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Entropy and entanglement in a bipartite quasi-Hermitian system
and its Hermitian counterparts
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We consider a quantum oscillator coupled to a bath of N other oscillators. The total system evolves with a
quasi-Hermitian Hamiltonian. Associated to it is a family of Hermitian systems, parameterized by a unitary map
W . Our main goal is to find the influence of W on the entropy and the entanglement in the Hermitian systems.
We calculate explicitly the reduced density matrix of the single oscillator for all Hermitian systems and show
that, regardless of W , their von Neumann entropy oscillates with a common period which is twice that of the
non-Hermitian system. We show that, generically, the oscillator and the bath are entangled for almost all times.
While the amount of entanglement depends on the choice of W , the entanglement of the time-averaged density
matrix is entirely independent of W . These results describe some universality in the physical properties of all
Hermitian systems associated to a given non-Hermitian one.
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I. INTRODUCTION

In recent years there has been much interest in exten-
sions of quantum mechanics that allow for non-Hermitian
Hamiltonians. In PT -symmetric quantum theory, for instance,
non-Hermitian Hamiltonians with a purely real spectrum are
often encountered. In many cases those Hamiltonians are
quasi-Hermitian [1–10]. For these one can produce associated
Hermitian Hamiltonians, which can then be studied using
“standard” methods of quantum theory.

The assignment of a Hermitian to a non-Hermitian system
is called the Dyson map [11–13]. The Dyson map is deter-
mined up to a unitary. To a given non-Hermitian Hamiltonian
H are assigned Hermitian Hamiltonians h which are all unitar-
ily equivalent. In this sense, physical properties of the original
H are uniquely encoded by any associated h. However, if the
system has a subsystem structure, then the unitaries generally
reshuffle local degrees of freedom and the choice of the uni-
tary plays a crucial physical role. This is, in particular, the
case for open systems, where the system and bath degrees of
freedom are reshuffled. One should then ask what relevant in-
formation about the original non-Hermitian system is encoded
in “the” associated Hermitian one. In fact, if one allows the
Dyson map to be time dependent, as is often the approach
taken in the literature [13–15], then the above-mentioned
nonuniqueness is compounded by additional freedom. It turns
out that, given any quasi-Hermitian system H , one can chose
a suitable time-dependent Dyson map so that the associated
Hermitian system has the trivial Hamiltonian h = 0. We ex-
plain this in Appendix C.
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The ambiguity in the associated Hermitian systems is the
subject of the present paper. In the recent literature on PT -
symmetric quantum theory, it was suggested that, instead of
studying the entropy of an open quasi-Hermitian systems, one
may study the entropy of the corresponding associated Hermi-
tian system [16–19]. Concretely, in [17], the authors examined
the entropy of an oscillator coupled to an “environment” of
N other oscillators via a PT -symmetric Hamiltonian. As a
proxy for the von Neumann entropy of the single oscillator
in the non-Hermitian system, they studied the corresponding
quantity for one particular choice of an associated Hermitian
system, constructed by a time-dependent Dyson map. The
authors found a different qualitative behavior of the entropy of
the Hermitian system according to the PT -symmetry phases
of the non-Hermitian system. This interesting result was found
for one particular choice of the associated Hermitian system.
The choice may be regarded as a good one as it discerns
the different symmetry phases by the qualitative form of the
dynamics of the entropy. For a different choice, however,
the entropy dynamics would look entirely different (and in
particular, it would be time-independent upon chosing h = 0,
as explained above).

In the current work we investigate all associated systems
in the regime of unbroken PT symmetry in which the non-
Hermitian Hamiltonian is actually quasi-Hermitian. We vary
over all time-independent Dyson maps (excluding the time-
dependent ones for the reason mentioned above).

A Hamiltonian H is said to be quasi-Hermitian if

H† = ηHη−1

for some bounded, positive operator η > 0, called a metric
operator. One obtains a Hermitian Hamiltonian by

h = SHS−1,
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where S is any operator with

S†S = η.

The assignment H �→ h is called the Dyson map [11,12], even
though to a single H one can associate different h for the
following two reasons.

(1) There are different metric operators η for the same
quasi-Hermitian H .

(2) Once a metric η is fixed, the general solution of the
equation S†S = η is S = W

√
η, where

√
η is the unique

positive operator that squares to η and W is an arbitrary
unitary W .

The metric η is uniquely determined if one fixes a suf-
ficiently rich (irreducible) set of quasi-Hermitian operators
(including H) to be observables; see [10] and Sec. II. Once
this choice is made, all associated Hermitian systems are
parameterized by the unitary W . Different choices of W
give different Hermitian h, which are unitarily equivalent.
However, generally W reshuffles the degrees of freedom and
modifies local physical properties, such as entanglement be-
tween subsystems.

In this work, we consider a concrete quasi-Hermitian sys-
tem with Hamiltonian H , describing the interaction of a single
oscillator with a bath of N other oscillators. This is an open
quantum system of the “system-bath” (SB) type, described
by a bipartite Hilbert space HS ⊗ HB. We take the metric η

to be general but fixed, and then analyze all the associated
Hermitian systems resulting from varying over all choices of
W . The dynamics of the non-Hermitian system and associ-
ated Hermitian systems is given by the time-dependent wave
functions

|ψ (t )〉 = e−itH |ψ (0)〉 and |φ(t )〉 = S|ψ (t )〉 = W
√

η|ψ (t )〉,
respectively. The vector |ψ (t )〉 is normalized with respect to
the metric induced by the inner product 〈·|η|·〉, while |φ(t )〉
is normalized relative to the “original’ inner product 〈·|·〉.
The reduced density matrices for the non-Hermitian and the
Hermitian systems are obtained by taking the partial trace over
the bath degrees of freedom (see Sec. II B)

ρ̄H (t ) = trB(|ψ (t )〉〈ψ (t )|η) and ρ̄hW (t ) = trB(|φ(t )〉〈φ(t )|).
Our main findings are summed up as follows.

1. Explicit evolution. We obtain explicit formulas for the
states |ψ (t )〉 and |φ(t )〉 as well as the reduced states ρ̄H (t )
and ρ̄hW (t ). See Secs. III B and III C.

2. Metric η. The operator ρ̄H (t ) is a density matrix exactly
when η is of product form �S ⊗ �B, otherwise ρ̄H (t ) has
complex eigenvalues. See Sec. III A. We thus take η of the
product form in the further analysis.

3. Subsystem entropy. The reduced states ρ̄H (t ) and ρ̄hW (t )
are periodic1 in time, both having the same period regard-
less of the choice of W . The von Neumann entropy S =
−tr(ρ ln ρ) of ρ̄H (t ) and ρ̄hW (t ) is periodic in time as well,

1The entire SB complex consists of N + 1 oscillators, so the en-
ergy spectrum of all the Hamiltonians involved consists of discrete
eigenvalues only, without a continuous spectrum. This explains the
periodicity.

but for generic initial conditions2 and generic W , the period
of the entropy of the Hermitian system is double that of the
non-Hermitian system. See Sec. IV.

4. SB entanglement. The non-Hermitian and the Hermitian
SB states |ψ (t )〉, |φ(t )〉 are entangled for all times except at
periodically reoccurring single instants.3 Given any entangled
state |ψ〉, one can find W such that the associated |φ〉 is dis-
entangled, and for any disentangled |ψ〉 there are W such that
|φ〉 is entangled. However, in an averaged sense, the choice
of W does not influence the entanglement at all. Namely,
the concurrence of the time-averaged density matrix, 〈ρ〉 =
1
T

∫ T
0 |φ(t )〉〈φ(t )| dt , where T is the period of |φ(t )〉〈φ(t )|,

is independent of W . Its value is determined entirely by the
initial condition and the choice of the metric. We identify the
initial states for which 〈ρ〉 is separable and for which it is
maximally entangled. See Sec. V.

II. QUASI-HERMITIAN SYSTEMS

Let H be a finite-dimensional Hilbert space with inner
product 〈·|·〉. An operator η is said to be positive, denoted
as η > 0, if 〈ψ |ηψ〉 > 0 for all nonzero |ψ〉 ∈ H. This is
equivalent with saying that η† = η and all eigenvalues of η

are strictly positive. Here A† is the adjoint of the operator
A, defined by 〈ψ |Aφ〉 = 〈A†ψ |φ〉 for all |φ〉, |ψ〉 ∈ H. An
operator H on H is called (η-)quasi-Hermitian if there exists
a positive operator η > 0 such that

H† = ηHη−1. (1)

Quasi-Hermiticity is a special case of pseudo-Hermiticity,
where (1) holds with an invertible (but not necessarily pos-
itive) Hermitian operator η. Pseudo- and quasi-Hermitian
Hamiltonians arise in PT -symmetric quantum theory, see, for
instance [20], and references therein.

