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Classicality, Markovianity, and local detailed balance from pure-state dynamics
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When describing the effective dynamics of an observable in a many-body system, the repeated randomness
assumption, which states that the system returns in a short time to a maximum entropy state, is a crucial
hypothesis to guarantee that the effective dynamics is classical and Markovian and obeys local detailed balance.
While the latter behavior is frequently observed in naturally occurring processes, the repeated randomness
assumption is in blatant contradiction to the microscopic reversibility of the system. Here we show that the
use of the repeated randomness assumption can be justified in the description of the effective dynamics of an
observable that is both slow and coarse, two properties we will define rigorously. Then our derivation will
invoke essentially only the eigenstate thermalization hypothesis and typicality arguments. While the assumption
of a slow observable is subtle, as it provides only a necessary but not sufficient condition, it also offers a unifying
perspective applicable to, e.g., open systems as well as collective observables of many-body systems. All our
ideas are numerically verified by studying density waves in spin chains.
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I. INTRODUCTION

The equal-a-priori-probability postulate and the related
maximum entropy principle are central axioms of statistical
mechanics. For instance, for an isolated system observed to
have an energy E these principles imply that the correct en-
semble to describe the situation is

�E /VE , (1)

where �E is a projector on an energy shell with energy E
(defined up to some small uncertainty �E ) and the normal-
ization VE = tr{�E } = exp[SB(E )] is the exponential of the
Boltzmann entropy SB(E ). The state (1) is the familiar mi-
crocanonical ensemble, which is the central starting point of
equilibrium statistical mechanics.

Moreover, the equal-a-priori-probability postulate and the
maximum entropy principle continue to be useful out of equi-
librium. For instance, consider two systems A and B in thermal
contact and with average energies 〈EA〉 and 〈EB〉. The maxi-
mum entropy principle then implies that the correct state to
describe this situation is

e−βAHA

ZA(βA)
⊗ e−βBHB

ZB(βB)
. (2)

Here the inverse temperature βA/B is chosen such that the
expectation value of the Hamiltonian HA/B equals 〈EA/B〉.
Initial states such as (2), or slight generalizations of it, are pre-
dominantly used throughout the literature on nonequilibrium
physics for both quantum and classical systems and inde-
pendent of the employed methods (master equations, Green’s
function techniques, scattering theory, etc.) [1–6].

Let us continue to consider the same setup but at a different
time. Due to the thermal contact, the systems will now have
energies 〈E ′

A/B〉 different from 〈EA/B〉 in general. The maxi-
mum entropy principle then predicts again

e−β ′
AHA

ZA(β ′
A)

⊗ e−β ′
BHB

ZB(β ′
B)

(3)

with suitably adapted β ′
A/B. But quite discomfortingly, the

states (2) and (3) have different von Neumann entropies in
general such that there cannot exist any Hamiltonian dynamics
mapping state (2) to state (3).

A way out of this dilemma is to use the equal-a-priori-
probability postulate or the maximum entropy principle only
once. However, the ensuing dynamics can then quickly be-
come very complex and intractable in practical applications.
On the other hand, it is known that the repeated use of these
principles gives rise to a classical stochastic process, which is
Markovian and obeys local detailed balance (precise defini-
tions of these notions and a derivation are presented below).
Indeed, such a description is a common starting point of many
disciplines such as stochastic thermodynamics [5–9], which is
well confirmed experimentally [10,11].

The main focus of the present paper is to provide a justifi-
cation from reversible microscopic dynamics of the repeated
use of the equal-a-priori-probability postulate or the maxi-
mum entropy principle, which has been called the repeated
randomness assumption by van Kampen [12]. In fact, it seems
that van Kampen has been particularly unsatisfied by it as he
somewhat laconically notes at the end of his book with respect
to the repeated randomness assumption that “[this] statement
[has] not been proved mathematically, but it is better to say
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something that is true although not proved, than to prove
something that is not true” (Ref. [12], p. 456).

Although the high complexity of the situation does not
allow us to cast our results into the form of mathematically
rigorous theorems, we give plausible physical arguments to-
gether with reasonable mathematical estimates that justify
the repeated randomness assumption for slow and coarse
observables. Thus, based solely on one common assumption
about the observable, we are able to explain the emergence of
three seemingly distinct and usually separately studied con-
cepts: classicality, Markovianity, and local detailed balance.
Remarkably, our derivation works for pure states and avoids
any ensemble averages by using the eigenstate thermalization
hypothesis (ETH) [13–16] and typicality arguments in the
form of Levy’s Lemma [17], thereby providing a detailed mi-
croscopic understanding of why and when maximum entropy
inference can be applied repeatedly.

A. Related literature

Our work overlaps with so many research directions that
giving an exhaustive literature overview at this place appears
impossible. Thus, we list only the literature that we found
most influential and most closely related to our work. We ask
for the forbearance of any colleagues who might think that
we have missed some important publication here; it is not
intentional.

First, we cannot take any credit for the idea to focus on
slow and coarse observables, which has been a central concept
of statistical mechanics since its inception [18]. In fact, the
present treatment is much inspired by an old paper from van
Kampen [19], which well summarizes the underlying physical
picture.

Second, our approach follows the philosophy of pure state
statistical mechanics, which is based on the idea that quan-
tum mechanics alone suffices to explain statistical mechanics
behavior. In fact, the use of the equal-a-priori-probability
postulate and the maximum entropy principle to compute
equilibrium expectation values of observables at a single time
has by now been well justified within that approach [20–26].

Quite naturally, research on pure state statistical mechan-
ics has started to focus on nonequilibrium phenomena. For
instance, it has been shown that typicality arguments re-
main useful even out of equilibrium (“dynamical typicality”
[27–29]) and can be used to derive master equations [30–33].
Moreover, random matrix theory has been used to predict the
time evolution of expectation values of observables [34–39]
and general results on the timescales of thermalization have
been found [40–46].

However, this research did not yet consider multitime
processes (e.g., temporal joint probabilities or correlation
functions), apart from two exceptions mentioned below. Also
the role of the slowness of the observable and its implica-
tions for the three properties of classicality, Markovianity and
local detailed balance have not been at the focus of these
previous works. Instead, these properties have been typically
investigated within a (repeated) ensemble average approach to
statistical mechanics.

First, we comment on the emergence of classicality,
which is commonly explained with decoherence [47–49].

It combines two ideas: first, all systems are essentially open
systems, and, second, open systems decohere, i.e., their den-
sity matrix becomes diagonal in a particular fixed basis
(“pointer basis”). We emphasize that it is not our intention to
question the correctness of the decoherence approach. While
there is fundamental criticism (see, e.g., Refs. [50–53]), our
results are not in contradiction with decoherence, which is
motivated by the central question: “Which is the preferred
measurement basis?” [54]. Instead, we consider a differ-
ent perspective and significantly extend the realm in which
quantum dynamics appears classical. In particular, from the
perspective of pure state statistical mechanics one would like
to derive classical behavior for a single wave function |ψ〉 and
realistic many-body systems. Yet, for any observable that does
not have a definite deterministic outcome when measured in
state |ψ〉, |ψ〉 must necessarily have coherences in the eigen-
basis of that observable. Global decoherence can therefore
not happen, as a mathematical fact of linear algebra, but still
one would expect that also pure states can behave classical in
an appropriate sense. Here, by extending previous numerical
studies [55,56], we argue that slow and coarse observables be-
have classical and estimate deviations from classical behavior
to be exponentially small in the system size. Our approach
hints at a possibly deep connection between pure state sta-
tistical mechanics, the ETH, and classical behavior, which
remains unrecognized within the conventional open quantum
systems paradigm, where the bath is typically modeled as
integrable and as staying approximately in a canonical ensem-
ble [57,58]. Our approach also provides physical substance to
recent abstract studies of multitime classicality [59–62], and
it might offer interesting insights for the consistent histories
approach to quantum mechanics [63–65] and quantum Dar-
winism [66,67], as recently explored by one of us [68].

Second, much recent research has been devoted to under-
standing non-Markovianity in quantum systems [69–72]. This
research mostly revolved around the question how to properly
define and quantify non-Markovianity, but surprisingly few
rigorous and general results are known about the question
which physical properties give rise to Markovianity. For in-
stance, it is known that open quantum systems are Markovian
in the weak coupling limit [73], which literally requires one
to scale the system-bath coupling to zero, among other ques-
tionable assumptions. Indeed, without that limiting procedure
it has been claimed that no physical system is Markovian
[74]. Somewhat reconciling these two results, recent research
has highlighted that typical processes are almost Markovian
[75,76], but with the caveat that “typical” is defined with
respect to an abstract mathematical measure, which is likely
not typical in reality. Moreover, we would like to point out that
an important aspect of (non-)Markovianity cannot be captured
when using ensemble averages instead of pure states. Indeed,
if the system dynamics is non-Markovian, this implies that
the system reacts very sensitively to different microstates of
the bath, or, conversely, if the system dynamics is insensitive
to the precise state of the bath, it must be Markovian. But by
using an initial ensemble average over a highly mixed canon-
ical ensemble, the influence from the different microstates
is washed out. To the best of our knowledge, only recently
has the question of (non-)Markovianity been studied for pure
states [75,76]. We believe, however, that the result that almost
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all open quantum systems are almost Markovian is too strong.
Based on our findings it seems that Markovianity is also cru-
cially related to the observable we are probing and cannot be
deduced from the unitary dynamics alone as in Refs. [75,76].

Third, the property of local detailed balance ensures ther-
modynamic consistency at each time step of the process, and it
is thus build into the framework of stochastic thermodynamics
[5–9]. For systems that equilibrate in the macroscopic sense,
it has been derived in its most general form by van Kampen
based on the repeated randomness assumption [19]. Since
the notion of local detailed balance, which is sometimes also
called “detailed balance” (without the attribute “local”) or
“microreversibility,” might be less familiar to some readers,
we explain it more thoroughly later.

We end this short literature survey with two remarks for
specialists in open quantum systems theory. First, the repeated
randomness assumption is commonly known as the Born ap-
proximation in this field. Second, our work is motivated by
a lack of any satisfactory explanation of the repeated ran-
domness assumption, but skeptical voices might claim that
Nakajima-Zwanzig projection operator techniques show that
the Born approximation is needed only once in the derivation
of the (quantum) master equation [57]. There are, however,
two subtle pitfalls. First, this statement is true only for the
exact Nakajima-Zwanzig master equation: once one applies
perturbation theory the failure of the Born approximation
at later times can give rise to additional correction terms
even to lowest order in the perturbation theory [77]. Second,
we are here interested in processes characterized by mul-
titime statistics in contrast to the single-time statistics that
are accessible with a master equation. Related recent work
has also investigated the multitime statistics for pure state
dynamics using long-time averages [78,79], which we do
not use here. From the perspective of open quantum system
theory, our results thus explain why and when the intuitive
Born approximation is justified even though the exact unitar-
ily time-evolved system-bath state no longer complies with
the Born approximation (for a related numerical study see
Ref. [80]). Equivalently, if one insists on applying the Born
approximation only at the initial time, our results microscopi-
cally justify the quantum regression theorem [71].

B. Outline

Section II starts by introducing an intuitive picture for our
setup while establishing notation along the way (Sec. II A),
gives a first explanation of “slow” observables (Sec. II B), and
briefly reviews the main tools we are using, namely, the ETH
and Levy’s Lemma (Sec. II C).

Sections III, IV, and V contain the core results of this paper
about classicality, Markovianity, and local detailed balance,
respectively. They start with a brief definition and discussion
of the respective notion together with their derivation based
on the repeated randomness assumption. Afterwards, we show
how each of these properties arises from pure state dynamics.

