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Quantum Stirling heat engine operating in finite time
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In a quantum Stirling heat engine, the heat exchanged with two thermal baths is partly utilized for performing
work by redistributing the energy levels of the working substance. We analyze the thermodynamics of a quantum
Stirling engine operating in finite time. We develop a model in which a time-dependent potential barrier changes
the energy-level structure of the working substance. The process takes place under a constant interaction with the
thermal bath. We further show that in the limit of slow operation of the cycle and low temperature, the efficiency
of such an engine approaches Carnot efficiency. We also show that the maximum output power, for the strokes
that affect the energy levels, is obtained at an intermediate operating speed, demonstrating the importance of a
finite-time analysis.
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I. INTRODUCTION

In quantum thermodynamics, quantum heat engines [1–9]
and quantum refrigerators [10–13] occupy a central position.
As opposed to a classical heat engine, quantum heat en-
gines use quantum matter as their working substance [1,14–
18] and operate at length scales where quantum effects are
dominant. Quantum heat engines have become test beds for
probing the most fundamental questions of quantum thermo-
dynamics such as the definitions of work, heat, efficiency,
and power in the nanoscale. Quantum analogs of various
classical heat engines are being employed to test versions
of thermodynamic concepts in the quantum regime [19–21].
They can be employed to investigate the differences between
classical and quantum thermodynamic systems and better our
understanding of the quantum-classical transition problem of
thermodynamic processes [22]. The advent of quantum tech-
nology has provided a boost to the research in the area of
quantum heat engines. Significant strides have been made
to better understand how the operations of heat engines and
heat cycles in various experimental platforms like trapped
ions, quantum dots, superconducting qubits, etc., depend on
quantum effects such as quantum adiabaticity, discreteness of
energy levels, quantum statistics, quantum coherence, quan-
tum measurement, and quantum entanglement [23–32]. The
investigation of quantum heat engines and quantum refrig-
erators has great significance in connection to the efficient
manipulation and management of heat in microscopic devices
and quantum circuits and resetting the state of quantum sys-
tems [33–39].

Quantum heat engines can be realized in a variety of ways
and can be operated using a variety of cycles [15,16]. Notable
examples of quantum heat engines are the single-atom heat
engine with trapped ions [23], the three-level quantum heat
engine [1], the quantum Otto cycle engines [19,20,23,40–
44], the quantum Carnot heat engines [18,45–47], and the

measurement-based heat engines [48–53]. Particularly in
measurement-based quantum engines, a measurement opera-
tion can be used to replace a thermal bath. Certain quantum
heat engines, using measurement, can use the measurement
result as feedback to update the state of knowledge of the
working substance for the next cycle. Interesting examples
of such engines are the quantum Maxwell demon engines
[17,18,54,55] and the quantum Szilard engine [56–60].

In a quantum Szilard engine, the work is extracted due
to the reorientation of energy levels of a one-dimensional
potential box and feedback from a measurement result. The
reorientation is achieved by quasistatically inserting and re-
moving a potential barrier in the middle of the potential box
while being in equilibrium with a thermal bath. Comparing
a stage of the cycle where there is no potential barrier to
a stage where the insertion of the barrier is complete, the
system transitions to a one-dimensional double-well potential,
each well having half the size of the original single well or
potential box. As a result, the new energy spectrum is doubly
degenerate. A similar idea of extracting work by changing
the energy spectrum can be used in a quantum heat engine
operating a quantum Stirling cycle [61]. Generally, a quantum
Stirling cycle consists of an isothermal compression when in
contact with a hot bath, an isochoric thermalization following
a change in contact from a hot bath to a cold bath, an isother-
mal expansion when in contact with a cold bath, and finally
an isochoric thermalization following the change in contact
from a cold to a hot bath. The version of the quantum Stirling
engine exploits the changing degeneracy of the potential box.
The isothermal compression and isothermal expansion steps
are achieved by the insertion and removal of the potential bar-
rier while in contact with the hot and cold baths, respectively,
as is done in a quantum Szilard engine. However, unlike the
quantum Szilard engine, it does not require the measurement
and the feedback steps and operates with two thermal baths.
It has been shown that in the low-temperature and quasistatic

2469-9926/2023/108(1)/012220(10) 012220-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3842-3231
https://orcid.org/0000-0002-1934-3439
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012220&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.1103/PhysRevA.108.012220


DAS, THOMAS, AND JORDAN PHYSICAL REVIEW A 108, 012220 (2023)

limit, the efficiency of the engine approaches the Carnot value
[61]. Recently, many investigations have been carried out with
quantum heat engines based on the degeneracy of the working
substance [44,62,63]. Reference [62] explores a relativistic
quantum Stirling engine, using a potential box as the working
substance, and bounds the work extraction of the quantum
heat engine from the point of view of the uncertainty prin-
ciple. The bound on work extracted and efficiency is further
elaborated in Ref. [64]. Reference [63] realizes a quantum
Stirling engine using a harmonic-oscillator potential instead
of a potential box.