A. Hermitian counterparts

Let H be a non-Hermitian operator on H, a candidate for
the Hamiltonian of a physical system. To obtain a Hermitian
quantum theory, one could do either of the following.

(1) Modify the inner product of H to 〈·|η ·〉 for some η > 0
(called a metric operator), such that H becomes Hermitian in
the Hilbert space Hη with this new inner product.

(2) Take a similarity transformation (invertible map) S
such that the transformed h = SHS−1 is Hermitian in the
original Hilbert space H.

If H is quasi-Hermitian, then both options (1) and (2) are
possible, but neither the metric nor the similarity transform in
options (1) and (2) are unique. To explore this nonuniqueness,
we first notice that any quasi-Hermitian H is diagonalizable
[6,21,22]. More precisely,

H =
N∑

n=1

En|ψn〉〈φn|, (2)

2Only for specially tuned initial states and W ’s is the situation
nongeneric, see Sec. III C.

3For a class of exceptional initial conditions the states are entangled
for all times, see Sec. V.
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where the En ∈ R are the eigenvalues and the {|ψn〉, |φn〉}N
n=1

form a complete biorthonormal family, meaning that
〈ψk|φl〉 = δkl and

∑ |ψn〉〈φn| = 1. Let us consider the case
where all eigenvalues En are distinct for simplicity (a discus-
sion including degenerate eigenvalues can be done similarly,
but this is not our focus here). Then the decomposition (2)
is unique, it is the spectral representation of the operator H ,
and the Pn ≡ |ψn〉〈φn| are the uniquely defined (generally not
orthogonal) spectral projections. The vectors |ψn〉 and |φn〉,
however, are determined only up to a joint scaling |φn〉 �→
zn|φn〉 and |ψn〉 �→ 1

zn
|ψn〉, with 0 
= zn ∈ C arbitrary.

(1) First let us explore option (1). A metric η is called
a metric for H if H is η-quasi-Hermitian. Let A be a linear
operator on H, with adjoint A† as defined above. If A is viewed
as an operator on Hη, then 〈φ|ηAψ〉 = 〈η−1A†ηφ|ηψ〉, so the
adjoint of A in Hη is A‡ = η−1A†η. It follows that a given
η > 0 is a metric for H if and only if H‡ = H , that is, if and
only if H is Hermitian acting on Hη. It is well known (see,
e.g., [9,22]) that

η is a metric for H

⇐⇒ η =
N∑

n=1

xn|φn〉〈φn| for some x1, . . . , xN > 0, (3)

where the |φn〉 are the vectors appearing in (3). The multitude
of metrics obtained by varying the x j in (2) naturally appears
due to the fact that |φn〉 is only determined up to an arbitrary
nonzero scaling factor zn [as explained after (2)], which results
in the scaling xn �→ xn|zn|2. Given this nonuniqueness of the
metric, which one should be chosen to define the physical
Hilbert space Hη?

One answer is that the metric is fixed provided that instead
of just H , one chooses an entire irreducible family of operators
to be Hermitian observables. Namely, it is shown in [10] (see
also [23] for the two-dimensional case) that if there is a family
of operators {Ai}i on H, and positive operators η, η′ such that
A†

i = ηAiη
−1 and A†

i = η′Ai(η′)−1 for all i, then

η′ is a scalar multiple of η

⇐⇒ {Ai}i is an irreducible family of operators on H.

This means that for an irreducible family of quasi-Hermitian
operators, there is exactly one metric (up to a scalar multiple)
that makes those operators Hermitian. The chosen family4 can
then be viewed as the physical observables of the theory and
the space of pure states is H with inner product 〈·|·〉η.

On the other hand, if interested only in the single ob-
servable H (the Hamiltonian), one should keep the xn in (3)
general.

(2) Next, let us investigate option (2) for H of the form
(2). Let η be a metric for H , so it is of the form (3). We
find all invertible S such that the transformed h ≡ SHS−1 is

4Examples of irreducible families are the Pauli matrices for a
spin, with the Euclidean inner product on C2, or the position x̂ and
momentum p̂ = −ih̄∇x for a quantum particle (rather, the bounded
Weyl operators generated by them) with the inner product 〈ψ |φ〉 =∫
R3 ψ̄ (x)φ(x) d3x.

Hermitian

h = SHS−1 = (SHS−1)† = h†. (4)

One readily sees that (4) is equivalent to T H = HT , where
T = η−1S†S. That T commutes with H , as in (2), is equivalent
to T being diagonal in the same biorthonormal system as H ,
that is, T = ∑N

n=1 tn|ψn〉〈φn| for some tn ∈ C. Now

S†S = ηT =
(

N∑
n=1

xn|φn〉〈φn|
)(

N∑
k=1

tk|ψk〉〈φk|
)

=
N∑

n=1

xntn|φn〉〈φn|, (5)

and as S†S > 0 and xn > 0, we have tn > 0 as well. It follows
from (3) and (5) that ηT is also a metric for H . In fact, (3)
and (5) show that given a fixed metric η for H and varying ηT
over all operators

T =
N∑

n=1

tn|ψn〉〈φn| with tn > 0, (6)

we obtain all of the metrics for H . We conclude that given η,
the S we are looking for are the solutions of S†S = ηT , where
T is an operator of the form (6). The general solution is

S = W
√

ηT , (7)

where W is any unitary and where for a positive operator A,√
A is the unique positive operator whose square equals A.
Once W and T are chosen, the associated Hermitian h in

(4) becomes

hW,T = W
√

ηT H
1√
ηT

W †. (8)

We stress with this notation that h depends on the choice of W
and T . The h obtained from two different choices of unitaries,
say V and W , are unitarily equivalent, with hV,T = UhW,T U †

and U = VW †. In this sense, the choice of W is globally
immaterial. However, if the Hilbert space has a local struc-
ture, say is of bipartite nature H = HS ⊗ HB, then the global
unitary U may well change the local properties of the two
local subsystems in which case the choice of W will play a
physically relevant role. We also point out that the spectrum of
hW,T does not depend on either W or T (or η, for that matter).

In this work we take the following approach. We start
with a given quasi-Hermitian Hamiltonian H and an arbitrary
metric η for H and we view Hη as the physical Hilbert space.
We analyze the class of all associated Hermitian systems hW,T ,
where W and T vary over all unitaries and all positive op-
erators commuting with H , respectively. As explained above,
considering all metrics η is the same as considering all metrics
ηT , so varying over T is redundant if η is kept arbitrary. We
may then set T = 1 and only consider

S = W
√

η, hW = W
√

η H
1√
η

W † (9)

for all W and η.

012223-3



ABU MOISE, COX, AND MERKLI PHYSICAL REVIEW A 108, 012223 (2023)

B. States, reduced states, von Neumann entropy

Consider now a fixed metric η, so that the physical Hilbert
space is Hη and H is Hermitian on Hη, H‡ = H . Then e−itH

is the unitary Schrödinger dynamics on Hη. The average of an
observable A on Hη in the state ψ ∈ Hη is given by

〈ψ |Aψ〉η = 〈ψ |ηAψ〉 = tr(|ψ〉〈ψ |ηA) = tr(̃ρA), (10)

where

ρ̃ = |ψ〉〈ψ |η (11)

is a density matrix on Hη (a positive, trace-one operator). This
ρ̃ is called the “generalized density matrix” in [24]. It is im-
portant to point out that the trace in (10) is a purely algebraic
quantity: it is the sum of the eigenvalues of the operator, and
therefore does not depend on the choice of metric.