Section VI then presents numerical results for density
waves in a spin chain, which confirm our main ideas. Since
we have tested many features numerically, we decided to shift
some of them to Supplemental Material to keep the main
paper focused.

However, the numerical results also raise awareness about
various subtleties, some of which are discussed more gener-
ally in Sec. VII. In particular, we return to the subtle notion
of “slowness” and questions related to multiple observables
(Sec. VII A). Moreover, Sec. VII B discusses which properties
of the process are not fixed by our general considerations
(namely the timescales).

Finally, Sec. VIII presents conclusions. Furthermore, two
short technical proofs are relegated to the Appendixes.

II. PRELIMINARIES

A. Setup and intuitive picture

We consider a time-independent isolated quantum system
with Hamiltonian H = ∑

k Ek|k〉〈k| with ordered eigenen-
ergies Ek+1 � Ek and eigenvectors |k〉. Owing to the time
independence, we can and will restrict ourselves to some
microcanonical energy shell, which is small on a macroscopic
scale but large on a microscopic scale, i.e., the dimension D
of the corresponding microcanonical Hilbert space H obeys
D = O(10N ) with N the number of particles in the system.
For simplicity we assume energy to be the only conserved
quantity; other conserved quantities (such as particle number)
could be readily included in the description. Moreover, we set
h̄ ≡ 1 such that the time evolution of a pure state is given by
|ψ (t )〉 = ∑

k e−iEkt ck|k〉 with ck ∈ C satisfying
∑

k |ck|2 = 1.
We are interested in the evolution of an observable X =∑M
x=1 λx�x with eigenvalues λx and corresponding eigenpro-

jectors �x, which divide the Hilbert space H = ⊕
x Hx into

subspaces Hx. Moreover, we are interested only in coarse
observables, which means that the number M of different
projectors (or potential measurement results) is much smaller
than D. This assumption will be satisfied for any realistic
experiment with a many-body system. Equivalently, a coarse
observable is characterized by subspaces Hx whose dimen-
sion is typically very large: Vx ≡ dim Hx � 1. We will refer
to Vx as a volume in view of Boltzmann’s entropy concept
SB(x) ≡ ln Vx (kB ≡ 1 throughout), which plays an important
role later. We further call each x a macrostate, despite the fact
that it does not need to be macroscopically large in an intuitive
sense. For instance, x could label an energy eigenvalue of an
open quantum system, which is still a coarse observable in the
full system-bath space.

We write �x = ∑
α |xα〉〈xα|, where α sums over the

microstates |xα〉 spanning Hx. Decomposing the wave func-
tion in the eigenbasis of X gives |ψ (t )〉 = ∑

x,α cx,α (t )|xα〉
with cx,α (t ) = ∑

k e−iEkt ck〈xα|k〉. The normalization condi-
tion

∑
x,α |cx,α (t )|2 = 1 defines a sphere S2D−1 ⊂ CD ∼= R2D

of dimension 2D − 1 and radius 1, where the factor 2 arises
because cx,α (t ) has a real and imaginary part. Since a generic
many-body system is nonintegrable, the eigenenergies Ek are
incommensurate (apart from accidental degenericies) and the
phases e−iEkt vary erratically with k. Moreover, a typical wave
function, in particular one prepared out of equilibrium, has
many nonvanishing coefficients ck [81–83]. This implies that
the cx,α (t ) vary in a practically unpredictable way. Thus, we
like to picture the evolution of |ψ (t )〉 in the eigenbasis of X
as a random walk on the high-dimensional sphere S2D−1 as
illustrated in Fig. 1.
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FIG. 1. Sketch of S2D−1 with subspaces Hx labeled with their
volumes V1,V2, . . . (red lines). The state (here initialized at the north
pole) performs an effective random walk on the surface of the sphere
and, eventually, spends most time close to the equilibrium subspace,
which has the largest volume (here V4 = Veq).

Strictly speaking, this picture is incorrect. The evolution
is not truly random, and, since the coefficients ck are con-
stant and only the phases e−iEkt vary in time, the state can
only explore a D dimensional submanifold (a hypertorus) on
the sphere S2D−1. Unfortunately, our restriction of living in
a three-dimensional world does not allow us to sketch this
properly. However, what is important (and correct) for our
purposes is that the state explores a high-dimensional space
in a sufficiently unbiased and random fashion.

On the sphere S2D−1, we can picture Hx as lower di-
mensional subspaces S2Vx−1 defined by all states |ψx〉 =∑

α cx,α|xα〉 satisfying
∑

α |cx,α|2 = 1. These spaces are of
measure zero (with respect to S2D−1) and therefore indicated
as lines on the two-dimensional surface of the sphere in Fig. 1.
A state drawn at random will typically overlap with many
such volumes (which is again hard to sketch), i.e., it has
coherences between different macrostates. However, many
thermodynamic variables are characterized by having one
dominant subspace x with Veq ≡ Vx � Vy for all y �= x, which
can be identified with the equilibrium subspace (in Fig. 1 the
equator, having the longest line, corresponds to the subspace
with the largest volume) [84]. Most randomly drawn states
will lie very close to this equilibrium subspace.

The present analogy suggests that the evolution of a state
vector of a nonintegrable system can be approximately viewed
as a diffusion process on a high-dimensional subspace of
S2D−1. If we have taken into account all conserved quantities
and if X is the only relevant slowly varying observable (more
on this in Sec. VII A), then this diffusion process should be
isotropic, where the trajectory of the state vector does not
preferably select certain “narrow” regions of S2D−1 during
its evolution. Based on this intuition, it appears plausible
that the evolution of the probabilities px(t ) = 〈ψ (t )|X |ψ (t )〉
should be describable by a classical Markov process. It is
classical because it is unlikely that the enormous number of

tiny amplitudes cx,α (t ) interfere constructively and thus give
rise to a large detectable coherent effect, as we explain in
greater detail in Sec. III. It is Markovian because two slightly
different initial microstates behave approximately the same
from a coarse-grained point of view. Moreover, the isotropic
diffusion causes an initial nonequilibrium state, i.e., a state
confined to a low-entropy region of small volume, to evolve
towards larger volume regions in such a way that entropy con-
tinuously increases, which is the condition of local detailed
balance.

The goal of this paper is to make this intuition as rigorous
as possible by combining tools from the ETH and typicality
with plausible physical assumptions.

B. Slow observables

Slowness is a crucial ingredient not only in our derivation
but in many approaches to statistical mechanics, yet defin-
ing it precisely is not simple. Roughly speaking, we call an
observable slow if its expectation value 〈X 〉(τ ) evolves on a
characteristic timescale

1

δe
� τ � 1

�E
(4)

for initial nonequilibrium states. Here �E is the width of
the microcanonical energy window such that 1/�E corre-
sponds to the time the system needs to evolve between two
orthogonal microstates, which follows rigorously from the
quantum speed limit [85,86]. It is typically an extremely short
timescale, impossible to resolve in most mesoscopic or macro-
scopic experiments since �E ∼ √

N . On the other end of
the spectrum, 1/δe with δe ≈ �E/D ∼ 10−N the mean level
spacing is an extremely long timescale known as the Heisen-
berg time. It corresponds to the time needed for a quantum
system to explore the full available Hilbert space. Thus, a
slow observable evolves slowly compared to the microscopic
motion of the system, but fast enough to be recognizable in an
experiment as a nonequilibrium dynamics.

Thinking further about it, we see that we can mathemat-
ically characterize a slow observable X as being a narrowly
banded matrix in an ordered energy eigenbasis. To see this,
note that

〈X 〉(τ ) =
∑
k,


eiωk
τ c∗
k c
Xk
 (5)

with the transition frequency ωk
 = Ek − E
 and the matrix
elements Xk
 = 〈k|X |
〉. If we want to ensure that this ex-
pression varies on the timescale specified in Eq. (4) for all
nonequilibrium initial states (within a microcanonical energy
window), we need to demand that Xk
 differs significantly
from zero only for frequencies ωkl ∈ [−δE , δE ] with the
width δE satisfying δe � δE � �E , i.e., X is narrowly
banded.

Another perspective on slowness is offered by Heisen-
berg’s equation of motion by defining the evolution timescale
of X as τ ≡ ‖X‖/|d〈X 〉/dt | with the operator norm ‖ · ‖.
Then Heisenberg’s equation implies

τ = ‖X‖
|〈[H, X ]〉| � ‖X‖

‖[H, X ]‖ , (6)
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where we used |tr{Aρ}| � ‖A‖ for any density matrix ρ. Now,
if we demand

‖[H, X ]‖ � ‖H‖‖X‖, (7)

one finds τ � 1/‖H‖, which reduces to the right inequality in
Eq. (4) if we define the (arbitrary) energy of the microcanon-
ical energy shell to be zero. In fact, we show in Appendix A
that a narrowly banded matrix implies Eq. (7). Unfortunately,
we were not able to show that Eq. (7) implies a narrowly
banded X , albeit we also found no counterexample. It seems
likely that counterexamples require precisely tuned observ-
ables and states. For most practical purposes it thus seems
reasonable to assume that the condition of Eq. (7) is equivalent
to a narrowly banded X .

Apart from the abstract mathematical property of slowness,
finding precise yet generic physical conditions for the exis-
tence of slow observables X is not trivial. However, there are
a few important cornerstones known that we list here. First,
an obvious class is given by problems that can be cast into the
form

H = H0 + εV, [H0, X ] = 0, [V, X ] �= 0, (8)

and where ε � 1 is a small perturbative parameter. In fact,
this class of problems is omnipresent in the literature. For
instance, for weakly coupled open quantum systems one has
H0 = HS + HB with HS (HB) the system (bath) Hamiltonian
and V their interaction. Then we see that the energy of a
weakly coupled open quantum system X = HS is a slow ob-
servable.

More generally, it can be shown that local observables of
local Hamiltonians are described by banded matrices in the
energy eigenbasis [42,87,88]. In particular, Refs. [42,88] have
shown a bound of the form

|Xk
| � ‖X‖ exp(−a[|ωk
| − b ln(c|ωk
|)]) (9)

for suitable constants a, b and c describing local properties
of H and X . While it is possible that these constants behave
unfavorably in a particular application (resulting in a matrix
that is not narrowly banded), they are importantly independent
of the system size.

Similarly, the ETH also conjectures that thermodynami-
cally relevant observables are banded matrices characterized
by a smooth envelope function F (ωk
) that decays for large
ωk
 (see below). However, generic results about the decay of
this function are not known to the best of our knowledge.

Finally, another class of slow observables is given by exten-
sive sums of local observables, which we like to illustrate with
an example. Consider the 1D Ising model H = ∑L

i=1 σ i
z +∑L

i=1 σ i
xσ

i+1
x of length L with periodic boundary conditions

and σ i
x,y,z the standard Pauli matrices of spin i (we ignore any

prefactors because they do not change our point). Moreover,
let the observable be the total magnetization X = ∑L

i=1 σ i
z .

Then one finds that all operator norms in Eq. (7) scale with
L and Eq. (7) reduces to L � L2, which is clearly satisfied
for large L. This example illustrates the important point that
observables can be slow although it is not possible to identify
a perturbative parameter ε in the Hamiltonian, as was possible
for the class of observables characterized by Eq. (8).

While we have focused here on presenting generic prop-
erties of slowness, they do not guarantee an isotropic or
unbiased diffusion in Hilbert space as described in our intu-
itive picture in Sec. II A. Understanding this is much more
subtle and closely related to the complicated problem of
ergodicity. In our case, ergodicity (exploration of the full mi-
crocanonical energy shell during the dynamics) cannot happen
for reasons explained in Sec. II A. However, what matters is
a sufficiently smooth observable such that even comparably
short evolution times give representative (“typical”) averages
[89]. It is a known and hard problem to identify these observ-
ables rigorously, but we return to this question it greater detail
in Sec. VII A in the context of multiple slow observables after
having developed an understanding for a single observable.

