted line. The gray dashed line
represents D−1 = 2−30.

and T ∗ ∼ 0.03J for the Kitaev model (see Appendix D). It
is found that k ∼ 1500 (50N ) iterations are enough to reach
the characteristic temperature. These results imply that ther-
modynamic properties can be explored within a reasonable
computational cost if the ground-state energy is obtained with
an accuracy of O[(50N )−1]. It is expected that our quantum
scheme is applied to interesting quantum systems and their
low-temperature properties would be clarified.

V. SUMMARY

We have presented the quantum algorithm for the TPQ
state method, combining the block-encoding, uniform spectral
amplification, QET, and amplitude amplification techniques.
If the precise value of the ground-state energy is given, the
computational cost in the power operation of the rescaled
Hamiltonian constructing the TPQ states is exponentially
reduced. This would enable us a quadratic speedup except
for the polylogarithmic factors compared with the classical
simulation. Therefore, our work should stimulate further the-
oretical studies in condensed matter physics with quantum
computers.
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APPENDIX A: REVIEW OF MICROCANONICAL
TPQ STATE

In this Appendix, we review the microcanonical thermal
pure quantum state introduced by Sugiura and Shimizu in
Ref. [16]. Specifically, we derive the evaluations of genuine
thermodynamic variables such as the temperature and entropy
density in Eqs. (5) and (6) and show that the states are thermal
pure quantum states, i.e., satisfy Eq. (3).

Firstly, we derive the energy density distribution of the
smooth microcanonical ensemble ρk = (l−h)2k

Tr (l−h)2k correspond-
ing to the TPQ state. Denoting the density of microstates
g(u) as a function of energy density u, we obtain the entropy
density as

s(u) = 1

N
ln g(u). (A1)

Then, the energy density distribution of the density matrix ρk

can be written as [16,53]

rk (u) ≡ gN (u)(l − u)2k = exp [Nξk (u)], (A2)

where ξk (u) ≡ 2k ln (l−u)
N − s(u). This energy density distribu-

tion takes the maximum at u = u∗
k that satisfies ∂

∂uξk (u) = 0,
i.e.,

β(u∗
k ) ≡ ∂

∂u
s(u)

∣∣∣∣∣
u=u∗

k

= 2k

N (l − u∗
k )

. (A3)

Expanding ξk (u) around u∗
k and noting ∂2

∂u2 ξk (u)|u=u∗
k
< 0 since

∂
∂uβ(u)|u=u∗

k
� 0, we get

ξk (u) = ξk (u∗
k ) − 1

2 |ξ ′′
k (u∗

k )|(u − u∗
k )2 + · · · , (A4)

where ξ ′′
k (u∗

k ) ≡ ∂2

∂u2 ξk (u)|u=u∗
k
. Thus, the energy density dis-

tribution rk behaves like a Gaussian distribution with the peak
at u∗

k and the small variance 1
N |ξ ′′

k (u∗
k )| . Therefore, ρk represents

the equilibrium state with the energy specified by u = u∗
k .

We can obtain thermodynamic variables such as the en-
tropy and temperature with the ensemble. Using Eq. (A4) and
applying Laplace’s method [53], we have

Tr (l − h)2k =
∫ ∞

−∞
du exp[Nξk (u)] (A5)

= exp

[
− N

(
4k

N
ln

l − u∗
2k

l − u∗
k

+ 2s(u∗
k ) − s(u∗

2k )

)

+ O(log N )

]
. (A6)

Then the energy density is also obtained as

uρk ≡ Tr hρk =
∫ ∞
−∞ du u exp[Nξk (u)]∫ ∞
−∞ du exp[Nξk (u)]

(A7)

= u∗
k + O(N−1). (A8)

Hence, using Eqs. (A3) and (A6), we obtain the thermody-
namic variables at the specified energy u∗

k with the smooth
microcanonical ensemble as

s(u∗
k ) = 1

N
ln Tr (l − h)2k − 2k

N
ln(l − uk ) + O(N−1 log N ),

(A9)

β(u∗
k ) = 2k

N (l − uk )
+ O(N−1). (A10)

Here, we note that uk and Tr (l − h)2k can be calculated
through the TPQ states, as discussed below.