To arrive at a Hermitian Hamiltonian, it is necessary to
make a choice for the unitary W in (9). The associated Hermi-
tian Hamiltonian hW is then given by (9). Let

|ψ (t )〉 = e−itH |ψ (0)〉, |φ(t )〉 = e−ithW |φ(0)〉 (12)

be the evolution of the initial states |ψ (0)〉, |φ(0)〉 with respect
to H and hW , respectively. The states are related by

|φ(t )〉 = S|ψ (t )〉, S = W
√

η, (13)

and the density matrices associated to these vector states for
the non-Hermitian [see (11)] and the Hermitian systems are

ρH (t ) = |ψ (t )〉〈ψ (t )|η and ρhW (t ) = |φ(t )〉〈φ(t )|, (14)

respectively. (We adopt the notation ρhW and ρH for the density
matrices on the Hermitian and non-Hermitian sides of the
problem from [17].) It is clear from (13) that

ρhW (t ) = S|ψ (t )〉〈ψ (t )|S† = S|ψ (t )〉〈ψ (t )|(S†S)S−1

= SρH (t )S−1. (15)

It follows that ρhW (t ) and ρH (t ) have the same eigenvalues and
hence the same von Neumann entropy E[ρhW (t )] = E[ρH (t )],
where

E (ρ) = −tr(ρ ln ρ) = −
∑

i

λi ln λi (16)

and {λi} are the eigenvalues of ρ.
Consider now a bipartite system with H = HS ⊗ HB (“sys-

tem” and “bath”). We consider the reduced states (denoted by
an overbar) defined by tracing out the degrees of freedom of
the subsystem HB,

ρ̄H (t ) = trHB [ρH (t )], ρ̄hW (t ) = trHB [ρhW (t )]. (17)

In some recent works [16–19], the dynamics of a bipartite
system generated by a non-Hermitian Hamiltonian H was
studied, with particular focus on the von Neumann entropy
of the reduced density matrix ρ̄H (t ). The strategy proposed in
those works was to examine the entropy of ρ̄hW (t ) as a proxy
for that of ρ̄H (t ). In this respect, however, one should observe
the following facts.

1. The operator ρ̄H (t ) always satisfies trHS [ρ̄H (t )] = 1,
but for some choices of η the eigenvalues of ρ̄H (t ) can be
complex, in which case it is not a valid density matrix.

2. Even if the metric η is chosen such that ρ̄H (t ) is a
density matrix, for generic choices of W the von Neumann
entropies E[ρ̄H (t )] and E[ρ̄hW (t )] are not the same. The latter
in fact depends on the choice of W .

To understand the normalization of the trace mentioned in
fact 1. above, we observe (using 1S as the system observable)
that

trHS [ρ̄H (t )] = trHS [ρ̄H (t )1S] = trHS⊗HB [ρH (t )(1S ⊗ 1B)]

= trHS⊗HB [ρH (t )] = 1.

If S = SS ⊗ SB, then ρ̄h = SSρ̄H S−1
S and so the spectra and

thus the von Neumann entropies of ρ̄h and ρ̄H coincide. How-
ever, if S is entangling (not of product form SS ⊗ SB), then the
eigenvalues of the two reduced density matrices are not the
same in general, and neither are their entropies.

These difficulties are resolved in the next section, where
we study the concrete model used in [17]. In particular, we
determine for which choices of η the reduced operator ρ̄H (t )
is indeed a density matrix, and then we find the von Neumann
entropy of ρ̄hW (t ) for all possible choices of the unitary W .

III. MODEL

An oscillator with creation and annihilation operators a†,
a is coupled to a “bath” of N-independent oscillators with
creation and annihilation operators q†

i , qi, i = 1, . . . , N . The
total Hilbert space of the N + 1 oscillators is

H = HS ⊗ HB, (18)

where HS is the space of a single oscillator and HB is that
of the other N . As in the previous section, we denote the
inner product by 〈·|·〉 and let † denote the adjoint in this inner
product. The commutation relations are [a, a†] = 1 = [qi, q†

i ],
and all operators belonging to different oscillators commute.
This open quantum system, non-Hermitian model was used in
[17].

A. Quasi-Hermitian system

The coupled total system–bath Hamiltonian is

H = νNtot + (g + κ )
√

N a†Q + (g − κ )
√

N aQ†, (19)

where ν > 0 and g, κ ∈ R are parameters and

Ntot = a†a +
N∑

n=1

q†
nqn, Q = 1√

N

N∑
n=1

qn. (20)

Due to the different prefactors of κ in the interaction term of
(19), H is †-Hermitian if and only if κ = 0.

The “uncoupled” (g = κ = 0) Hamiltonian is simply νNtot ,
a multiple of the total number operator Ntot . As H commutes
with Ntot , each eigenspace of Ntot, with a fixed number of
excitations (in the system plus the bath) is left invariant. De-
note by |0S0B〉 the “vacuum” zero excitation state, where all
oscillators are in the ground state. The single excitation space
is defined as

E1 = span{|1S0B〉, |0S11〉, |0S12〉, . . . , |0S1N 〉}, (21)

where |1S0B〉 = a†|0S0B〉 and |0S1i〉 = q†
i |0S0B〉 for i =

1, . . . , N . When H is applied to a vector in E1 the result is
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again a vector in E1. Moreover, due to the collective, symmet-
ric nature of the system-bath interaction in (19), H leaves the
even smaller space

H1 = span{|eS〉, |eB〉} (22)

invariant, where

|eS〉 = |1S0B〉, |eB〉 = 1√
N

N∑
n=1

|0S1n〉. (23)

Those two vectors describe states in which a single excitation
is either in S (the state |eS〉) or in B, collectively spread over
the N bath oscillators (the state |eB〉). Therefore, we may view
H as an operator on H1. When we do this we denote it by H1,
which has the form

H1 = ν1 + (g − κ )
√

N |eB〉〈eS| + (g + κ )
√

N |eS〉〈eB|.
(24)

The eigenvalues of H1 are

ω± = ν ± ω, ω =
√

N
√

g2 − κ2, (25)

which are real for κ2 � g2 and (purely imaginary) complex
conjugates for κ2 > g2. See [17] for a discussion of the PT
symmetry of H . The operator H1 is diagonalizable except
at the transition points defined by κ2 = g2 
= 0, where H1

reduces to a Jordan block. Note that increasing the number
N of oscillators in the bath simply amounts to speeding up the
dynamics (the frequency ω) by a factor

√
N .

Remark. In principle, one might directly introduce the two-
level model (24) without deriving it as the single-excitation
reduction of the full model (19). However, then there would
not be any system-bath (tensor product) structure and the
notion of entanglement would not make sense. Furthermore,
we also think it would be interesting to extend the analysis to
higher excitation sectors. For these reasons we first introduce
the underlying model (19).

We consider the “PT -symmetry unbroken regime” κ2 <

g2, so that ω± ∈ R. For definiteness we take g > 0 (the case
g < 0 can be dealt with in the same fashion), so

0 � |κ| < g, (26)

which is equivalent to g + κ > 0 and g − κ > 0. Then we
have ω > 0 and

a1 = √
g + κ > 0, a2 = √

g − κ > 0, (27)

where the equalities in (27) define the quantities a1, a2. The
two linearly independent (not normalized) eigenvectors of H1

and its adjoint H†
1 are

|v±〉 ∝ a1|eS〉 ± a2|eB〉 and |v∗
±〉 ∝ a2|eS〉 ± a1|eB〉,

respectively. They satisfy H1|v±〉 = ω±|v±〉 and H†
1 |v∗

±〉 =
ω±|v∗

±〉. Note that |v∗
±〉 denote the eigenvectors of H†, not to

be confused with the complex conjugates of the eigenvectors
|v±〉 of H . We normalize the vectors as

|v±〉 = 1√
2

(√
a1

a2
|eS〉 ±

√
a2

a1
|eB〉

)
and

|v∗
±〉 = 1√

2

(√
a2

a1
|eS〉 ±

√
a1

a2
|eB〉

)
. (28)

Then {|v±〉, |v∗
±〉} is a biorthonormal basis, satisfying

〈v∗
±|v∓〉 = 0 and 〈v∗

±|v±〉 = 1, and the operator H1 can be
written as

H1 = ω+|v+〉〈v∗
+| + ω−|v−〉〈v∗

−|. (29)

Using this, one easily finds

e−itH1 = e−itω+|v+〉〈v∗
+| + e−itω− |v−〉〈v∗

−|
= e−itν cos(ωt )1 − ie−itν sin(ωt )

×
(a1

a2
|eS〉〈eB| + a2

a1
|eB〉〈eS|

)
. (30)

We consider initial states which are vectors in H1, as de-
fined in (22), so the dynamics generated by H is entirely given
by the operator H1 from (24). We still consider the regime
(26), so that the spectrum of H1 consists of two distinct real
eigenvalues. Comparing (2), (3) and (29), we see that H1 is
quasi-Hermitian and the set of all associated metrics is

M+ = {η = x1|v∗
+〉〈v∗

+| + x2|v∗
−〉〈v∗

−| : x1, x2 > 0}. (31)

Written as a matrix in the basis {|eS〉, |eB〉}, we obtain from
(28)

η = 1

2

(
(x1 + x2) a2/a1 x1 − x2

x1 − x2 (x1 + x2) a1/a2

)
. (32)

This is diagonal exactly when x1 = x2. As we will see in
Appendix A, this is equivalent to η being the restriction to H1

of a product metric �S ⊗ �B on H. In addition, as we discuss
below after (40), this is also equivalent to the reduced system
state ρ̄H (t ) in (39) being a positive operator.