C. ETH and Levy’s Lemma

In our derivation we make use of two tools, which have
become widely used by now. First, the ETH conjectures that
matrix elements in the energy eigenbasis of thermodynami-
cally relevant observables X can be written as

Xk
 = δk
〈X 〉mic + 1√
D

F (ωk
)Rk
. (10)

Here 〈X 〉mic is the expectation value of X with respect to
the microcanonical ensemble (1), F (ω) is a smooth function
of order one for observables with a second central moment
(or variance in the microcanonical ensemble) of order one,
tr{X 2}/D − tr{X }2/D2 = O(1), and Rk
 are pseudorandom
numbers of zero mean and unit variance. How “random” the
Rk
 behave is under current investigation [90–96]. Finally,
note that the ETH is a hypothesis, but it is considered to
hold for a wide class of many-body systems in nature; see
Refs. [21,25,26] and references therein for more information.

Our second tool is Levy’s Lemma. To state it precisely, let
f : S2D−1 → R be any function defined on the hypersphere
of dimension 2D − 1. Moreover, let η be the Lipschitz con-
stant of f with respect to the Euclidean space R2D, which
is the natural embedding of S2D−1. If f is differentiable,
then η = sup |∇ f |. Moreover, let 〈 f 〉 = μ[ f (ψ )] denote the
Haar random average of f over the hypersphere S2D−1. Note
that the Haar measure is the only measure invariant under
all unitary transformations and therefore the natural unbiased
measure on the sphere. Then Levy’s Lemma says that

μ[| f − 〈 f 〉| > ε] � 4 exp

(
− ε22D

9π3η2

)
. (11)

One easily notices that even for small ε the right-hand side
quickly tends to zero for a sufficiently large dimension D.
Thus, colloquially speaking, Levy’s Lemma says that every
“nice” function f (ψ ) on a high-dimensional hypersphere is
essentially constant, i.e., it varies very little with varying ψ .
Levy’s Lemma gives typicality arguments a firm mathematical
basis, and it has been used to show that thermal equilibrium
states are ubiquituous with respect to the Haar measure [17],
among other applications [75,76,82,97]. In general, it is a con-
sequence of a phenomenon known as measure concentration
[98,99].
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III. CLASSICALITY

How to explain the emergence of classical behavior
from an underlying quantum description is an important
foundational and, nowadays, also a practical very relevant
question. Clearly, the quantum-to-classical boundary is not
one-dimensional and there are many ways to define it. For
instance, one might use Bell inequalities to find out whether
a bipartite quantum state has correlations, which cannot be
explained classically. This certainly legitimate characteriza-
tion, however, probes only static quantum features of a state.
Here, instead, we are interested in a process and the question
whether the dynamics of X reveals quantum features. Our
characterization is therefore based on the following ques-
tion (see also Refs. [55,56,59–62,68]): Can an experimenter
distinguish the measurement statistics of X from a classical
stochastic process?

To define this rigorously, we denote the probability to ob-
tain outcomes xn, . . . , x1 at times tn > . . . > t1 as

p(xn, . . . , x1) = tr{�xnUn . . .U2�x1U1ρ(t0)U †
1 �x1U

†
2 · · ·U †

n },
(12)

where ρ(t0) is some initial state and Uk = e−iH (tk−tk−1 ) the
unitary time evolution operator from tk−1 to tk . Note that
the probabilities (12) can be experimentally reconstructed
by repeated projective measurements of the (otherwise) iso-
lated quantum system and statistical sampling. Next, suppose
that the experimenter decides not to measure the system at
some time t
 with 
 < n. We denote the probability to obtain
apart from x
 the same outcomes xn, . . . , x
+1, x
−1, . . . , x1

by p(xn, . . . ,��x
, . . . , x1), which is obtained from Eq. (12) by
dropping the two projectors �x


. Now, the defining property
of a classical stochastic process is [100]

∑
x


p(xn, . . . , x
, . . . , x1) = p(xn, . . . ,��x
, . . . , x1), (13)

which is also known as the Kolmogorov consistency condition
or “probability sum rule.” In other words, a classical stochastic
process is characterized by the property that not measuring
is equivalent to averaging over the respective measurement
outcomes. Clearly, for a quantum process Eq. (13) is in general
not satisfied because quantum measurements are disturbing
and the classical example of the double slit experiment in
Fig. 2 is used to illustrate the breaking of the Kolmogorov
consistency condition in the quantum world.

We emphasize again that Eq. (13) is not the only way
to characterize classicality, but it has a number of desirable
features. Among them are, for instance, that the Kolmogorov
consistency condition implies the validity of all Leggett-Garg
inequalities [101]. It is also implied by the “consistency con-
dition” imposed in the histories interpretation of quantum
mechanics [63–65], and it guarantees that we can apply clas-
sical reasoning to understand the physics even in absence of
measurements. Importantly, however, testing the validity of
Eq. (13) requires only the ability to measure X and is indepen-
dent of the interpretation of quantum mechanics. Finally, note
that a quantum system can behave classically with respect to
one observable X , but not with respect to another observable

FIG. 2. A coherent source of particles ρ0 is sent to a detection
screen through a double slit. (a) The particle’s location at the double
slit (x1) and at the detection screen (x2) is measured, allowing one
to speak about a definite trajectory (indicated by dashed lines) but
causing a loss of wave properties. (b) Only the position at the detec-
tion screen is measured, resulting in an interference pattern. Clearly,
Eq. (13) is broken.

Y . An extended discussion, in particular in relation to other
approaches, is provided in Ref. [68].

We proceed by confirming that the repeated randomness
assumption implies classical measurement statistics. To this
end note that all that the experimenter knows about the state
at time t
 is some probability distribution p(x
|x
−1, . . . , x1)
conditioned on earlier results x
−1, . . . , x1. The state which
maximizes the entropy given that information is

ρmax ent(t
) ≡
∑

x


p(x
|x
−1, . . . , x1)
�x


Vx


. (14)

Note that we would have obtained the same state by apply-
ing the equal-a-priori-probability postulate, which associates
with every subspace x the state �x/Vx independent of the
probability distribution. For our setup the maximum entropy
principle and the equal-a-priori-probability postulate thus
turn out to be the same. In general, this is not the case,
although both principles still express the same basic idea:
maximize ignorance given the experimentally available infor-
mation.

Next, notice that the state (14) is block diagonal with re-
spect to the �x basis. This implies in particular that∑

x

�xρmax ent(t
)�x = ρmax ent(t
), (15)
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where the operation on the left-hand side is a “dephasing”
operation (with respect to X ). One easily confirms that the
validity of Eq. (15) implies the validity of Eq. (13).

It might be tempting to explain the block diagonal form of
the state (14) by using decoherence. However, we are dealing
with an isolated and not an open system here. Assuming the
validity of a block diagonal state for all times either implies
that the probabilities p(xt ) = tr{�xρ(t )} do not change in time
(i.e., X is a conserved quantity) or that the von Neumann en-
tropy of the state is not conserved. To illustrate this, consider
an initially pure state ρ(t0) = |ψ0〉〈ψ0|. If there are nontrivial
dynamics with some probability flux, say, from x to y, then
this implies that �xρ(t )�y �= 0 for x �= y for at least some
times t , i.e., the state cannot be block diagonal. The main
contribution of this section is to give a generic explanation
for the emergence of classical measurement statistics obeying
Eq. (13) despite the presence of many coherences.

In the following, we consider three arbitrary times t2 >

t1 > t0 and a nonequilibrium initial state ρ(t0). The probability
to measure x2 and x1 is

p(x2, x1) = tr{�x2U2�x1U1ρ(t0)U †
1 �x1U

†
2 } (16)

and the probability to measure only x2 is p(x2,��x1) =
tr{�x2U2U1ρ(t0)U †

1 U †
2 }. If the process is classical, the quan-

tum contribution

Q ≡ p(x2,��x1) −
∑

x1

p(x2, x1) ∈ [−1,+1] (17)

should be zero. Below we estimate that Q ∼ D−α with α >

0, i.e., Q is exponentially small in the particle number and
thus essentially zero for all reasonable experiments involving
many-body systems. Note, however, that the precise value of
the exponent α depends on the situation and is not universal.

We emphasize that smallness of Q in Eq. (17) does not
imply a similarly small deviation from equality in Eq. (13)
in full generality, rather the extension to an arbitrary number
n of time steps requires a separate, technically demanding
argument. We recall that also the decoherence approach shows
only decoherence of the open system density matrix, which is
not sufficient to compute n-time correlation functions without
additional assumptions.

The following derivation is the technically most involved
part of the present paper. This comes from the fact that we
try to derive a statement valid for all slow and coarse observ-
ables satisfying the ETH, even out of equilibrium. Since the
ETH is assumed to hold for a wide class of realistic many-
body systems in nature, our statement is widely applicable.
However, recalling that nonequilibrium many-body dynamics
result from a complex interplay between the initial state, the
observable and the Hamiltonian (or time-evolution operator),
and recalling that there is no systematic way (e.g., in form
of a perturbation theory) to take their intricate correlations
into account, it becomes evident that we must restrict our
derivation to estimates and approximations. Although there
is no justification from first principles known for them, we
believe them to be plausible.

Therefore, the derivation below cannot be claimed to have
the status of a rigorous mathematical theorem. Counterex-
amples do exist, and we also partially address them in this
article. Nevertheless, the derivation below adds considerable

evidence that counterexamples are not generic. Given that,
to the best of our knowledge, a microscopic derivation of
the Kolmogorov consistency condition has never been pre-
sented for an isolated system, we find the wide scope of the
derivation below certainly remarkable and, at the end, also
intuitively correct: since human senses are coarse in space
and time, this explains the emergence of a classical world for
many observables even though the true quantum state might
not be diagonal (decohered) in all the eigenbases of these
observables.

A. Microscopic derivation

How can it be that a state containing a lot of coherences
gives rise to classical measurement statistics? Roughly speak-
ing, the idea is that the contribution of the coherences to
the probabilities appearing in Eq. (13) is given by a sum of
many very small and randomly oscillating terms such that
the chance that all coherences for a coarse observable of a
nonintegrable many-body system align up in phase becomes
very small. Thus, the derivation below is essentially of sta-
tistical nature, similar to the derivation of the second law.
From that perspective it is not surprising that we have to
content ourselves with some rough but reasonable estimates
in general (more specific models might allow, of course, for
more specific conclusions; see also Ref. [68]). Similar to the
second law, for each observable X one can find precisely tuned
states and times for which classicality is violated, yet these
situations are nongeneric.