We show that the kth TPQ state

|ψk〉 = (l − h)k |ψ0〉
‖(l − h)k |ψ0〉 ‖ (A11)

is a thermal pure quantum state for the smooth microcanonical
ensemble ρk , namely, satisfies Eq. (3) in the main text. Firstly,
we assume that the initial random state |ψ0〉 is generated by at
least unitary 2-design and written as

|ψ0〉 =
D∑

i=1

ci |i〉 , (A12)

where {|i〉}i=1,...,D denote arbitrary orthonormal basis states of
the D-dimensional Hilbert space and ci are random variables
that satisfy

∑
i |ci|2 = 1 following the unitary design. Then,

using the Haar integrals up to the second moment, we get [54]

E [|ci|2] = 1

D
, (A13)

E [|ci|2|c j |2] = 1

D(D + 1)
for i �= j, (A14)

E [|ci|4] = 2

D(D + 1)
, (A15)

where E [·] denotes the expectation values over the random
variables {ci}i and all combinations other than the above such
as cic j are zero below the fourth order. Using Eqs. (A13),
(A14), and (A15), the expectation value and relative variance
of the normalization factor 〈k|k〉 can be calculated as

E [〈k|k〉] = Tr (l − h)2k

D
, (A16)

Var

[ 〈k|k〉
E [〈k|k〉]

]
= D

1 + D

Tr (l − h)4k

[Tr (l − h)2k]2
− 1

D + 1
(A17)

� Tr ρ2
k (A18)

= exp

[
N

(
2k

N
ln(l − u∗

k ) − s(u∗
k )

)

+ O(log N )

]
, (A19)

where we have used Eq. (A6). Here, we find that 4k
N ln l−u∗

2k
l−u∗

k
+

2s(u∗
k ) − s(u∗

2k ) > 0 for all k by using the fact that u∗
k > u∗

2k

and ∂s(u)
∂u > 0, and then the purity of the density matrix Tr ρ2

k
exponentially decays with increasing the system size N . Thus,
this variance is exponentially small in the system size N .

Next, we will use f ≡ 〈k|A|k〉 and g ≡ 〈k|k〉 to simplify
the notations. Then, f

g = 〈ψk|A|ψk〉 and E [ f ]
E [g] = Tr Aρk denote

the evaluations of the observable A in the TPQ state |ψk〉
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and the density matrix ρk , respectively. Hence, we provide
proof that the TPQ states satisfy Eq. (3) by making use of
Markov’s inequality

Pr

[∣∣∣∣ f

g
− E [ f ]

E [g]

∣∣∣∣ > σ

]
>

1

σ 2
E

[∣∣∣∣ f

g
− E [ f ]

E [g]

∣∣∣∣
2
]
, (A20)

and showing that the error between f
g and E [ f ]

E [g] is exponen-
tially small. As the relative variance of g is small, we use a
multivariate Taylor expansion up to first order in Var[ g

E [g] ] as
[18]

E

[
f

g

]
≈ E [ f ]

E [g]
− Cov[ f , g]

E [g]2 + E [ f ]

E [g]
Var

[
g

E [g]

]
, (A21)

where Cov[ f , g] is the covariance defined by Cov[ f , g] =
E [ f g] − E [ f ]E [g]. Calculating each term in the expansion
with Eqs. (A13), (A14), and (A15), we obtain

E

[
f

g

]
≈ Tr Aρk + D

D + 1
Tr ρ2

k (Tr Aρk − Tr Aρ2k ). (A22)

Similarly, we evaluate the expectation value of ( f
g )2 using a

multivariate Taylor expansion as

E

[(
f

g

)2
]

≈ E [ f ]2

E [g]2
+ Var[ f ]

E [g]2
− 4

E [ f ]

E [g]3
Cov[ f , g]

+ 3
E [ f ]2

E [g]
Var

[
g

E [g]

]
. (A23)

Using Eqs. (A21) and (A23), we have

E

[∣∣∣∣ f

g
− E [ f ]

E [g]

∣∣∣∣
2
]

≈ Var[ f ]

E [g]2
− 2

E [ f ]

E [g]3
Cov[ f , g]

+ E [ f ]2

E [g]2
Var

[
g

E [g]

]
(A24)

= D

D + 1
Tr ρ2

k

{
(Tr Aρk )2 − 2Tr AρkTr Aρ2k

+ Tr [(l − h)2kA]2

Tr (l − h)4k

}
(A25)

� Tr ρ2
k 4‖A‖2, (A26)

where we have used the fact that

Tr [(l − h)2kA]2

Tr (l − h)4k
�

∑
ei,e j

(l − ei )4k + (l − e j )4k

2Tr (l − h)4k

∣∣〈ei| A |e j〉
∣∣2

(A27)

� ‖A‖2. (A28)

Therefore, we obtain

Pr[|〈ψk|A|ψk〉 − Tr Aρk| � σ ] � ‖A‖2 4Tr ρ2
k

σ 2
, (A29)

and this inequality shows that the failure probability of the
TPQ states exponentially vanishes from Eq. (A6) as indicated
in Eq. (3). Note that the above property is derived by only
using Eqs. (A13), (A14), and (A15), i.e., the Haar integrals up
to the second moment. Therefore, it would be sufficient to use
unitary t-designs with t � 2 for generating the initial random
state.