B. Reduced non-Hermitian system dynamics

Fix an η ∈ M+ and take an initial state of the form

|ψ (0)〉 = A|eS〉 + B|eB〉 (33)

for some A, B ∈ C normalized to have ‖ψ (0)‖2
η = 1, that is,

1 =
(x1 + x2

2

)(a2

a1
|A|2 + a1

a2
|B|2

)
+ (x1 − x2)Re(AB∗).

(34)
The dynamics is given by

|ψ (t )〉 = e−itH |ψ (0)〉 = e−itνA(t )|eS〉 + e−itνB(t )|eB〉, (35)

where

A(t ) = A cos(ωt ) − iB
a1

a2
sin(ωt ),

B(t ) = B cos(ωt ) − iA
a2

a1
sin(ωt ). (36)

The normalization

‖ψ (t )‖2
η = x1|〈v∗

+|ψ (t )〉|2 + x2|〈v∗
−|ψ (t )〉|2 = 1 (37)

holds for all t , as e−itH acts unitarily on H1 equipped with the
inner product 〈·|·〉η. The relation (37) is the same as (34) with
A and B replaced by A(t ) and B(t ).

We now introduce the reduction of the system to the single
oscillator (a†, a). The average of a system observable OS

(observable of the single oscillator) in the state |ψ (t )〉 given
by (35) evolves according to

〈ψ (t )|ηOS|ψ (t )〉 = trS[ρ̄H (t )OS], (38)
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where the reduced system state is

ρ̄H (t ) = trB ρH (t ) = trB[|ψ (t )〉〈ψ (t )|η]. (39)

For the partial trace we have the identities trB|eS〉〈eS| =
|1S〉〈1S|, trB|eB〉〈eB| = |0S〉〈0S| and trB|eS〉〈eB| = 0 =
trB|eB〉〈eS|. Using (35) and η of the form (31), we obtain
after a calculation

ρ̄H (t ) =
(x1 + x2

2

a1

a2
|B(t )|2 + x1 − x2

2
A(t )B(t )∗

)
|0S〉〈0S|

+
(x1 + x2

2

a2

a1
|A(t )|2 + x1 − x2

2
A(t )∗B(t )

)
|1S〉〈1S|.

(40)

This matrix is diagonal in the basis {|0S〉, |1S〉} and the
two diagonal entries are its eigenvalues. One checks di-
rectly that trS[ρ̄H (t )] = 1 (the sum of the diagonal elements
equals ‖ψ (t )‖2

η = 1). However, the eigenvalues of ρ̄H (t ) are
complex, in general, unless the metric is chosen to satisfy
x1 = x2. Indeed, the imaginary part of the first eigenvalue is
x1−x2

2 Im[A(t )B(t )∗]. If A, B, the coefficients in the initial state
(33), are real then this quantity becomes5−(x1 − x2)( 1

x1+x2
−

a2
a1

A2 − x1−x2
x1+x2

AB) cos(ωt ) sin(ωt ). Unless x1 = x2 or the ini-
tial condition satisfies (x1 + x2) a2

a1
A2 + (x1 − x2)AB = 1, the

eigenvalues of ρ̄H (t ) will not be real except at the discrete set
of times t when sin(ωt ) cos(ωt ) = 0.

We require ρ̄H (t ) to be a density matrix (and in particular
to have nonnegative eigenvalues) for all times. To do so with
a metric that does not depend on the initial conditions we
therefore must choose x1 = x2. We thus take

x1 = x2 = x > 0

for the remainder of the paper. In the basis {|eS〉, |eB〉} the
metric η is diagonal

η = x

(
a2/a1 0

0 a1/a2

)
, (41)

see (32). As explained after (32) above, this is equivalent to η

being of product form. With this choice, ρ̄H (t ) given by (40)
is † Hermitian. According to (40) and (36) we have

ρ̄H (t ) = p(t ) |0S〉〈0S| + (1 − p(t )) |1S〉〈1S|, (42)

where

p(t ) = x
a1

a2
|B(t )|2

= x
(a1

a2
|B|2 cos2(ωt ) + a2

a1
|A|2 sin2(ωt )

−2 sin(ωt ) cos(ωt )Im(A∗B)
)

= 1

2
+

(1

2
− x

a2

a1
|A|2

)
cos(2ωt ) − x sin(2ωt )Im(A∗B).

(43)

5Use equations (36) and write B as a function of A according to the
normalization condition (34).

In the last step, we used the normalization condition
(34), resulting in a1

a2
|B|2 = 1

x − a2
a1

|A|2, and the trigonomet-

ric identities sin(ωt ) cos(ωt ) = 1
2 sin(2ωt ), cos2(ωt ) = 1

2 [1 +
cos(2ωt )] and sin2(ωt ) = 1

2 [1 − cos(2ωt )]. In view of (43) it
is natural to introduce the parameter

α ≡ x
a2

a1
|A|2 ∈ [0, 1]. (44)

Equations (42) and (43) show the following.
Properties of p(t ):
1. p(t ) and ρ̄H (t ) depend on time unless α = 1

2 and A∗B ∈
R, in which case p(t ) = 1

2 and ρ̄H (t ) = 1
21.

2. Otherwise p(t ) and ρ̄H (t ) are periodic in time, with
period π/ω, and the mean value of p(t ) is

p0 = ω

π

∫ π/ω

0
p(t )dt = 1

2
. (45)

Remark. The periodicity of the dynamics is a consequence
of the simple form of the spectrum of H1 from (29). In a
different setting where the frequencies would be incommensu-
rate, the dynamics would generally be quasiperiodic (sum of
periodic functions with different frequencies). However, since
the full Hamiltonian H in (19) has purely discrete spectrum,
the dynamics will not relax to a stationary state (it will keep
oscillating for all times).

C. Reduced Hermitian system dynamics

Next, we turn our attention to the density matrix of the
Hermitian system, which according to (15) is

ρhW (t ) = SρH (t )S−1 = W
√

ηρH (t )
1√
η

W †

= W
√

η |ψ (t )〉〈ψ (t )|√ηW †. (46)

We keep W in the notation hW to highlight that the choice of h
depends on W , see (9). Again choosing a metric η of the form
(31) with x1 = x2 = x > 0, we use (35) to obtain

√
η|ψ (t )〉 = e−itνγ (t )|eS〉 + e−itνδ(t )|eB〉, (47)

where

γ (t ) =
√

x
a2

a1
A(t ), δ(t ) =

√
x

a1

a2
B(t ). (48)

We then obtain

√
η |ψ (t )〉〈ψ (t )|√η =

(
|γ (t )|2 γ (t )δ(t )∗

γ (t )∗δ(t ) |δ(t )|2
)

, (49)

written in matrix form in the ordered basis {|eS〉, |eB〉} of H1.
Next, we take a general (time-independent) unitary on H1,
expressed in the same basis as

W =
(

a b
c d

)
, ac∗ + bd∗ = 0,

|a|2 + |b|2 = 1 = |c|2 + |d|2. (50)
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Using (46), (49), (50) and writing momentarily δ, γ for δ(t ), γ (t ), we get

ρhW (t ) =
(

|aγ + bδ|2 ac∗|γ |2 + bc∗γ ∗δ + ad∗γ δ∗ + bd∗|δ|2
a∗c|γ |2 + b∗cγ δ∗ + a∗dγ ∗δ + b∗d|δ|2 |cγ + dδ|2

)
. (51)

We observe that ρhW (t ) is periodic in time, with period π/ω.
This follows from (48) together with (36) since cos2(ωt ),
sin2(ωt ) and sin(ωt ) cos(ωt ) all have period π/ω.