1. Step 1: Experimentally realistic initial state dependence

We begin with considerations about the initial state ρ(t0).
In general, the farther away the state is from equilibrium the
stronger it is correlated with the matrix elements of X . On the
other hand, since X is a coarse observable, knowing the prob-
abilities p(x0) = tr{�x0ρ(t0)} does not completely determine
ρ(t0), but still leaves room for some freedom. Finding the right
balance between this freedom and the required correlations is
what makes the problem delicate. Here we solve this problem
by thinking experimentally and by explicitly modeling the
state preparation procedure. To this end, let ψ0 = |ψ0〉〈ψ0|
be a pure state before the preparation. Then any state prepa-
ration can be modeled by an instrument {Ar} [6,57,72,102].
Here each Ar is a completely positive map labeled by some
(abstract) measurement outcome r and A ≡ ∑

r Ar is a com-
pletely positive and trace-preserving map. This means that the
state preparation given outcome r can be written as

ψ0 �→ ρ(t0) = Arψ0 =
g∑

α=1

Kα (r)ψ0K†
α (r) (18)

with operators Kα (r) satisfying
∑g

α=1 K†
α (r)Kα (r) � I , where

I denotes the identity in H, and
∑

r

∑g
α=1 K†

α (r)Kα (r) = I .
The quantum term (17) conditioned on this preparation reads
explicitly

Qr (ψ0) =
∑

x1 �=x′
1

tr{�x2U2�x1U1(Arψ0)U †
1 �x′

1
U †

2 }. (19)

So far, there has been no assumption.
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To make progress, we now assume that the state ψ0 prior to
the preparation can be randomly chosen, i.e., it is distributed
with respect to the Haar measure μ. The philosophy behind
this choice is that the experimenter starts the experiment at
time t0 and any information about the state prior to t0 is
irrelevant for the description, i.e., any possible nonequilib-
rium source is “switched on” by the preparation. Then, since
〈ψ0〉 ≡ μ(ψ0) = I/D, we find on average

〈Qr〉 = 1

D

∑
x1 �=x′

1

g∑
α=1

tr
{
�x2U2�x1U1Kα (r)K†

α (r)U †
1 �x′

1
U †

2

}
.

(20)

Next, Levy’s Lemma implies that

μ
(|Qr (ψ0) − 〈Qr〉| > ε

)
� 4 exp

(
− 2ε2D

9π3η2

)
. (21)

To find the Lipschitz constant η of Q, we write

Qr (ψ0) =
∑

x1

g∑
α=1

〈ψ0|K†
α (r)U †

1 (1 − �x1 )U †
2 �x2U2�x1U1

× Kα (r)|ψ0〉 (22)

and use the following five facts. First, the Lipschitz constant
of a sum of Lipschitz continuous functions fi with Lipschitz
constants ηi is bounded by

∑
i ηi. Second, the Lipschitz con-

stant of 〈ψ |A|ψ〉 is bounded by 2‖A‖ for any operator A [103].
Third, ‖AB‖ � ‖A‖‖B‖ for all operators A and B. Fourth, by
the right polar decomposition theorem, we can write Kα (r) =
Vα (r)

√
Pα (r) for some unitary Vα (r) and a positive operator

Pα (r) = K†
α (r)Kα (r) � I . Fifth, ‖U‖ = 1 for any unitary U ,

‖�‖ = 1 for any projector � and ‖Pα (r)‖ � 1. Altogether,
we then find η � 2Mg.

Thus, Levy’s Lemma shows that 〈Qr〉 ≈ Qr (ψ0) for the
overwhelming majority of ψ0 if

D � 18π3M2g2

ε2
. (23)

This is satisfied for a many-body system and a reasonable
ε provided that the observable is coarse such that M � D.
Consequently, in the following we focus on showing that
〈Q〉 is small, which implies that Q(ψ0) is also small for the
overwhelming majority of ψ0. We remark that this result
establishes already classicality at equilibrium for any coarse
observable (independent of its slowness) because at equilib-
rium there is no state preparation, i.e., A = I with I the
identity map, such that 〈Q〉 = 0.

We continue by specifying A further, on which we did not
put any restrictions so far. This time we use the left polar de-
composition theorem to write Kα (r) = √

P′
α (r)Vα (r) for some

unitary Vα (r) and a positive operator P′
α (r) = Kα (r)K†

α (r),
which is in general different from the Pα (r) appearing above.
This yields

〈Qr〉 = 1

D

∑
x1 �=x′

1

g∑
α=1

tr{�x2U2�x1U1P′
α (r)U †

1 �x′
1
U †

2 }. (24)

Of course, we want that the state preparation Ar is related to
the observable X . It therefore appears reasonable to demand

that P′
α (r) is functionally dependent on X such that we can

write (by Taylor expansion) P′
α (r) = ∑

x p′
α,x,r�x, where the

numbers p′
α,x,r are positive. The philosophy behind this choice

is related to the idea that the experimenter has no precise
control of the microstate: they are “only” allowed to perform
unitaries, measurements of the observable X , and postselec-
tion. Indeed, recalling the second-law like analogy, it is clear
that “violations” of the second law can be easily generated if
one assumes the ability to control the velocity of every gas
molecule in the air surrounding us. Similarly, violations of
classicality can be generated by a microscopic fine-tuning of
the coherences in the initial state.

Taken together, we thus arrive at the expression

〈Qr〉 =
∑

x0

g∑
α=1

p′
α,x0,r

Vx0

D

×
∑

x1 �=x′
1

tr

{
�x2U2�x1U1

�x0

Vx0

U †
1 �x′

1
U †

2

}
. (25)

Now, note that the first line equals the probability P(r) to
prepare the state Arψ0 on average:

P(r) ≡
∑

x0

g∑
α=1

p′
α,x0,r

Vx0

D
= tr{Ar〈ψ0〉}. (26)

This probability could be small on its own and should not in-
fluence the estimate of 〈Qr〉, i.e., we are interested in showing
that 〈Qr〉/P(r) is small for all r, for which it is sufficient to
show that the term in the second line of Eq. (25) is small,
which we denote by

q(x2, x0) ≡
∑

x1 �=x′
1

tr

{
�x2U2�x1U1

�x0

Vx0

U †
1 �x′

1
U †

2

}
. (27)

Thus, as a first summary, we have reduced the task of proving
the smallness of Q, which is a three-point correlator in terms
of the projectors �x with unknown correlations to the initial
state ρ(t0), to proving the smallness of q(x2, x0), which is a
four-point correlator without any unknown initial state depen-
dence.

2. Step 2: ETH for realistic projectors

Our goal is to use an ETH ansatz of the form (10) for the
projectors �x, i.e.,

(�x )k
 = δk


Vx

D
+ Fx(ω)Rk
(x)√

D
(28)

for some smooth function Fx(ω) and pseudorandom coeffi-
cients Rk
(x) of zero mean and unit variance. For an arbitrary
observable X with arbitrary projectors this ansatz appears
questionable, but our observable X is coarse and the sum of
a few projectors only. An ETH ansatz of the form (28) then
likely holds as it is not possible to generate a pseudorandom
number by adding up a few nonrandom numbers. This point
can be strengthened by using random matrix theory, and the
validity of the ETH for coarse projectors is also a central point
of Ref. [104].

However, the ETH ansatz holds for operators whose second
central moment is of order one, but since �x is a projector, this
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is not necessarily guaranteed. To fix this, we need to rescale
Fx(ω) to ensure tr{�2

x} = tr{�x} = Vx as required from a pro-
jector. To do so, we assume that Fx(ω) = Fx�(|ω| − √

MδE )
can be modeled by a rescaled Heaviside step function. In-
deed, in Appendix B we show that if X has bandwidth δE �
�E (due to its slowness), then �x has roughly a bandwidth√

MδE � �E (recall that M is number of projectors or mea-
surement results), which justifies the truncation of Fx(ω) for
large enough ω. Moreover, assuming a constant Fx for |ω| �√

MδE is not a strong assumption for two reasons. First, it
becomes clear from our result below that it is not crucial that
the Rk
(x) have exactly unit variance, i.e., a mild variation of
Fx(ω) with ω can be conveniently absorbed in the pseudoran-
dom coefficients. Second, existing numerical studies about the
off-diagonal elements in the ETH ansatz indeed indicate that
Fx(ω) is often roughly constant up to some cutoff frequency,
where it starts to fall off quickly [87,91,93,94,105–109].
Indeed, a specifically structured profile of the off-diagonal
elements can cause anomalous behavior [110] to which we
return in Sec. VII A.

After these preliminary agreements we proceed to find

tr
{
�2

x

} =
∑
k,


〈k|�x|
〉〈
|�x|k〉

=
∑

k

V 2
x

D2
+ 2

∑
k

Vx

D

F 2
x Rkk√

D
+

∑
k≈


Fx|Rk
(x)|2
D

,

(29)

where we used the bandedness of �x, which allows us to
restrict the sum over all k and 
 to a sum over all k and all 


close to k, which we indicate by writing
∑

k≈
. This sum runs
over Dd many coefficients (instead of D2), where d denotes
the number of states defined by the band width

√
MδE of �x,

i.e., (�x )k
 = 0 for all |k − 
| � d .
Next, to evaluate the sum over k we use an estimate that we

will also repeatedly use below. Recall that the Rk
(x) are pseu-
dorandom numbers of zero mean and unit variance. Summing
over them can therefore be pictured as a random walk in the
complex plane with (average) unit step size and no preferred
direction. Clearly, on average such a random walk remains at
the origin of the complex plane, but we are here interested in
estimating the spread of the distribution to characterize typical
fluctuations. Since it is known that the standard deviation of a
random walk with unit step size equals the square root of the
number of steps, we can set

∑
k Rkk (x) ≈ √

Dr with r some
random number of zero mean and unit variance. Moreover,
replacing |Rk
(x)|2 ≈ 1, we obtain

tr
{
�2

x

} = V 2
x

D
+ 2r

VxFx

D
+ F 2

x d, (30)

which must equal tr{�x} = Vx. Thus, we find the condition

Fx ≈
√

Vx

d

√
1 − Vx

D
− rVx

Dd
, (31)

where we disregarded a term proportional to 1/D2 in the
square root.

To avoid a tangle of case studies below, we are interested in
a worst case scenario for Fx. Typically, Vx < D will scale with
D, but depending on the observable the scaling for different x

can be very different. Note, however, that always multiple Fx

for different x enters Eq. (27). In a scenario where M is small,
all Fx can be huge if we look at an observable characterized
by equal volumes for each x: Vx = D/M. Inserting this we find
up to negligible corrections

Fx ≈
√

D

Md
. (32)

In the following, we consider this equal-volume case only,
which we have found to provide the worst case scenario,
but keeping track of different Fx for a more refined analysis
poses no conceptual challenges. Moreover, to save space in
the notation, we write R0

k
 ≡ Rk
(x0), etc.

3. Step 3: Energy level shifts

As a matter of fact, q(x2, x0) will contain exponential
phases of the form eiEkt . The precise value of them is not
known (because Ek is not known and also because we are
interested in an estimate valid for all times), and in addition
they can be correlated with the pseudorandom coefficients
Rk
(x). To make our live simpler we adapt the following line
of reasoning [37–39].

We first recall a central result of quantum chaos theory
[21,111,112], namely, that the spectrum of a generic non-
integrable many-body system looks immensely dense with
a mean level spacing δe and approximately statistically in-
dependent level spacings Ek+1 − Ek with variance δe2 (note
that we assume the eigenenergies {Ek} to be ordered). Thus,
we set Ek ≡ kδe + ck with ck a random correction term,
which is very small (of the order of δe), and approximate
in all time-evolution operators exp(iEkt ) ≈ exp(ikδet ). This
appears justified for all times t � 1/δe, where 1/δe is the im-
mensely long Heisenberg time mentioned already in Sec. II B,
which in particular is much longer than the thermalization
time.