APPENDIX B: NOTATIONAL CHANGES FROM THE
ORIGINAL THEOREM OF THE UNIFORM SPECTRAL

AMPLIFICATION TECHNIQUE

In this section, we shortly derive the notational change
from the original theorem in the uniform spectral amplifica-
tion technique introduced in the main text. Theorem 30 in
Ref. [37] states as follows.

Let γ > 1 and let δ, ε ∈ (0, 1
2 ). Suppose that

〈0Na |U |0Na〉 = ∑
i λi |λi〉 〈λi| is an eigenvalue decomposi-

tion, and maxi{|λi|} � 1−δ
γ

. Then there is an m = O( γ

δ
log( γ

ε
))

and an efficiently computable � ∈ Rm such that( 〈+| ⊗ 〈
0Na

∣∣ ⊗ 1⊗N
)
V�

( |+〉 ⊗ ∣∣0Na
〉 ⊗ 1⊗N

)
=

∑
i

λ̃i |λi〉 〈λi| , (B1)

where each eigenvalue λ̃i satisfies∥∥∥∥ λ̃i

γ λi
− 1

∥∥∥∥ < ε. (B2)

Here it is noted that the original theorem uses singular values
ςi for a general matrix instead of eigenvalues λi.

In the main text, the eigenvalues are replaced as λi = l−ei
α

and λ̃i = l−ẽi



, and then we used the notations as γ = α/
,

 � l−emin

1−δ
, ‖ei−ẽi‖



< ε, and m = O( α



1
δ

log( α



1
ε

)).

APPENDIX C: RELATION BETWEEN ε AND ε′

In this section, we derive Eq. (28) in the main text, which
is a relationship between the approximation error ε′ given in
Eq. (20) and the error ε given in Eq. (27). Firstly, noting that
the density matrices ρk and ρ̃k have the common eigenstates
{|ei〉}i, we obtain the upper bound of the trace distance as

1

2
‖ρk − ρ̃k‖1 = 1

2

∑
i

∣∣∣∣ (l − ei )2k

Tr (l − h)2k
− (l − ẽi )2k

Tr (l − h̃)2k

∣∣∣∣ (C1)

� 1

2

∑
i, j

|(l − ei )2k (l − ẽ j )2k − (l − ẽi )2k (l − e j )2k|
Tr (l − h)2kTr (l − h̃)2k

(C2)

= 1

2

∑
i, j

(l − ei )2k (l − ẽ j )2k
∣∣1 − ( l−ẽi

l−ei

l−e j

l−ẽ j

)2k∣∣
Tr (l − h)2kTr (l − h̃)2k

. (C3)
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FIG. 2. Finite-size clusters of the kagome lattice used in the TPQ
simulations. The boundaries exhibit periodic boundary conditions.

Here, using the Eq. (20), we get

1 − κε

1 + κε
<

l − ẽi

l − ei

l − e j

l − ẽ j
<

1 + κε

1 − κε
, (C4)

where κ ≡ 

l−emax

when ε < κ−1. Hence, we can evaluate the
absolute value in the numerator factor in Eq. (C3) as∣∣∣∣∣1 −

(
l − ẽi

l − ei

l − e j

l − ẽ j

)2k
∣∣∣∣∣ <

(
1 + κε

1 − κε

)2k

− 1. (C5)

Therefore, we get the upper bound of the trace distance as

1

2
‖ρk − ρ̃k‖1 � 1

2

{(
1 + κε

1 − κε

)2k

− 1

}
. (C6)

Then, assuming the right-hand side is less than ε′ and solving
the inequality for ε, we finally show that

ε <
1

κ

ε′

2k
(1 − ε′) <

1

κ

{
1 − 2

1 + (1 + 2ε′)1/2k

}
, (C7)

where we have used the fact that x(1−x)
2k < 1 − 2

1+(1+2x)1/2k for
x ∈ (0, 1) and k � 1.

APPENDIX D: DETAILS OF THE FRUSTRATED
QUANTUM SPIN MODELS

Here, we explain the details of the models used in the
TPQ simulations. In frustrated spin systems, low-energy states
should play an important role and the characteristic temper-
atures are relatively low, compared to unfrustrated systems.
In fact, low-temperature peak or shoulder in specific heat has
been discussed in some systems. Now, we treat the KH and
Kitaev models as examples of the frustrated models. To make
our discussions clear, we set l = emax + 0.001.