Next we calculate the reduced density matrix ρ̄hW (t ) of S
by taking the partial trace of ρhW (t ) over B,

ρ̄hW (t ) = q(t ) |0S〉〈0S| + [1 − q(t )] |1S〉〈1S|, (52)

where q(t ) = |cγ (t ) + dδ(t )|2 and γ (t ), δ(t ) are given in
(48). We get the expression

q(t ) = x

∣∣∣∣c√a2

a1
A(t ) + d

√
a1

a2
B(t )

∣∣∣∣2

, (53)

where A(t ) and B(t ) are given in (36). Expanding the square
and using |d|2 = 1 − |c|2 as well as the normalization (34)
[which is valid for A, B replaced by A(t ), B(t ) at any time],
we obtain

q(t ) = |c|2 + (1 − 2|c|2)x
a1

a2
|B(t )|2 + 2xRe[cd∗A(t )B(t )∗]

= |c|2 + (1 − 2|c|2)p(t ) + 2xRe[cd∗A(t )B(t )∗], (54)

where p(t ) is the population of ρ̄H (t ) evaluated above in (43).
Expanding the real part term in (54) using (36), we arrive at

q(t ) = |c|2 + (1 − 2|c|2)p(t ) − sin(2ωt )

(
1 − 2x

a2

a1
|A|2

)
× Im(cd∗) − 2x cos(2ωt )Im(AB∗)Im(cd∗)

+ 2xRe(AB∗)Re(cd∗). (55)

We take into account (43) to rewrite

q(t ) = 1
2 + 2xRe(AB∗)Re(cd∗)

+ cos(2ωt )
[(

1
2 − α

)
(1−2|c|2)−2xIm(AB∗)Im(cd∗)

]
− sin(2ωt )[(1 − 2α)Im(cd∗)−x(1−2|c|2)Im(AB∗)],

(56)

where we recall that α is given in (44). Using the explicit form
(56) of q(t ), we obtain the following information.

Properties of q(t ):
1. q(t ) and ρ̄hW (t ) depend on time unless both factors of

the cosine and sine terms in (56) vanish. Thus q(t ) is time
independent and hence equal to

q0 = ω

π

∫ π/ω

0
q(t )dt = 1

2
+ 2xRe(AB∗)Re(cd∗) (57)

if and only if:
(i) α = 1/2, |c| = 1/

√
2 and Im(AB∗)Im(cd∗) = 0; or

(ii) α = 1/2, |c| 
= 1/
√

2 and Im(AB∗) = 0; or
(iii) α 
= 1/2, |c| = 1/

√
2 and Im(cd∗) = 0; or

(iv) α 
= 1/2, |c| 
= 1/
√

2 and Im(A∗B) = 1
2x |1 − 2α| and

Im(cd∗) = 1
2 (1 − 2|c|2)sgn(1 − 2α), where sgn(x) = |x|/x.

2. Otherwise q(t ) and ρ̄hW (t ) are periodic in time, with
period π/ω, and the mean value of q(t ) is q0 from (57).

Generic initial states and unitaries

As x > 0, the average q0 equals 1/2 exactly when
Re(AB∗)Re(cd∗) = 0. This is a condition on the initial state
(via A, B) and the unitary W (via c, d). We call the initial state
and the unitary generic, respectively, when

AB∗ 
∈ R and cd∗ 
∈ R. (58)

In other words, for generic initial states and unitaries, the
average q0 of the population of ρ̄hW (t ) differs from the average
p0 = 1/2 of the population of ρ̄H (t ). As we show in the next
section, this deviation from the value 1/2 causes the entropy
of ρ̄hW (t ) to oscillate with exactly half the frequency of the
entropy of ρ̄H (t ).

IV. ENTROPY

Recall that the states ρ̄H (t ) and ρ̄hW (t ) are given in (42) and
(52), with associated populations p(t ), q(t ) evaluated in (43)
and (56). Their von Neumann entropy is given by

E[ρ̄H (t )] = −p(t ) ln p(t ) − [1 − p(t )] ln[1 − p(t )],

E[ρ̄hW (t )] = −q(t ) ln q(t ) − [1 − q(t )] ln[1 − q(t )]. (59)

We show in Appendix B that

E[ρ̄H (t )]=E[ρ̄hW (t )] for all t �0 and initial conditions (A, B)

⇐⇒ cd = 0.

If Re(cd∗) 
= 0, then according to (45) and (57) the averages
p0 and q0 around which the populations p(t ) and q(t ) os-
cillate are different for all generic initial conditions, i.e., all
coefficients A, B satisfying Re(AB∗) 
= 0. This translates into
a modification of the period of the entropy of ρ̄hW (t ) as a
function of time t relative to that of ρ̄H (t ), as we explain now.

A. Period doubling of von Neumann entropy in the
non-Hermitian versus the Hermitian system

Consider the function

E (Q) = −Q ln Q − (1 − Q) ln(1 − Q), Q ∈ [0, 1].

Suppose now that Q = Q(t ) depends periodically on time and
has average Q0,

Q(t ) = Q0 + �(t ) ∈ [0, 1], (60)

with �(t ) having period π/ω and zero average. This setup
incorporates both cases p(t ) and q(t ) in one. As Fig. 1 illus-
trates, if Q0 = 1/2, which is the value where E (Q) takes its
maximum, then as Q(t ) moves over one period, the entropy
E[Q(t )] moves over two periods.
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FIG. 1. Parameters Q0 = 0.5, � ≡ maxt �(t ) = 0.2. According
to (60), Q(t ) starts at Qm = 0.3 (at a time we take to be t = 0)
and moves to QM = 0.7 at time ωt = π/2, and then back to Qm

at time ωt = π (top panel), so the value of the entropy E (Q(t ))
evolves through two periods (bottom panel). In each period, the
entropy has two local minima (counting minima at the endpoints of
the considered intervals once).

On the other hand, if Q0 
= 1/2, then the period of the
entropy E[Q(t )] is not doubled relative to that of Q(t ), as
Figs. 2 and 3 show.

We draw the following conclusions.
1. The period of the von Neumann entropy of the non-

Hermitian system E[ρ̄H (t )] is 1
2π/ω, regardless of the initial

condition (except for the stationary state).
2. Regardless of the metric (parameter x), the period of the

von Neumann entropy of the Hermitian system E[ρ̄hW (t )] is
(a) π/ω, provided Re(AB∗)Re(cd∗) 
= 0 (generic

case),
(b) 1

2π/ω, provided Re(AB∗)Re(cd∗) = 0 (special
case).
This means that for generic initial conditions [meaning

Re(AB∗) 
= 0] and generic choices of the unitary W [meaning
Re(cd∗) 
= 0], the period of the von Neumann entropy of the
Hermitian system is double that of the non-Hermitian system.
That is, the entropy of the non-Hermitian system oscillates
faster. This is so even though the populations in both cases
have the same frequency π/ω. The change of the period is
due to the shift of the average in the population induced by
W , as given in (57).

FIG. 2. Parameters Q0 = 0.6, � = maxt �(t ) = 0.2. In this case
Q(t ) starts at Qm = 0.4 when t = 0 (upon a possible shift of the time
axis) and moves to QM = 0.8 at time ωt = π/2 and back to Qm at
time ωt = π (top panel). The value of the entropy E (Q(t )) evolves
through one single period (bottom panel). In each period, the entropy
has two local minima (counting minima at the endpoints once).

B. Numerical illustration of the period doubling

We plot the populations and entropies for parameters in the
regime

x = x1 = x2 > 0 [metric η, (41)] (61)

c, d � 0 [unitary W , (50)] (62)

A, B � 0 [initial state |ψ (0)〉, (33)]. (63)

According to (62) and the unitarity of W , we have d =√
1 − c2. Moreover, x2A2B2 = α(1 − α), where α = x a2

a1
A2 ∈

[0, 1]. The population q(t ) of the Hermitian system reduced
density matrix, given in (56), then becomes

q(t ) = q0 + � cos(2ωt ), (64)

with

q0 = 1
2 + 2

√
c2(1 − c2)

√
α(1 − α), (65)

� = 1
2 (1 − 2c2)(1 − 2α). (66)

Here, α = x a2
a1

A2 ∈ [0, 1] and c ∈ [0, 1] can be chosen freely.
The population p(t ) of the non-Hermitian system, in (43), is
simply the expression (64) with c = 0.
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FIG. 3. Parameters Q0 = 0.8, � = maxt �(t ) = 0.2. In this case
Q(t ) starts at Qm = 0.6 when t = 0 (after possibly shifting the time
axis) and moves to QM = 1.0 at time ωt = π/2 and back to Qm at
time ωt = π (top panel). The value of the entropy E (Q(t )) evolves
through one single period (bottom panel). Since 0.5 is not in the inter-
val (Qm, QM ), the graph of the entropy has only one local minimum
in each period, instead of two when the interval contains the value
0.5 for Q.