4. Step 4: Estimation of q

We can finally turn to the evaluation of q(x2, x0) from
Eq. (27). To make our lives as easy as possible, it is use-
ful to note some general properties of it. First, q(x2, x0) = 0
for either t1 → 0 or t2 → 0, which is a consequence of the
quantum Zeno effect. Second, we confirm

∑
x2

q(x2, x0) = 0,
a property which has its origin in the normalization of the
probabilities p(x2, x1) and p(x2), and we will use it to assume
without loss of generality

x0 �= x2. (33)

Next, we express q(x2, x0) in the energy eigenbasis

q(x2, x0) = 1

Vx0

∑
x1 �=x′

1

∑
k,
,m,n

e−iωk
t2 e−iωmnt1

× (
�x2

)

k

(
�x1

)
km

(
�x0

)
mn

(
�x′

1

)
n


(34)

and use the ETH ansatz from Eq. (28) with Fx as in Eq. (32).
Since the ETH ansatz (28) contains two terms and there are
four projectors, q(x2, x0) can be split into eight terms. How-
ever, if we set (�x2 )
k = δk
Vx2/D or (�x0 )mn = δmnVx0/D, it
follows that q(x2, x0) = 0 because x1 �= x′

1. We are thus left
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with estimating

q(x2, x0) = 1

Dd

∑
x1 �=x′

1

∑
k≈
≈m≈n

e−iωk
t2 e−iωmnt1

(35)
× R2


k

(
�x1

)
kmR0

mn

(
�x′

1

)
n


,

where
∑

k≈
≈m≈n denotes a sum over all quadruples
(k, 
, m, n), where each index pair is at most a distance d away
from each other. We split q(x2, x0) = q1 + q2 + q3 + q4 into
four terms according to the prescription

q1:
(
�x1

)
km

→ δkm

M
,

(
�x′

1

)
n


→ δn


M
, (36)

q2:
(
�x1

)
km → R1

km√
Md

,
(
�x′

1

)
n


→ δn


M
, (37)

q3:
(
�x1

)
km → δkm

M
,

(
�x′

1

)
n


→ R1′
n
√

Md
, (38)

q4:
(
�x1

)
km

→ R1
km√
Md

,
(
�x′

1

)
n


→ R1′
n
√

Md
, (39)

and estimate them separately in the following.
We start with q1 using the slight shift in the energy levels

as explained in step 3 above:

q1 = 1

DM2d

∑
x1 �=x′

1

∑
k≈


e−i(k−
)δe(t2+t1 )R2

kR0

k
. (40)

Since the terms no longer depend on x1 and x′
1 we set∑

x1 �=x′
1
= M(M − 1) ≈ M2. Moreover, we see that the time-

dependent phase depends only on the difference � ≡ k − 
 in
the indices. Thus,

q1 = 1

Dd

∑
�

e−i�δe(t2+t1 )
∑

k

R2
k−�,kR0

k,k−�, (41)

where the sum over � is restricted to integers |�| � d . In
complete analogy with the random walk argument already
made above we approximate

q1 ≈ 1√
Dd

∑
�

e−i�δe(t2+t1 )r(�), (42)

where r(�) is some pseudorandom number of zero mean and
unit variance depending on �. Since we have already used an
assumption for the time-dependent phases in Step 3, we like
to avoid further assumptions here and assume the worst case
scenario where e−i�δe(t2+t1 ) and r(�) are perfectly correlated
(which is clearly not realistic, but it can only weaken our final
result). We thus assume that the sum over � scales like d
(instead of

√
d as expected from a random walk argument)

and finally find

q1 ≈ 1√
D

. (43)

We continue with q2. Since the terms do not depend on x′
1,

we set
∑

x1 �=x′
1
≈ M

∑
x1

and obtain

q2 ≈ 1

DM1/2d3/2

∑
x1

∑
�,�′

e−i�δet2 e−i�′δet1

×
∑




R2

,
+�R1


+�,
+�′R0

+�′,
. (44)

The last line is again estimated as
√

Dr(�,�′, x1) with
some pseudorandom number r(�,�′, x1) of zero mean and
unit variance. Assuming again a worst case scenario where
this number is perfectly correlated with the time-dependent
phases, we get the scaling

q2 ≈ 1

DM1/2d3/2
Md2

√
D =

√
Md

D
. (45)

Next, we observe that the term q3 is structurally identical
to q2 and gives rise to the same scaling.

Finally, we consider q4:

q4 ≈ 1

DMd2

∑
x1 �=x′

1

∑
�,�′

e−i�δet2 e−i�′δet1

×
∑

≈n

R2

,
+�R1


+�,n+�′R0
n+�′,nR1′

n,
. (46)

Using the same estimates as above and assuming again the
worst case scenario for the sums over � and �′, we arrive at

q4 ≈ 1

DMd2
M2d2

√
Dd = M

√
d

D
. (47)

5. Summary and discussion

The estimates we got for all terms scales with the Hilbert
space dimension as

√
d/D at worst, i.e., it is given by the

square root of the relative bandwidth of the projector of a
slow and coarse observable relative to the “width” of the
total Hilbert space. Since d scales like Dβ with β ∈ (0, 1),
we obtain the scaling D(β−1)/2 ≡ D−α = O(e−αN ) for some
α > 0. Thus, unless β is extremely close to one, which will
not happen for a coarse and slow observable, the quantum
contribution to the measurement statistics becomes exponen-
tially suppressed in the particle number N . Note that it is not
possible to provide a universal exponent α as it depends on
the observable X and, as we will confirm numerically, also
on the particular initial state. Clearly, given the complexity of
nonequilibrium many-body dynamics, it would be suspicious
if we had found a universally valid exponent α (albeit it is an
intriguing question whether lower and upper bounds exist).

It is also important to summarize the specific assumptions
we made along the way (apart from coarseness, slowness,
and the ETH). First, we assumed a realistic state preparation
procedure, where the experimenter has no fine-grained control
over the microstate. Second, we assumed that the ETH holds
for projectors and that the envelope function Fx(ω) has no
specifically tuned pattern. Third, we shifted the energy levels
to be multiples of the mean level spacing δe. We believe that
these three assumptions are very reasonable for a slow and
coarse observable and a nonintegrable many-body system. A
fourth assumption we added was the random walk argument
to estimate sums over products of the pseudorandom coef-
ficients Rk
. We must be self-critical here as we remarked
in Sec. II C that these coefficients are not purely random;
see Refs. [90–96] for discussions. Since the products of the
pseudorandom coefficients above always contained projectors
from different macrostates (since x1 �= x′

1 and x0 �= x2), we
are not aware of any way how to treat them explicitly. In
addition, we tried to compensate for deviations from pure
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randomness by assuming a worst case scenario (perfect corre-
lations) between the time-dependent phases and the remaining
pseudorandom numbers. This scenario certainly is unneces-
sarily pessimistic and should alleviate the error introduced in
our estimates involving Rk
. Moreover, in the meantime an
approach based on random matrix theory has also found that
quantum contributions to the measurement statistics should be
small in general [68]. Finally, the numerical results below and
of Refs. [55,56] further support our findings.

To conclude this section, we comment briefly on the gener-
alization of our result to an arbitrary number n of times. This
requires the computation of higher-order correlation func-
tions, and a more elaborate treatment compared to the present
treatment then becomes necessary. Indeed, in a different and
more restrictive setting general statements about n-time cor-
relation functions have been found already [75,76,78,79].
Extrapolating from these results, it seems likely that classi-
cality continuous to hold as long as n � N .

IV. MARKOVIANITY

Defining Markovianity in the quantum regime is subtle
and has been the focus of much debate [69–72]. Luckily,
we showed in the previous section that the dynamics can be
modeled by a classical stochastic process. Thus, we can use
the conventional definition, which says that for all k and all
xk, . . . , x1,

p(xk|xk−1, . . . , x1) = p(xk|xk−1), (48)

where p(a|b) ≡ p(a, b)/p(b) denotes a conditional probabil-
ity as usual. In words, a Markov process is characterized by
the fact that knowledge of the system state at any given time
is sufficient to predict its future.

Again, we start by showing that the repeated randomness
assumption guarantees Markovian behavior. The left-hand
side of Eq. (48) is

p(xk, xk−1, . . . , x1)

p(xk−1, . . . , x1)

= tr{�xkUk�xk−1ρ(tk−1|xk−2, . . . , x1)�xk−1U
†
k }

tr{�xk−1ρ(tk−1|xk−2, . . . , x1)} , (49)

where ρ(tk−1|xk−2, . . . , x1) denotes the exact microscopic sys-
tem state at time tk−1 conditioned on the previous outcomes
xk−2, . . . , x1. Now, by the repeated randomness assumption
we can replace that state by

ρ(tk−1|xk−2, . . . , x1) �→
∑
xk−1

p(xk−1, . . . , x1)
�xk−1

Vxk−1

(50)

as already done in Eq. (14). This reveals

p(xk, xk−1, . . . , x1)

p(xk−1, . . . , x1)

= p(xk−1, . . . , x1)tr
{
�xkUk�xk−1U

†
k

}
/Vxk−1

p(xk−1, . . . , x1)tr
{
�xk−1

}
/Vxk−1

= tr

{
�xkUk

�xk−1

Vxk−1

U †
k

}
. (51)

Once again, to apply this argument for all tk , we have to make
the replacement (50) repeatedly, which violates the unitarity
of the process.

Below we use Levy’s Lemma to argue that for a coarse
and slow observable the dynamics are very likely Markovian.
Clearly, in any finite dimensional setting it is impossible to
show strict Markovianity for all times and all initial states.

To approach the problem, we will switch to a lighter nota-
tion. Let ρ(t ) be the exact microstate of the system at time t .
The probability to find the system in state x at time t + τ is

px(t + τ ) = tr{�xUτ ρ(t )U †
τ }. (52)

Introducing the identity I = ∑
y �y twice around ρ(t ), we

find

px(t + τ ) =
∑

y

tr{�xUτ�yρ(t )�yU
†
τ }

+
∑
y �=y′

tr{�xUτ�yρ(t )�y′U †
τ }. (53)

We know from the previous section that we can neglect
the quantum contribution in the second line. Introducing the
state ρy(t ) = �yρ(t )�y/py(t ) conditioned on outcome y with
py(t ) = tr{�yρ(t )}, we can thus write

px(t + τ ) =
∑

y

Px|y[ρy(t ), τ ]py(t ). (54)

Here Px|y[ρy(t ), τ ] ≡ tr{�xUτ ρy(t )U †
τ } is the conditional

probability for a transition from y to x in time τ given that
the microstate is ρy(t ).

The reader might criticize that Eq. (54) looks already
Markovian, but recall that ρy(t ) is the exact microstate. In
particular, this microstate could depend on any number of
measurements results prior to time t . We have just suppressed
this dependence for notational simplicity, but—as long as
ρy(t ) is the exact microstate—we have not made any assump-
tion so far. Moreover, it is now particularly easy to see that the
dynamics is Markovian if we can apply the equal-a-priori-
probability postulate and replace ρy(t ) by �y/Vy.

In the following section we prove in a mathematically rig-
orous way that Px|y[ρy(t ), τ ] is almost constant as a function
of ρy(t ) for a coarse observable, and we argue that this result is
physically meaningful for a slow observable. Put differently,
the claim is that the exact microstate ρy(t ) becomes irrelevant
for the evaluation of Px|y[ρy(t ), τ ] and thus the dynamics is
Markovian.

A. Microscopic derivation

Since any mixed state can be written as a convex linear
combination of pure states and since Px|y(ρy, τ ) is linear in
ρy, we can and will assume that ρy = ψy ≡ |ψy〉〈ψy| is a pure
state with |ψy〉 ∈ Hy. Then to say that Px|y(ψy, τ ) is “almost
constant as a function of ψy” requires us to choose a measure
on Hy, which we take to be the unbiased Haar measure μy

(note the subscript y to indicate that we only sample randomly
in Hy ⊂ H). Then from μy(ψy) = �y/Vy we find

Px|y(τ ) ≡ μy[Px|y(ψy, τ )] = 1

Vy
tr{�xUτ�yU

†
τ }. (55)
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Note that this term is identical to the last line of Eq. (51) in
our new notation.