1. The Heisenberg model on the kagome lattice

First, we consider the Heisenberg model on the kagome
lattice (KH model) with antiferromagnetic couplings as one
of the systems with geometrical frustration, which is schemat-
ically shown in Fig. 2. The system includes triangle structures
and each site connects the four nearest-neighbor sites. The

FIG. 3. Internal energy in the Heisenberg model on the kagome
lattice with N = 18, 27, and 30. The inset shows the temperature
as a function of k. The error bars stand for the standard deviation
of the results. Circles represent the ground-state energies for the
corresponding system.

model Hamiltonian is given as

H = J
∑
〈i j〉

σ i · σ j, (D1)

where σi[= (σ x
i , σ

y
i , σ z

i )], σ
μ
i is the μ component of the

Pauli matrix at the ith site, and the index 〈i j〉 represents
the summation over the connecting spin pairs. J (> 0) is the
antiferromagnetic exchange coupling.

For the clusters with N = 18 and 27, we evaluate tem-
peratures and internal energies by means of 100 independent
TPQ states. By contrast, the numerical cost is high for the
cluster with N = 30, and 25 independent states are treated.
The internal energy is shown in Fig. 3. At low temperatures,
the internal energy strongly depends on the size and/or shape
of the system. This means that low-energy states play an
important role in the kagome-Heisenberg model. It has been
clarified that there exists shoulder behavior in the specific heat
and its characteristic temperature is deduced as T ∗ ∼ 0.3J
[17]. The inset of Fig. 3 shows the temperature as a function of
the scaled iteration k/N . We find that the curves little depend
on k/N . Therefore, the TPQ state at T = T ∗ is obtained with
k ∼ 10N when the parameters are appropriately given.

2. The Kitaev model on a honeycomb lattice

We consider the Kitaev model on a honeycomb lattice [55],
which is composed of direction-dependent Ising-like interac-
tions and is known to be the exactly solvable system with bond
frustration. The Hamiltonian is given by

H = −J
∑
〈i, j〉x

σ x
i σ x

j − J
∑
〈i, j〉y

σ
y
i σ

y
j − J

∑
〈i, j〉z

σ z
i σ z

j , (D2)

where 〈i, j〉μ represents the nearest-neighbor pair on the μ(=
x, y, z) bonds. The x, y, and z bonds are shown as red, blue,
and green lines in Fig. 4(a).

J is the exchange coupling between the nearest-neighbor
spins. In the Kitaev model, there exists a local conserved
quantity defined at each plaquette p composed of the sites

012404-8
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FIG. 4. (a) Finite-size clusters of the Kitaev model on the hon-
eycomb lattice used in the TPQ simulations. The boundaries exhibit
periodic boundary conditions. Red, blue, and green lines represent x,
y, and z bonds, respectively. (b) Plaquette with sites marked 1–6 is
shown for the corresponding operator Wp (see text).

labeled as 1, 2, . . . , 6 [see Fig. 4(b)], Wp = σ x
1 σ

y
2 σ z

3σ x
4 σ

y
5 σ z

6 .
It is known that due to the existence of the local conserved
quantities, the ground state is the quantum spin liquid, where
the spin degrees of freedom are fractionalized into itinerant
Majorana fermions and fluxes. This leads to two distinct char-
acteristic energy scales. In fact, we find in Fig. 5 two shoulder
structures appear in the internal energy around T ∼ 0.1J and
∼0.8J . This behavior is clearly found as a double-peak struc-
ture in the specific heat [2], and these peaks are located at
T ∗ ∼ 0.03J and T ∗∗ ∼ 1.5J . The characteristic temperature
T ∗ is relatively low due to this fractionalization phenomenon.

FIG. 5. Internal energy in the Kitaev model with N = 18, 24,
and 30. The inset shows the temperature as a function of k. The
results are obtained from the TPQ state generated from 100 and
25 samples of the initial random state for N = 18, 27, and N = 30,
respectively, and the error bars stand for the standard deviation of
the results. Circles represent the ground-state energies for the corre-
sponding system.

The inset of Fig. 5 shows that the temperature is a function of
k/N . We find that the curve of the temperatures is well scaled
by k/N , which is similar to that of the KH model. Therefore,
the TPQ state at the lower characteristic temperature T = T ∗
is obtained with k ∼ 30N when appropriate parameters are
given.
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