Note that the change α �→ 1 − α leaves q0 invariant and
flips the sign of �. It then suffices to plot graphs for α ∈
[0, 1/2]. For α = 1/2 we get � = 0, which gives a stationary
state (for all c). The same invariance of q0 and sign flip of �

is induced by c2 �→ 1 − c2.
In Fig. 4, we compare the von Neumann entropies of the

two density matrices ρ̄H (t ) and ρ̄hW (t ), directly seeing the
doubling of the period.

V. ENTANGLEMENT OF SYSTEM AND BATH
OSCILLATORS

The total Hilbert space H = HS ⊗ HB in (18) is bipar-
tite, one part being the singled-out oscillator (system), the
other being the remaining N oscillators (bath). We say that
a nonzero vector |ψ〉 ∈ H is of product form, or disentan-
gled, if |ψ〉 = |ψS〉 ⊗ |ψB〉 for some |ψS〉 ∈ HS and some
|ψB〉 ∈ HB. We call a nonzero |ψ〉 ∈ H entangled if it is not
of product form. The notion of being entangled or not does

FIG. 4. Comparing the entropies E (ρ̄hW (t )) (solid line, online in
green) and E (ρ̄H (t )) (dashed line, online in red) for the values c =
0.5 and α = 0, 0.15, 0.3, 0.45. The doubling of the period for α 
= 0
is manifest. The oscillations decrease as α approaches 0.5, which
gives the stationary state.

not depend on the metric determining the inner product of H.
Nevertheless, the physical interpretation of entanglement in
terms of independence of the subsystems S and B does depend
on the metric. The physical manifestation of disentangled
states is the independence of the two subsystems S and B.
Namely, if the inner product of H is given by a metric of
the form η = �S ⊗ �B (a particular example being 1S ⊗ 1B),
then measurement outcomes of observables on either of the
subsystems are independent random variables. This follows
because expectation values of observables OS ⊗ OB in a state
|ψS〉 ⊗ |ψB〉 split into products

〈ψS ⊗ ψB|η(OS ⊗ OB)ψS ⊗ ψB〉
= 〈ψS|�SOSψS〉〈ψB|�BOBψB〉.

However, those random variables become dependent (corre-
lated) if η is not of product form, because then their average
will not split into a product of a system term times a bath term.

In the model defined in Sec. III, the metrics η we con-
sider are restrictions to the subspace H1 of product metrics
�S ⊗ �B of H [cf. (32) and Appendix A]. The physical mean-
ing of SB entanglement in terms of subsystem independence
does therefore not depend on the choice of η within this class.
In other words, measurement outcomes of system and bath ob-
servables in |ψ〉 ∈ H1 are independent or dependent, accord-
ing to whether |ψ〉 ∈ H1 is disentangled or not, regardless of
the choice of η. It is then sensible to investigate the SB entan-
glement in pure states belonging to the subspace H1 for all η.

Any vector |ψ〉 ∈ H1 is of the form

|ψ〉 = A|eS〉 + B|eB〉, A, B ∈ C. (67)

In accordance with (23), we may write |eS〉 = |10〉 = |1〉 ⊗
|0〉 ∈ HS ⊗ HB and |eB〉 = |01〉 = |0〉 ⊗ |1〉 ∈ HS ⊗ HB.
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Explicitly, |0〉, |1〉 ∈ HS are the ground state and first excited
state of the system oscillator, and |0〉, |1〉 ∈ HB are the ground
state of all the N bath oscillators and the distributed excitation
state 1√

N

∑N
n=1 |1n〉, respectively; see (23).

We now show that

|ψ〉 of the form (67) is disentangled ⇐⇒ AB = 0. (68)

To see that the implication ⇒ in (68) holds, let ρS ≡
trB|ψ〉〈ψ | (partial trace over B). On the one hand, (67)
gives ρS = |A|2|1〉〈1| + |B|2|0〉〈0|. On the other hand, if |ψ〉
is disentangled, then ρS must have rank one since ρS =
trB(|ψS〉〈ψS| ⊗ |ψB〉〈ψB|) = |ψS〉〈ψS| ‖ψB‖2. This forces ei-
ther A = 0 or B = 0. Conversely, to see the implication ⇐ in
(68), we note that if either of A or B vanish, then |ψ〉 is is
proportional to |eB〉 or |eS〉, so |ψ〉 is disentangled.

1. Entanglement in the non-Hermitian system

An initial state |ψ (0)〉 = A|eS〉 + B|eB〉 evolves into
|ψ (t )〉 = e−itH |ψ (0)〉 = A(t )|eS〉 + B(t )|eB〉, where the time-
dependent coefficients are given in (36). According to (68),
|ψ (t )〉 is disentangled exactly if A(t )B(t ) = 0. Let us first
analyze the condition A(t ) = 0. This equality is equivalent to
the two equations

(ReA) cos(ωt ) + (ImB)
a1

a2
sin(ωt ) = 0,

(ImA) cos(ωt ) − (ReB)
a1

a2
sin(ωt ) = 0. (69)

The condition B(t ) = 0 is the same as (69) but with A ↔ B
swapped and a1 ↔ a2 swapped.

Suppose |ψ (0)〉 is disentangled, so AB = 0. Then exactly
one of A or B vanish and the equations (69) are satisfied
for ωt ∈ πZ (if A = 0) or for ωt = π

2 (2Z + 1) (if B = 0).
We conclude that |ψ (t )〉 is entangled except periodically at
discrete moments in time where it is disentangled.

On the other hand, if |ψ (0)〉 is entangled, then both A and
B do not vanish. If A and B are both real or both purely
imaginary, then (69) is not satisfied for any t . For all other
A and B (69) is satisfied for discrete, periodically repeating
values of t .

We conclude with the following.
(a) If the initial state |ψ (0)〉 is entangled and both A, B are

either purely real or purely imaginary, then |ψ (t )〉 is entangled
for all times t .

(b) With the exception of case (a) and regardless of the
entanglement in the initial state |ψ (0)〉, the state |ψ (t )〉 is
entangled except at periodically repeating instants.

2. Entanglement in the Hermitian systems

The Hermitian system pure state vector is given by [see
also (13)]

|φ(t )〉 = S|ψ (t )〉 = W
√

η|ψ (t )〉 = Ã(t )|eS〉 + B̃(t )|eB〉,
a normalized vector in H (with the original inner product),
where(

Ã(t )
B̃(t )

)
= T

(
A(t )
B(t )

)
, T =

√
x

a2

a1

(
a ba1/a2

c da1/a2

)
,

det T = x det W 
= 0 (70)

satisfy |Ã(t )|2 + |B̃(t )|2 = 1; cf. (48) and (50). It follows from
(68) that |φ(t )〉 is entangled if and only if Ã(t )B̃(t ) = 0. An
analysis of the latter equality along the lines of that carried
out after (69) shows that |φ(t )〉 is entangled except at isolated,
periodically reoccurring instants in time, just like the state of
the non-Hermitian system.