To bound the fluctuations in Px|y(ψy, τ ) with respect to
different ψy, we use Levy’s Lemma on the hypersphere S2Vy−1

defined by all pure states in the subspace Hy. To estimate the
Lipschitz constant of Px|y(ψy, τ ), we note the rewriting

Px|y(ψy, τ ) = 〈ψy|U †
τ �xUτ |ψy〉, (56)

and, using the same arguments spelled out below Eq. (22), we
find that the Lipschitz constant of Px|y(ψy, τ ) is no more than
two: η � 2. Hence, Levy’s Lemma implies

μy

[∣∣∣∣Px|y(ψy, τ )

Px|y(τ )
− 1

∣∣∣∣ > ε

]
� 4 exp

(
−ε2P2

x|y(τ )Vy

18π3

)
. (57)

To get a feeling for this bound, we consider some numbers.
First, let us assume we do not like to tolerate an error larger
than ε = 10−6. Second, let us consider a short timescale τ

such that Px|y(τ ) ≈ 10−6. Finally, we set Vy = 10O(N )/M as
a rough estimate. Then

μy

[∣∣∣∣Px|y(ψy, τ )

Px|y(τ )
− 1

∣∣∣∣ > ε

]
� 4 exp

(
−10O(N )−26

M

)
. (58)

Thus, owing to the exponential growth of the Hilbert space
dimension, this term is negligible small for already N ≈
50 particles provided that the observable is coarse, i.e.,
provided that M is not unrealistically large. Also if one
considers subspaces where Vy is very small, which character-
izes macrostates very far from equilibrium, the above bound
becomes weak. Usually, however, Vy scales exponentially
with N .

Everything so far is based on an exact mathematical iden-
tity. From a physical point of view, we have to ask when is it
meaningful to assume that the precise microstate ψy(t ) can be
replaced by a Haar random average over Hy? It is here where
we use the slowness of X .

The slowness of X implies that ψy(t ) has time to spread
over many different microstates in Hy before it “hops out” to
a different macrostate x �= y. Restricting the picture of Fig. 1
to Hy only, we like to picture ψy(t ) as performing an approxi-
mately unbiased random walk on the sphere S2Vy−1. Note that
this picture implies that we do not expect Px|y(ψy, τ ) ≈ Px|y(τ )
to be true for too short timescales during which ψy(t ) had
no time to spread over many different microstates. Moreover,
it is important to assume that ψy(t ) explores Hy in an (ap-
proximately) unbiased way. For instance, if there is some
unaccounted conserved quantity or slow observable, which
restricts the motion of ψy to some subspace of Hy, it is
obviously no longer allowed to sample randomly according
to the Haar measure μy in all of Hy. It is exactly this notion
of unbiasedness which is difficult to get under control in a
mathematical precise way, and we will discuss this further in
Sec. VII A.

In addition, since Levy’s Lemma implies that the subset
of states for which Px|y(ψy, τ ) looks atypical is exponentially
small, we remark that this justifies applying this reasoning
repeatedly for different times t in Eq. (54). Indeed, while
it is possible that one accidentally hits an atypical state at
some time t , it is extremely unlikely to remain in a subspace
of atypical states during the slow evolution timescales of X

if ψy diffuses approximately in an unbiased way in Hy. Thus,
instead of conjecturing the applicability of typicality argu-
ments at each time step as in Refs. [30–33], we argue that
it is justified to apply them for a generic slow and coarse
observable.

Clearly, the same point we emphasized in the last para-
graph of Sec. III A also applies here. If the argument above
is repeated too many times, one finds surely some time in-
terval with non-Markovian dynamics, which must happen in
a finite dimensional quantum system. However, as long as
n � N (with n the number of time steps) such “accidential
non-Markovianity” is unlikely.

To conclude, there are a strong mathematical result and
plausible physical assumptions that suggest that Markovian-
ity arises generically for a slow and coarse observable on
a coarse (i.e., not too short) timescale, and it is very likely
to persist for many time steps. Physically, we believe that
this result is best understood by introducing the concept
of microstate independence. If different microstates of the
irrelevant degrees of freedom (which could encode differ-
ent histories of the relevant degrees of freedom) give rise
to the same transition probabilities, i.e., if Px|y[ψy(t ), τ ] ≈
Px|y[ψ ′

y(t ), τ ] for different ψy(t ) �= ψ ′
y(t ), then any such his-

tory dependence or “memory” in the irrelevant degrees of
freedom becomes irrelevant for the future evolution of the
relevant degrees of freedom. We believe this is a transparent
physical explanation for Markovianity compared to the tradi-
tional “loss-of-memory” explanation, which can never happen
in a unitarily evolving system. Importantly, we believe that
this result strongly depends on the observable, and not only
on the Hamiltonian or unitary dynamics.

V. LOCAL DETAILED BALANCE

So far we have established that the dynamics can be de-
scribed with overwhelming probability by a classical Markov
process with transition probabilities [see Eqs. (51) or (55)]

Px|y(τ ) = 1

Vy
tr{�xUτ�yU

†
τ }. (59)

While there are many processes (not only in nature) that
can be described by some Markovian transition probabilities
Px|y(τ ), the specific form of Px|y(τ ) in Eq. (59) allows us
to derive an additional important physical property, which
ensures a consistent thermodynamic description for each time
step.

To find this property, we need to introduce the antiunitary
time-reversal operator � [6,112]. Thus, let ��

x ≡ ��x�
−1

be the projector on the time-reversed macrostate of x, H� ≡
�H�−1 the time-reversed Hamiltonian, and U TR

τ ≡ e−iH�τ

the time-evolution operator associated with the time-reversed
process. Using �i = −i� and tr{� · · · �−1} = tr{· · · }∗ re-
veals that

tr{�xUτ�yU
†
τ } = tr

{
��

y U TR
τ ��

x

(
U TR

τ

)†}
. (60)

Moreover, we note that tr{��
x } = tr{�x} = Vx, which implies

that we can conclude from Eq. (59) that

Px|y(τ ) = 1

Vy
tr
{
��

y U TR
τ ��

x

(
U TR

τ

)†} = Vx

Vy
PTR

y|x (τ ). (61)
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Here PTR
y|x (τ ) is the average conditional probability to jump

from the time-reversed state described by ��
x to the state de-

scribed by ��
y in a time step τ under the dynamics generated

by H�. In many applications one has to deal with the simpler
case where both the macrostates and the Hamiltonian obey
time-reversal symmetry, i.e., ��

x = �x and H� = H . Then
Eq. (61) implies

Px|y(τ ) = Vx

Vy
Py|x(τ ). (62)

We call Eqs. (61) and (62) the condition of local detailed bal-
ance (LDB), which was previously derived using the repeated
randomness assumption [19].

To clarify the importance of LDB, we first rewrite the
dynamics in a more familiar form. Taking τ to be small com-
pared to the evolution time of X , but still large compared to
the microscopic timescale �E−1, we approximate Px|y(τ ) ≈
δx,y + τRx,y. Here Rx,y is the rate matrix obeying

∑
x Rx,y = 0

for all y owing to probability conservation. The time evolution
on this timescale is then described by the differential equation

d

dt
px(t ) =

∑
y

Rx,y py(t ) (63)

known as a (rate, Pauli, or classical) master equation. Using
the Boltzmann entropy SB(x) = ln Vx, LDB becomes

Rx,y

RTR
y,x

= eSB (x)−SB (y) or
Rx,y

Ry,x
= eSB (x)−SB (y), (64)

depending on the question whether time-reversal symmetry is
broken or not.

Among the implications of LDB we first note that the
steady state of the dynamics reads

πx ≡ Vx

D
. (65)

In fact, using LDB (with or without time-reversal symmetry) it
can be easily checked that

∑
y Rx,yπy = 0. Note that Eq. (65)

describes the correct equilibrium state as expected from the
equal-a-priori-probability postulate of statistical mechanics.
The probability to be in macrostate x is proportional to its
volume Vx. In addition, in presence of time-reversal symme-
try LDB implies that all net currents vanish at equilibrium,
Rx,yπy − Ry,xπx = 0, but note that net currents can persist at
equilibrium if time-reversal symmetry is broken.

Furthermore, the thermodynamic entropy of the system is
[6,19,113–117]

S(t ) ≡
∑

x

px(t )[− ln px(t ) + SB(x)]. (66)

As a consequence of LDB we find

d

dt
S(t ) � 0, (67)

i.e., the thermodynamic entropy increases monotonically
in time: the entropy production rate is positive. To de-
rive Eq. (67), we note the useful rewriting S(t ) = ln D −
S[px(t )‖πx] where S[px‖qx] ≡ ∑

x px ln(px/qx ) is the relative
entropy. The positivity of the entropy production rate then
follows from two facts [118]: first, πx is a steady state of

the dynamics and, second, the dynamics is Markovian, which
implies that relative entropy is contractive [6,72]. LDB is
therefore intimately linked to the fact that the dynamics tends
to maximize the entropy at each time step on average.

Further important consequences of LDB are the emergence
of the Onsager relations [19] and a consistent thermodynamic
framework in the presence of nonequilibrium boundary con-
ditions [119], among others, which we will not discuss here.
Moreover, it might be helpful to point out that LDB is often
expressed in a form less general than Eq. (64). For instance,
for a small open quantum system with energies εx in contact
with a large bath at inverse temperature β, LDB reduces to

Rx,y

Ry,x
= eβ(εy−εx ), (68)

which follows from a Taylor expansion of the Boltzmann en-
tropy and the definition of the inverse temperature β = S′

B(E ).
Equation (68) is used as the starting point of much current
work in classical stochastic and quantum thermodynamics
[5–9,12,57]. However, Eq. (64) is the most general expression
of LDB [19,120], and it might become more important than
Eq. (68) in the future, for instance, to describe systems in
contact with finite baths [121].

A. Microscopic derivation

After all the previous work, which already justified the use
of Eq. (59), not much remains to be done. In fact, all we
have to ensure is that X � = �X�−1 is a slow observable if
X is also slow. To show this, we first note that if |k〉 is an
eigenvector of H with eigenvalue Ek , then �|k〉 ≡ |�k〉 is an
eigenvector of H� with the same eigenvalue Ek . Moreover,
since � is antiunitarity we have by definition 〈�ψ |�φ〉 =
〈ψ |φ〉∗ for any two vectors |ψ〉 and |φ〉. We then find

〈�k|�X�−1|�
〉 =
∑
k′,
′

〈�k|�k′〉〈k′|X |
′〉〈�
′|�
〉

=
∑
k′,
′

δkk′ 〈k′|X |
′〉δ

′ = Xk
. (69)

Thus, X � inherits the same band structure from X , but with
respect to the eigenbasis of H�.

Finally, we note a special peculiarity. All that matters to
derive LDB is that there is some antiunitary operator �, but it
does not matter which � one chooses. Clearly, some choices
are physically more appealing, but choosing different � can
give rise to multiple LDB conditions, which could be advanta-
geous for applications. We give an example for such different
choices in the next section.

VI. NUMERICS

We check our ideas numerically by exact integration of the
Schrödinger equation for an XXZ spin chain of length L with
periodic boundary condition. The dimensionless Hamiltonian
is

H =
L∑


=1

(
s


xs
+1
x + s


ys
+1
y + 3

2
s


z s
+1
z + 1

2
s


z s
+2
z

)
, (70)
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FIG. 3. Eigenvalue distribution of the density wave operator Xq

for q = 1 and q = L/2 for chain length L = 28. The dashed lines
indicate the coarse-graining window for x = 0.

where s

α are spin-1/2 operators at site 
 and we consider

the zero magnetization subspace in the following, which has
dimension D = ( L

L/2

)
and requires L to be even. It is known

that for the present choice of parameters the Hamiltonian is
nonintegrable and satisfies the ETH [93].

The observable that we consider is a spin density wave

Xq = 1

N

L∑

=1

cos

(
2π
q

L

)
s


z , (71)

where the wave number q can be tuned between the longest
(q = 1) and shortest (q = L/2) wavelengths λ = 1/q in the
system. For longer wavelengths the observable becomes
slower because local perturbations typically need longer times
to induce large changes in 〈Xq〉 owing to the finite speed
with which excitations can travel along the chain (Lieb-
Robinson bound [122]). Moreover, N is a normalization
constant which fixes the second central moment to one:
tr{X 2

q }/D − (tr{Xq}/D)2 = 1. This ensures that the domain of
eigenvalues of Xq for different q is approximately the same,
which makes it easier to define a common coarse graining
now.

To define it, we note that all eigenvectors of Xq can be
conveniently labeled by |z〉 = |z1, . . . , zL〉 with |z
〉 denoting a
local eigenstate of s(
)

z with zi ∈ {±1}. We further observe that
to each eigenvector |z〉 with eigenvalue λ(z) there is another
eigenvector |−z〉, obtained by flipping all zi to −zi, with eigen-
value λ(−z) = −λ(z). Thus, the eigenvalues come in pairs
symmetrically distributed around zero, as shown in Fig. 3.
Due to the symmetry of the spectrum, it is convenient to label
the coarse-grained eigenspaces as x ∈ {. . . ,−1, 0,+1, . . . }
with projectors �x = ∑

z∈Ix
|z〉〈z|, where

Ix = {z|λ(z) ∈ [(x − 1/2)δX, (x + 1/2)δX ]}. (72)

Here δX denotes the coarse-graining width, as indicated in
Fig. 3. Unless otherwise mentioned, we set δX = 0.74.

As an initial state we choose in the following

|ψ〉 ∼ e−κXq/2|ψR〉, (73)

where |ψR〉 is a random state with coefficients drawn from
a zero-mean Gaussian distribution. Thus, |ψR〉 mimics an
infinite temperature state, which makes optimal use of the
available Hilbert space dimension. Moreover, e−κXq/2 prepares
the system out of equilibrium, where κ is a perturbation
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FIG. 4. Time evolution of thermodynamic entropy for the longest
(a) and shortest wave length (b) for different chain lengths L as
indicated in the plot. The time axis is rescaled in (a) because the
relaxation time scales like L2 for slow observables, whereas it is
system size independent for fast observables. Insets: Time evolution
of correlation functions for L = 28 as explained in the main text.

strength. Below we choose a moderate perturbation κ = 0.1,
but we have also checked results for different initial states
corresponding to different temperatures and different per-
turbations and observed similar behavior. These results are
relegated to the Supplemental Material [123].

From what we said below Eq. (71) we expect that our
theory works well for q = 1 but not for q = L/2. A first
indicator for this is shown in Fig. 4, where we plot for better
comparison the rescaled thermodynamic entropy

S̃(t ) ≡ S(t ) − S(0)

S(∞) − S(0)
(74)

with S(∞) = ln D. We see that it increases monotonously for
q = 1, as predicted by Eq. (67), whereas it clearly violates
Eq. (67) for q = L/2. This violation also does not seem to
become smaller for larger system size. Moreover, the vertical
red dashed line in the figures indicates the thermalization time
tth for comparison. It is defined to be the time by which the
rescaled expectation value 〈X̃q〉 for the case L = 28, defined
similar to Eq. (74), decayed to 1% and stayed below this
threshold afterwards. Since tth fluctuates in each realization,
we averaged it over 10 different initial states.
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FIG. 5. Time evolution of the quantum term for q = 1 (a) and
q = L/2 (b). The insets show a log-log plot of a suitable time average
as a function of the dimension D.

To further investigate the slowness of Xq, the insets
of Fig. 4 show the behavior of the correlation function
CX = tr{�0(t )�0}/tr{�0} as a function of time for q = 1
and q = L/2 as well as for different coarse-graining sizes
δX . Moreover, we also plot the correlation function C =
tr{X (t )X }/tr{X 2}, and the dotted purple vertical line indi-
cates the microscopic evolution timescale π/�E (since we
do not use a microcanonical energy window, �E here denotes
the standard deviation of the energy spectrum). The insets
thus demonstrate again that Xq is slow for q = 1 but not for
q = L/2. Moreover, we confirm that projectors are slower for
coarser coarse grainings as derived in Appendix B.

Next, we consider in Fig. 5 the influence of the quantum
part Q on the dynamics as discussed in Sec. III. Specifically,
we consider the quantity

Qτ (t ) =
∑

x

∣∣∣∣∣∣
∑
y �=z

tr{�xUτ�yρ(t )�zU
†
τ }

∣∣∣∣∣∣ (75)

for τ = tth/30, which is a timescale at which nonequilibrium
phenomena happen. Now, in Sec. III we have argued that
the term inside the absolute value should be very small for
slow observables and estimated that it scales like D−α with
unknown α. The smallness of Qτ (t ) for a slow observable
becomes immediately obvious from Fig. 5, whereas it is an
order of magnitude larger for the fast case for times up to

tth/2. However, we also see that Qτ (t ) fluctuates for all times.
To better check the scaling and to smooth out fluctuations, we
consider the time average

Qτ = 1

t f − tth

∫ t f

tth

dtQτ (t ), (76)

where the integral is taken in the time interval during which
Qτ has approximately reached a steady value. The insets of
Fig. 5 reveal that the scaling exponent is α ≈ 0.52 for the slow
case. Interestingly, also the fast case obeys a scaling law for
times t � tth with a smaller exponent α ≈ 0.42. This indicates
that classicality could be a universal feature for any coarse
observable of a nonintegrable many-body system for large
enough times. However, for the fast case the initial violation of
classicality does not seem to become smaller for larger system
sizes, similar to Fig. 4. This challenges the universal validity
of the penultimate paragraph of Sec. II B, where we stated that
sums of local observables tend to become slow for L → ∞.
Although we are numerically far away from the L → ∞ case
we have no direct explanation for that behavior.

Finally, we turn to the condition of LDB and consider the
quantity

�0→1(t, τ ) =
∣∣∣∣∣V1R1,0(t, τ )

V2RTR
0,1(t, τ )

− 1

∣∣∣∣∣. (77)

Here Rx,y(t, τ ) = tr{�xUτ ρy(t )U †
τ } is the rate to jump from y

to x. To define RTR
y,x (t, τ ) we need to introduce a time-reversal

operator �. As discussed in Sec. V A, multiple choices are
conceivable.

We first choose � = Kz, where Kz denotes complex con-
jugation in the local sz basis. For that choice we find
�(sx, sy, sz )�−1 = (sx,−sy, sz ) and easily confirm that both
the Hamiltonian and observable are symmetric and hence
RTR

y,x (t, τ ) = Ry,x(t, τ ). In Fig. 6 we plot �0→1(t, τ ) for the
slow and fast case with τ = tth/30 again. Furthermore, to
check the scaling, the insets show again the time average

�τ = 1

t f − tth

∫ t f

tth

�0→1(t, τ ). (78)

It is evident that LDB is well satisfied for the slow observables
at all times. Also for the fast observable LDB is well satisfied
for most times, only initially some slight violations do not
vanish even with increasing system size. We attribute this
behavior to the particular choice of initial state in Eq. (73),
which is very smoothly spread out over all microstates and
thus looks quite “typical” even for the fast observable. The
situation changes for different initial states as studied in the
Supplemental Material [123].

As a second choice we consider

� = exp

[
iπ

2

(
σ (1)

y + · · · + σ (L)
y

)
/2

]
Kz (79)

for which we find �(sx, sy, sz )�−1 = −(sx, sy, sz ). Since
angular momentum is odd under time reversal in classical me-
chanics, this could be considered the “conventional” choice.
In this case we find �Xq�

−1 = −Xq whereas H is still sym-
metric under time-reversal. From what we said about the
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FIG. 6. Check of LDB for � = Kz for q = 1 (a) and q = L/2
(b). The insets show a log-log plot of a suitable time average as
a function of the dimension D. Note that we check only the LDB
condition in case (b) if L = 4k (with k ∈ N) because it turns out that
the x = 0 subspace is empty if L = 4k + 2 (recall that we restricted
the dynamics to the zero magnetization subspace).

eigenvalues and eigenvectors above Eq. (72), we infer that
��x�

−1 = �−x and hence RTR
y,x (t, τ ) = R−y,−x(t, τ ). This

LDB condition is different from the previous one, and we
check its validity in Fig. 7. The conclusions are, however, the
same as the plots look very similar to Fig. 6.

To conclude, we clearly see the emergence of classicality
and LDB for the pure state dynamics of a slow observable of
a nonintegrable many-body system. Instead, for the fast ob-
servable classicality does not hold for transient times, whereas
LDB is quite well satisfied due to the smoothness of the
initial state. These results, together with the additional results
presented in the Supplemental Material [123], firmly support
our main ideas.

VII. FURTHER DISCUSSION

A. Multiple observables

While we argued that slowness is a necessary condition for
classicality, Markovianity, and LDB, we have also collected
some evidence that it is not sufficient. In particular, it was
important that the state vector explores the available Hilbert
space in a seemingly “unbiased” fashion. Here we further
discuss the subtlety of slowness, mostly from the perspective
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FIG. 7. The same as Fig. 6 but with � defined in Eq. (79).

of multiple observables. Certainly, more research is required
in the future.

To begin with, we emphasize once more the importance
to take all strictly conserved quantities into account. In most
applications this will be energy and particle number, but ex-
tensions to other noncommuting charges are desirable too
[124]. In any case, if one misses one of those conserved
quantities, it is clear that one can not assume the state to spread
equally over the subspace Hx corresponding to a macrostate
x.

Next, let X,Y, Z, . . . be slow observables that are not con-
served. If these observables mutually commute, our results
carry over immediately by replacing Hx with Hx,y,z,... pro-
vided the dimension of these subspaces remains large enough.
Examples of this kind include, e.g., the local energy and
particle number of an open system.

The situation is more complicated if the observables do not
commute. To examine this situation, let us first assume that
their mutual commutator is small, i.e., ‖[X,Y ]‖ � ‖X‖‖Y ‖.
Now, if there are only two such slow observables, then it is
possible to construct approximations X ′ and Y ′ to X and Y
that satisfy [X ′,Y ′] = 0 [125,126] and our approach can be
applied to X ′ and Y ′. We believe this covers a large class of
relevant situations in statistical mechanics, but it is interesting
to ask what happens beyond.

If there are more than two observables that approximately
commute, von Neumann thought that it is still possible to
approximate them by commuting observables [113,114]. Also

012225-16



CLASSICALITY, MARKOVIANITY, AND LOCAL … PHYSICAL REVIEW A 108, 012225 (2023)

FIG. 8. Two local regions of the sphere in Fig. 1 with respect
to the effective observable mentioned in the text and exemplary
trajectories ψ0 �→ ψt . Our theory is applicable whenever a small
ε-ball of initial states around ψ0 (dark shaded region) approximately
explores the sphere in an isotropic fashion on a timescale t obeying
τ � t � �E−1 as shown on the left. In contrast, on the right there is
a strong preference to move in a horizontal direction, indicating that
there is another slow observable associated with slow motion in the
vertical direction that need be accounted for.

van Kampen assumed that the issue of noncommutativity can
be overcome by coarse graining, i.e., that the quantum uncer-
tainty is drowned by the experimental measurement error [19].
We now know that three or more approximately commuting
observables can not be approximated by commuting observ-
ables in general [127]. However, observables of macroscopic
systems that are sums of local observables, and thus of partic-
ular relevance to statistical mechanics, can be approximated
by commuting observables [128]. An explicit construction for
the subspaces of the corresponding macrostates was given in
Ref. [129], which could be used to extend the present theory.