3. Effect of choice of W on entanglement

Given a state |ψ〉 = A|eS〉 + B|eB〉 of the non-Hermitian
system, the associated Hermitian system state is |φ〉 =
W

√
η|ψ〉. For the choice W = 1 we have

|φ〉 = √
η|ψ〉 =

√
xa2/a1A|eS〉 +

√
xa1/a2B|eB〉. (71)

Hence for W = 1, |φ〉 is entangled if and only if |ψ〉 is entan-
gled [recall (68)]. The metric η does not alter the property of
being entangled. Choosing a different W to build |φ〉 from
|ψ〉, however, changes this. It is not hard to see that the
unitaries W that map every product state (that is |eS〉 and |eB〉)
into another product state are exactly the diagonal and the
off-diagonal W . Furthermore, given an entangled

√
η|ψ〉 as

in (71), one can always find unitaries W such that W
√

η|ψ〉
is not entangled. Those W are precisely the ones with |a| =
|d| = √

a1/(xa2)|B| and |b| = |c| = √
xa2/a1|A|.6

We now examine the effect of W on the time-averaged
density matrix

〈ρ〉 = ω

π

∫ π/ω

0
|φ(t )〉〈φ(t )| dt, (72)

where we integrate |φ(t )〉〈φ(t )| = ρhW (t ) over one period, see
(51). A direct calculation yields

〈ρ〉 =
(

q0 z
z∗ 1 − q0

)
, z = (bc∗ + ad∗)xRe(AB∗), (73)

with q0 = 1
2 + 2xRe(AB∗)Re(cd∗), cf. (57). The density ma-

trix (73) is written in the basis {|eS〉 ≡ |10〉, |eB〉 ≡ |01〉} of
H1, using the same notation as after (67). We view H1 as a
subspace of the four dimensional space of two qubits, spanned
by the vectors {|00〉, |01〉, |10〉, |11〉}. In this basis, the density
matrix (73) takes the form

〈ρ〉 =

⎛⎜⎜⎝
0 0 0 0
0 1 − q0 z∗ 0
0 z q0 0
0 0 0 0

⎞⎟⎟⎠. (74)

We calculate the concurrence [25,26] of 〈ρ〉 to be7

C(〈ρ〉) = 2x|Re(AB∗)|. (75)

The concurrence of any two qubit density matrix is bounded
below by 0 (separable state) and above by 1 (maximally en-
tangled state). Both inequalities in

2x|Re(AB∗)| � 2x|A||B| � x
(a2

a1
|A|2 + a1

a2
|B|2

)
= 1

6This follows from the characterization (68) of product states and
the normalization ‖√η|ψ〉‖H = 1.

7In the present case, the square of the concurrence is the difference
between the two nonzero eigenvalues of the squared matrix 〈ρ〉2.
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[the last equality is the normalization (34), with x = x1 =
x2 > 0] are saturated exactly if AB∗ ∈ R and |A| = a1

a2
|B|.

We conclude that the concurrence of 〈ρ〉 is the same for all
choices of W , so it only depends on the initial state. The state
〈ρ〉 is separable if and only if Re(AB∗) = 0, and is maximally
entangled if and only if Im(AB∗) = 0 and |A| = a1

a2
|B|.

VI. CONCLUSION

The Dyson map assigns to a given quasi-Hermitian quan-
tum system an associated Hermitian system in a nonunique
way. We quantify the nonuniqueness by means of a metric
operator η and a unitary map W . The physical properties of
the Hermitian systems depend on the choice of W , and it
is not obvious how to capture the dynamics of the original
quasi-Hermitian system in its Hermitian counterparts, unless
there happens to be some universality throughout the Her-
mitian family. We describe an aspect of universality for a
quasi-Hermitian open system consisting of a single oscillator
coupled to a bath of N oscillators. We show that there is a
unique metric operator for which the reduced state of the
system (single oscillator) is a well-defined density matrix. Us-
ing this metric, we construct all Hermitian systems obtained
from the quasi-Hermitian one by varying W . We find that
the entropy of the single oscillator in the Hermitian system
evolves periodically in time with exactly double the period
of the corresponding entropy of the quasi-Hermitian system,
independently of W . We further show that the oscillator-bath
entanglement of the time-averaged state is independent of the
choice of W .
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APPENDIX A: DIAGONAL FORM OF η IS EQUIVALENT
TO PRODUCT FORM

We see above in (41) that η must be diagonal in order for
the populations of ρ̄H (t ) to be nonnegative and that conversely
if η is diagonal, then the populations of ρ̄H (t ) are positive. As
it turns out, η being diagonal is also equivalent to η being of
product form. More precisely, the following two statements
are equivalent:

(1) η is diagonal in the basis |eS〉, |eB〉 of H1;
(2) there are metrics �S and �B on HS and HB, respec-

tively, such that �S ⊗ �B leaves H1 invariant and η = �S ⊗
�B �H1 is the restriction of this product to H1.

Given η, the �S and �B are not unique.
Remark. This result on the structure of the metric η, namely

that (1) and (2) are equivalent, is entirely independent of the
specific form of the form of the Hamiltonian H .

Proof of (1) ⇔ (2).

Consider a bipartite Hilbert space H = HS ⊗ HB with an
orthonormal basis |vi j〉 = |ei〉 ⊗ | f j〉, the |ei〉 and | f j〉 being
orthonormal bases of HS and HB, respectively. Let H1 be
the two-dimensional subspace H1 = span{|v11〉, |v22〉}. In this
setup, |v11〉 is identified with |eS〉 and |v22〉 with |eB〉. Let
η > 0 be a strictly positive operator on H1.

We first show (1) ⇒ (2). Assume that η is diagonal, that is,
η = a|v11〉〈v11| + b|v22〉〈v22|, where a, b > 0. Set

�S = α1|e1〉〈e1| + α2|e2〉〈e2| + �⊥
S ,

�B = β1| f1〉〈 f1| + β2| f2〉〈 f2| + �⊥
B ,

where α1, α2, β1, β2 > 0 satisfy α1β1 = a, α2β2 = b and �⊥
S ,

�⊥
B are arbitrary positive operators on the orthogonal comple-

ments of span{|e1〉, |e2〉} and span{| f1〉, | f2〉} in HS and HB,
respectively. Then �S ⊗ �B is a metric on H which leaves H1

invariant and satisfies (�S ⊗ �B)|v j j〉 = η|v j j〉 for j = 1, 2.
Next we prove that (2) ⇒ (1). The orthogonal projection

onto H1 is given by

π = |v11〉〈v11| + |v22〉〈v22| = p11 ⊗ q11 + p22 ⊗ q22,

where pi j = |ei〉〈e j | and qi j = | fi〉〈 f j |. Since �S ⊗ �B leaves
H1 invariant, we have (�S ⊗ �B)π = π (�S ⊗ �B)π . Now

(�S ⊗ �B)π = �S p11 ⊗ �Bq11 + �S p22 ⊗ �Bq22 (A1)

and, with [�S]i j = 〈ei,�Se j〉 and similarly for �B,

π (�S ⊗ �B)π

= [�S]11[�B]11 p11 ⊗ q11 + [�S]12[�B]12 p12 ⊗ q12

= [�S]21[�B]21 p21 ⊗ q21 + [�S]22[�B]22 p22 ⊗ q22.

(A2)

Taking the partial trace over B in (A1) and (A2) and equating
the two results gives

[�B]11�S p11 + [�B]22�S p22 = [�S]11[�B]11 p11

+ [�S]22[�B]22 p22. (A3)

Since [�B]11, [�B]22 > 0 we get from (A3) that �S p j j =
[�S] j j p j j for j = 1, 2, so �S|e j〉 = [�S] j j |e j〉. Hence the
restriction of �S to span{|e1〉, |e2〉} is diagonal, �S =
[�1]11 p11 + [�S]22 p22 + �⊥

S , where �⊥
S is the block acting

on the orthogonal complement of that span. By taking the par-
tial trace over S in (A1) and (A2) and proceeding analogously,
we see that �B = [�B]11q11 + [�B]22q22 + �⊥

B . It follows
that (�S ⊗ �B)|v j j〉 = [�S] j j[�B] j j |v j j〉 for j = 1, 2, so

η = [�S]11[�B]11 |v11〉〈v11| + [�S]22[�B]22 |v22〉〈v22|
is diagonal.

APPENDIX B: CONDITIONS FOR ρ̄H (t ) = ρ̄hW (t )
AND E[ρ̄H (t )] = E[ρ̄hW (t )]

In this section we assume the metric η is of the form (31)
with x1 = x2 = x > 0. Recall the formulas (42) and (52) for
the quasi-Hermitian and Hermitian density matrices.

First we ask when the two reduced density matrices coin-
cide. We show that the following statements are equivalent:

1. ρ̄H (t ) = ρ̄hW (t ) for all t in an open interval I ⊂ R and
all A, B ∈ C;

2. ρ̄H (t ) = ρ̄hW (t ) for all t ∈ R and all A, B ∈ C;
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3. there are two real phases �1, �2, such that

W =
(

ei�1 0
0 ei�1

)
.