What remains is the case of multiple slow observables that
are “strongly” noncommuting, although we are not aware of
any example in statistical mechanics that clearly demonstrates
the necessity to consider that case. However, it is a legitimate
point of view to claim that, even if an experimenter attempts
to measure multiple observables (whether commuting or not),
the resulting transformation on the system is mathematically
always described by one set of projectors (or more generally
a set of positive operator-valued measures) belonging to one
effective observable. While it might be hard to infer that effec-
tive observable, it matters only that it is slow. Our theory will
work for this effective observable whenever the dynamics in
this basis is approximately isotropic on the sphere introduced
in Sec. II A because then the state vector explores the space in
an unbiased way from a coarse-grained point of view, which
allows to use typicality arguments. This intuition is sketched
in Fig. 8.

Unfortunately, it is unknown to us whether there are
generic arguments that explain whether an observable gives
rise to a behavior as illustrated on the left or on the right
of Fig. 8. Some intuition on this question can be gained
from Ref. [110], where “strange relaxation dynamics” were
generated by choosing an envelope function F (ω) in the ETH
ansatz, which is very different from a step function (as as-
sumed in Sec. III A), e.g., a step function modulated by a
cosine. As long as this observable remains narrowly banded, it
would still qualify as slow. However, the unusual modulation
with a cosine function causes non-Markovian dynamics [110].
From the perspective of the present paper, we would say that
the cosine modulation preferably selects certain energy coher-
ences over others such that the dynamics of the microstate no
longer appears isotropic or unbiased.

B. Symmetric part of the rates

This paper argued in great generality that the dynamics of
a slow and coarse observable (modulo the difficulties men-
tioned in the previous section) is given by a classical Markov
process describable by a master equation with rates Rx,y(ψy),
which are almost constant as a function of the microstate ψy.
This implied that their asymmetric part obeys LDB, and one
possible parametrization of the rates is therefore Rx,y(ψy) =
Sxy

√
Vx/Vy, where the symmetric part Sxy = Syx remained un-

specified.
It is not surprising that it turns out that our methods em-

ployed so far are too general to draw any decisive conclusions
about the symmetric part Sxy. It is strongly model-dependent
and contains all the informaton about the nature of the system,
its precise interactions, whether it is dominated by fast or
slow transitions, etc. The symmetric part therefore can be
inferred only by specifying more details about the model, and
additional approximation schemes such as perturbation theory
are likely necessary to proceed analytically. Since the numer-
ous models and techniques are well covered in the existing
literature, we do not follow down this path here.

However, at least one property of Sxy can be inferred rather
easily, and we briefly sketch how to do this here. This property
concerns the topology formed by the network of macrostates
x. In fact, we can view a master equation description as a
graph, where the vertices are formed by the states x, and two
states x and y are connected by an edge whenever Sxy �= 0.
Thus, while we are not able to fix or estimate any finite
value of Sxy, we can at least decide whether Sxy �= 0 or not,
which already provides valuable information about the con-
crete physical behavior of the system.

To do so, we follow Ref. [130] and directly cast the von
Neumann equation ∂tρ(t ) = −i[H, ρ(t )] as a continuity equa-
tion for the probabilities px(t ). Namely, we find

d

dt
px(t ) =

∑
y( �=x)

Jx,y, (80)

where Jx,y ≡ −itr{Hxyρyx(t ) − ρxy(t )Hyx} is a probability cur-
rent from y to x (with Hxy ≡ �xH�y and ρxy = �xρ�y).
Thus, we see that Sx,y, and hence Rx,y, is nonzero only if
Jx,y �= 0, which implies that Hxy must not be the null operator.
Now, while it is hard to compute the transition rates Rxy

or probabilities Px|y(τ ) directly, it is typically easy to know
whether Hxy = 0 or not.

For instance, consider two weakly coupled subsystems A
and B exchanging particles (say, electrons) with each other.
Most microscopic interaction Hamiltonians will contain only
terms proportional to cAc†

B + cBc†
A, where c†

A/B (cA/B) in the
creation (annihilation) operator of an electron in A/B. Thus,
we see that a coarse graining of the particle number opera-
tor of A with states n ∈ N describing n electrons in A will
give rise to a master equation in form of a birth-and-death
process, where only neighboring probabilities are connected,
i.e., Rn,n′ = 0 if |n − n′| > 1. If the subsystems are supercon-
ductors, then the interaction Hamiltonian also contains a term
proportional to (cA)2(c†

B)2 + (cB)2(c†
A)2, which implies that

also Rn,n+2 �= 0. In this way, we can infer the structure of the
graph describing the dynamics of px(t ).
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For the future it seems worth to explore methods to quan-
titatively estimate the symmetric part Sxy of the rates without
using perturbation theory, for instance, by using tools from
quantum speed limits [85,86,130] or recent results on ther-
malization times [40–46].

VIII. CONCLUSIONS

It is a fact that many natural processes are well approxi-
mated by classical Markov processes obeying local detailed
balance. While this is a curse (or welcome challenge) for
many researchers, for instance, those who are interested in
building a large-scale quantum computer or finding quantum
effects in thermodynamics, it is also a blessing for many other
researchers because it greatly simplifies their life, and, in fact,
it does not sound too speculative that stability, predictability,
and some reduced (but not too low) complexity are important
ingredients for the existence of intelligent life itself.

It is also a fact that the repeated randomness assumption—
i.e., the repeated use of the equal-a-priori-probability pos-
tulate or the maximum entropy principle—explains the
emergence of classicality, Markovianity, and local detailed
balance. Yet this assumption is at odds with unitary quantum
mechanics (or phase space preserving classical mechanics),
and no satisfactory microscopic explanation has been put for-
ward so far.

Based on the intuitive (and already previously used) picture
of a slow and coarse observable, we provided various esti-
mates, mathematical theorems, and numerical simulations that
justify the repeated randomness assumption for the dynamics
of a pure state of an isolated nonintegrable many-body sys-
tem. Importantly, our approach is not in conflict with unitary
quantum mechanics.

We also find it noteworthy that our approach did not make
use of common concepts and approximations. For instance,
we did not use Nakajima-Zwanzig projection operator tech-
niques, repeated interaction schemes, Born approximations,
perturbation theory, various sorts of Markov assumptions, or
secular approximations, among others, which are often hard
to control and justify microscopically.

Nevertheless, the price to pay was to accept an intuitive
but technically subtle notion of slowness, in particular with
respect to the question whether the microscopic state diffuses
in an unbiased or isotropic way from a coarse perspective. We
believe, however, that it was worth paying this price for the
unifying perspective we have obtained on problems that are
studied in many different branches of statistical mechanics.

Conceptually, our research offers a shift in perspective
for the investigation of how classicality arises from quantum
mechanics. Central to our approach is chaos in an isolated
many-body system and a definition of classicality based on
multitime probabilities (Kolmogorov consistency), instead of
focusing on the dynamics of an open quantum system as
done in the decoherence approach [47–49]. Importantly, our
approach is not in conflict with environmentally induced de-
coherence, yet we believe we cannot agree with the statement
of Zeh, one of the pioneers of the decoherence approach,
that “all attempts to describe macroscopic objects quantum
mechanically as being isolated ... were thus doomed to fail”
[131]. It is an interesting future prospect to connect these

approaches to semiclassical methods based on a stationary
phase approximation of the Feynman path integral [132–135].
Interestingly, the semiclassical limit for Hamiltonians with a
classically chaotic limit is problematic due to a rapid smearing
out of the wave function over phase space, which is usu-
ally addressed by using environmentally induced decoherence
[136,137]. How this fits together with our picture is at present
unclear to us.

Furthermore, we provided a systematic justification of the
validity of the Markov approximation, which does not rely on
an initial ensemble average that has the potential to wash out
already many non-Markovian effects. Moreover, we stressed
the important role played by the observable (and not only the
Hamiltonian) for the question of (non-)Markovianity.

Among the more technical insights, we want to highlight
the observation that multiple local detailed balance relations
can exist for the same setup (Secs. V A and VI).

It is further worth commenting on how breaking of time-
reversal symmetry emerges in our framework given that our
approach does not use any of the common mechanisms to
break it: there are no special initial or repeated ensemble
averages, and both the ETH and typicality are arguments that
are time-symmetric. In fact, our approach leaves room for a
time-symmetric picture because we have “only” shown that
it is overwhelmingly more likely to evolve into the direction
of an increasing entropy gradient. Applying a time-reversal
operator to a microstate along this dynamics would indeed
provide an example for one of those atypical nonequilibrium
states for which the master equation does not apply. However,
since entropy is proportional to the volume of the macrostates
and since these volumes grow very quickly the closer we are
to equilibrium, it is very unlikely to accidentally hit such an
atypical state. Of course, this general picture complies well
with Boltzmann’s intuition about the second law [138].

Our results also suggest that the repeated randomness
assumption quickly breaks down for observables that are
neither slow nor coarse. In that regime, it seems that
not many universal features remain, an exception being
the laws of thermodynamics including fluctuation theorems
(see Refs. [5,6,8,9] and references therein). This makes the
(thermo)dynamic description of such processes very rich in
variety, but also extremely hard to describe with common
principles.

Finally, our work leaves much room for future research,
for instance, related to classicality, decoherence, and interpre-
tations of quantum mechanics, or related to the subtle notion
of slowness, possible refinements thereof, and systematic cor-
rection terms for observables that are a little faster and finer
than the present observables but not too fast and fine.
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APPENDIX A: BANDEDNESS IMPLIES SMALL
COMMUTATOR

For any operator A the operator norm is defined as ‖A‖ =
sup〈ψ |ψ〉=1

√
〈ψ |A†A|ψ〉 and equals the maximum eigenvalue

(in absolute value) for normal operators satisfying AA† =
A†A. For simplicity we can and will assume that the ground-
state energy is zero, E0 = 0, and that the largest eigenvalue of
H satisfies ED = 1. This implies ‖H‖ = 1.

A straightforward calculation reveals that

〈ψ |[H, X ]†[H, X ]|ψ〉 =
∑
k,
,m

c∗
k cmXk
X
m(Em − E
)(Ek − E
).

(A1)

Now, if X is banded, the sum over k and m can be restricted
to “nearby” values around 
, and we can bound the energy

differences by the band width δE :

Eq. (A1) � δE2
∑
k,
,m

ck∗cmXk
X
m = δE2〈ψ |X †X |ψ〉. (A2)

Our assumptions ‖H‖ = 1 and that X is narrowly banded
imply δE � 1. Since the previous equation holds for any state
|ψ〉, we conclude

‖[H, X ]‖ � δE‖X‖ � ‖X‖. (A3)

APPENDIX B: PROOF OF BANDEDNESS OF PROJECTORS

We consider an arbitrary observable A and its spectral de-
composition A = ∑M

a=1 λa�a. We like to construct a function
fa that satisfies fa(A) = �a. It can be shown that this is the
case if fa satisfies fa(λb) = δab by looking at fa(A)|ψ〉 for
an arbitrary |ψ〉 expanded in the eigenbasis of A. Moreover,
it is clear that the function fa(x) = c

∏
b( �=a)(x − λb) satisfies

fa(λb) = δa,b if the constant c is chosen such that fa(λa) = 1.
Thus, we see that fa is a polynomial of degree M − 1.

This implies that, if A is banded, then so is �a, although
it is not as narrowly banded. Suppose the Ak
 are distributed
around the diagonal according to a Gaussian with variance
σ 2, then the elements (�a)k
 are distributed around the diag-
onal with variance (M − 1)σ 2, i.e., the standard deviation is
approximately

√
Mσ .
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