1. ⇒ 3.: Assume that ρ̄H (t ) = ρ̄hW (t ) for t ∈ I . Then
p(t ) = q(t ) for t ∈ I , where these quantities are given in (43)
and (56), respectively. Their equality is equivalent with

ξ1 + ξ2 cos(2ωt ) + ξ3 sin(2ωt ) = 0 for all t ∈ I, (B1)

with ξ1 = 2xRe(AB∗) Re(cd∗), ξ2 = −|c|2(1 − 2α) −
2xIm(AB∗)Im(cd∗), and ξ3 = −(1 − 2α)Im(cd∗) + 2x(1 −
|c|2)Im(AB∗). As the constant function and the sine and
cosine are three independent functions, and since (B1) holds
for all t in an interval, we conclude that ξ1 = ξ2 = ξ3 = 0.
Since ξ1 = 0 for all A, B and x > 0, we have Re(cd∗) = 0,
that is, Im(cd∗) = cd∗. The coefficients A, B and α are

related by (34) and (44), resulting in A = √
α
√

a1
xa2

ei f1 and

B = √
1 − α

√
a2
xa1

ei f2 , where f1, f2 ∈ R are phases. This

gives Im(AB∗) = √
α(1 − α) 1

x Im ei( f1− f2 ). Then ξ2 = 0 for
all A, B implies that

|c|2(1 − 2α) = −2
√

α(1 − α)cd∗ Im ei( f1− f2 )

for all f2, f2 ∈ R, α ∈ [0, 1].

This forces |c|2(1 − 2α) = 0 = α(1 − α)cd∗ for all α ∈
[0, 1]. Hence c = 0. Then due to (50), |d| = 1 and bd∗ = 0,
so b = 0, and statement 3 holds.

3. ⇒ 2.: Suppose c = 0. Then |d| = 1 and from (53) we
have q(t ) = x a1

a2
|B(t )|2, which equals the population of |0S〉 in

ρ̄H (t ), see (40). Therefore statement 2 holds.
2. ⇒ 1.: Obvious.
This completes the proof of the equivalence of the three

statements 1 to 3.
Next we ask when the entropies of the two density matrices

coincide. We show that the following statements 4 to 6 are
equivalent:

4. E[ρ̄H (t )] = E[ρ̄hW (t )] for all t in an open interval I ⊂ R
and all A, B ∈ C;

5. E[ρ̄H (t )] = E[ρ̄hW (t )] for all t ∈ R and all A, B ∈ C;
6. there are two real phases �1, �2 such that W is of either

of the two forms

W =
(

ei�1 0
0 ei�1

)
or W =

(
0 ei�1

ei�2 0

)
.

4. ⇒ 6.: Start by looking at the function E (q) =
−q ln(q) − (1 − q) ln(1 − q), for q ∈ [0, 1]. It is clear from
the graph of E (q) (see the left panel of Fig. 1) that E (q) =
E (q′) exactly if either q = q′ or q = 1 − q′. Consequently, if
E[ρ̄hW (t )] = E[ρ̄H (t )] for all t ∈ I , then for each t ∈ I individ-
ually, we have either p(t ) = q(t ) or p(t ) = 1 − q(t ). We now
show that the same alternative must happen for all t ∈ I .

Suppose first that p(t0) 
= 1 − q(t0) for some t0 ∈ I . Then
by the continuity of p(t ) and q(t ), we have p(t ) 
= 1 − q(t )
for all t in an open interval I0 ⊂ I around t0, so we must
have p(t ) = q(t ) for t ∈ I0. However, this means that ρ̄H (t ) =
ρ̄hW (t ) for all t ∈ I0. Hence, as statements 2 and 3 are equiv-
alent, W is of the diagonal form as given in point 3 above.
Similarly, if p(t0) 
= q(t0) for some t0 ∈ I , we obtain p(t ) =
1 − q(t ) as an interval around t0. Proceeding as in the proof of

the implication 1 ⇒ 3 above, this implies that a = d = 0, so
W is of the off-diagonal form given in statement 6 above.

6. ⇒ 5.: If W is of the diagonal form, then we already
showed that p(t ) = q(t ) when we proved 3 ⇒ 2. In the same
way, if W is off-diagonal, then one sees that p(t ) = 1 − q(t ).
In either case, E[ρ̄H (t )] = E[ρ̄hW (t )].

5. ⇒ 4.: Obvious.

APPENDIX C: ABOUT THE DYSON MAP

The idea of mapping a non-Hermitian Hamiltonian to a
Hermitian one was originally presented by Dyson in the
context of the theory of magnetization [11,12]. Let H be a
Hilbert space with inner product 〈·|·〉 and let H be an operator
on H that is not necessarily Hermitian with respect to 〈·|·〉.
Denote by |ψ (t )〉 = e−itH |ψ (0)〉 the solution of the evolution
equation

i∂t |ψ (t )〉 = H |ψ (t )〉. (C1)

Next, let S(t ) be a differentiable family of operators on H such
that S(t ) is invertible for each t , and set

|ϕ(t )〉 = S(t )|ψ (t )〉. (C2)

Passing from |ψ (t )〉 to |ϕ(t )〉 represents a (possibly time-
dependent) change of variables. The evolution equation for
|ϕ(t )〉 is

i∂t |ϕ(t )〉 = h(t )|ϕ(t )〉, (C3)

with

h(t ) = S(t )HS(t )−1 + iṠ(t )S(t )−1, (C4)

the dot being the time derivative. Conversely, if |ϕ(t )〉 solves
(C3) then |ψ (t )〉 solves (C1). Equation (C4) is called the time-
dependent Dyson equation [17]. By means of S(t ), one may
thus equivalently solve (C1) or (C3). Introducing a time de-
pendence in the transformation S(t ) changes the Hamiltonian,
and hence the physics of the problem. The time dependence
reflects some additional (external) action on the system. It was
shown in [27] that it results in forces analogous to the classical
Coriolis force. So generally, H and h(t ) describe different
physical systems. If H is not Hermitian, one can look for
S(t ) such that the resulting h(t ) is Hermitian, hence trading
a non-Hermitian problem with constant Hamiltonian H for
a Hermitian problem with time-dependent Hamiltonian h(t ).
One readily sees that

h(t )† = h(t ) ⇐⇒ i∂t [S
†(t )S(t )]

= H†[S†(t )S(t )] − [S†(t )S(t )]H. (C5)

The operator η(t ) = S(t )†S(t ) is automatically positive, so
η(t ) is a family of metrics. The equation for η(t ), according to
(C5), is

i∂tη(t ) = H†η(t ) − η(t )H. (C6)

This is called the quasi-Hermiticity relation in [14]; note that
it simplifies to (1) if η does not depend on time. It is clear
that (C6) has a unique solution for any initial condition η(0),
namely

η(t ) = e−itH†
η(0)eitH , (C7)
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and that η(t ) is positive for all times if and only if it is positive
at some t0.

A strategy to study the dynamics generated by a non-
Hermitian H is to find a transformation S(t ) such that h(t ),
as given by (C4), is Hermitian, and then analyze the dynam-
ics of this Hermitian system using usual quantum theoretical
methods. Finding S(t ) for a specific Hamiltonian H is not
easy, however. It often involves making a judicious ansatz
containing parameters that must solve rather complicated
differential equations, which are obtained by imposing the
self-adjointness of h(t ). This can be done explicitly for some
models [14–17,28–32].

Given H , we seek all possible S(t ), and the resulting
Hermitian Hamiltonians h(t ), with the sole requirement that
η(t ) = S(t )†S(t ) is positive and satisfies the quasi-Hermiticity
relation (C6). The solution η(t ) is uniquely determined by
the initial condition η(0), which we may choose to be any
positive, invertible operator. The most general form of S(t ) is
thus

S(t ) = W (t )
√

η(0)eitH , (C8)

where W (t ) is any unitary family and
√

η(0) denotes the
unique positive operator squaring to η(0). The h(t ) associated

to (C8) by (C4) is

h(t ) = iẆ (t )W (t )†. (C9)

Note that we are entirely free to choose W (t ). For instance,
given an arbitrary A = A†, the choice W (t ) = e−itA yields
h(t ) = A. This means any time-independent Hermitian h can
be obtained from a suitable choice of S(t ). A particularly
simple choice is S(t ) = eitH , which results from undoing the
dynamics e−itH (going backwards in time) and has h = 0.

More generally, suppose A(t ) is a continuous family of
operators, and let W (t ) solve the differential equation

iẆ (t ) = A(t )W (t ). (C10)

It is easily shown that if A(t ) = A(t )† for all t and the initial
condition W (0) is unitary, then the solution W (t ) is unitary
for all t . Choosing this W (t ), we find from (C9) the Hermi-
tian Hamiltonian h(t ) = iẆ (t )W (t )† = iẆ (t )W (t )−1 = A(t ).
This means any time-dependent Hermitian h(t ) can also be
obtained from a suitable choice of S(t ).
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