In above-mentioned quantum heat engines, the insertion
and removal of the potential barrier is necessarily quasistatic.
The quasistatic analyses of various thermodynamic cycles are
important as they provide limits that serve as a benchmarks
to compare the performances of more realistic models. On
the other hand, finite-time thermodynamic cycles and open
quantum system treatment are essential to find practical es-
timates of the performance measures of the quantum heat
engines. To make the analysis more realistic, in this paper we
introduce finite insertion and removal for the barrier with a
quantum Stirling engine and separately consider the effect of
the thermal bath on the working substance.

Notably a finite-time quantum Stirling engine has been an-
alyzed in Ref. [65]. This model considers a working substance
which is a two-level system. In the quasistatic version of this
quantum Stirling cycle, the working substance first undergoes
an isothermal compression at temperature Th during which
the energy gap reduces. This is followed by an isochoric
thermalization starting with disconnecting the thermal bath
at temperature Th and then connecting to a thermal bath at
lower temperature Tc. Next an isothermal expansion is car-
ried out at the temperature Tc, leading to an increase in the
energy gap. The cycle ends with an isochoric thermalization
effected by disconnecting the working substance from the
thermal bath at temperature Tc and connecting it back to the
thermal bath at temperature Th. In particular, the isothermal
expansion and compression steps are carried out by means of a
driving protocol which can be adjusted to make the processes
faster, thus departing from the quasistatic limit and entering
the finite-time regime. At the end of the first step a decrease in
the energy gap is achieved, but the levels are never degenerate
or nearly degenerate.

In this paper we design a quantum heat engine that operates
a quantum Stirling cycle in finite time. We take two thermal
baths at temperatures Th and Tc and and put the system in
contact with these baths while inserting and removing the
potential barrier, respectively. We treat the interaction of the
working substance with the heat baths using a Lindbladian
master equation, leading to the thermalization. We describe
the thin time-dependent potential barrier in the middle of the
potential box as a δ-function potential with height changing
in time. The effect is equivalent to the drive used in Ref. [65];
however, a sufficiently large potential barrier at the end of the
insertion step brings pairs of energy levels close enough to be
effectively doubly degenerate. Another point of difference is
that the working substance we use is not a two-level system
but a one-dimensional potential well, allowing us to consider
a higher number of energy levels. Finally, the dynamics of
[65] is non-Markovian. On the other hand, as we will see,

FIG. 1. Four steps of a classical Stirling cycle. In step 1 an
isothermal insertion of a barrier is carried out at higher temperature
Th. The temperature is changed from Th to Tc, a lower temperature, in
step 2. In step 3 the isothermal removal of the barrier is performed at
the lower temperature Tc. In the last step, step 4, the temperature is
changed back to Th.

we consider that in such an interaction with the thermal bath
it is possible for the dynamics to be Markovian. Our model
is a finite-time version of the quantum Stirling heat engine
analyzed in Ref. [61]. To investigate the thermodynamics in
the fast regime of insertion of the potential barrier, we con-
sider shorter and shorter times of interaction of the working
substance with the thermal bath. We numerically vary a pa-
rameter proportional to the length of this time duration of
interaction to explore the heat exchanged with the thermal
baths and work output in every stroke of the cycle over the
entire range of time duration. We show that in the limit of
very long time duration of interaction with the thermal baths
and for the choice of very low temperatures, the total work
output approaches the quasistatic limiting value while the
efficiency of the heat engine approaches the corresponding
Carnot efficiency. This mirrors the quasistatic behavior of the
quantum Stirling engine at low temperatures. In addition, it is
shown that the maximum output power for the insertion and
removal steps is achieved for a value of efficiency well below
the Carnot efficiency value or, in other words, for a speed of
driving that does not yield high-efficiency values.

The paper is organized as follows. In Sec. II we present
the detailed model of the time-dependent potential barrier and
interaction with the thermal baths, necessary for the design
of the quantum heat engine. In Sec. III we discuss how the
quantum heat engine performs in different regimes of oper-
ation rates in terms of work output, energy, and power. We
conclude in Sec. IV with a summary and a discussion of
potential directions for future work.

II. MODEL

A quantum Stirling cycle is operated between two thermal
reservoirs and has four steps (see Fig. 1 for the classical
Stirling cycle). Initially, the system is in equilibrium with a
thermal bath at temperature Th. As a first step of the cycle, a
potential barrier is quasistatically inserted in the middle of the
potential box, keeping the temperature fixed at Th. After the
insertion of the potential barrier is complete, the temperature
is changed by removing the high-temperature thermal bath
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and bringing the system to equilibrium with a thermal bath at
a lower temperature Tc. In the next step, the potential barrier
is quasistatically removed, keeping the temperature fixed at
Tc. Finally, the thermal bath at temperature Tc is removed and
the system is again brought to equilibrium with the higher-
temperature thermal bath Th. At very low temperatures and/or
with boxes of sufficiently small lengths, the efficiency of such
a quantum heat engine approaches the Carnot efficiency [61].

Now the quasistatic operation of the quantum Stirling cycle
is a highly idealized situation and should take infinite time
to complete. Our main motivation is to design a quantum
heat engine that works exclusively on quantum features but
at the same time is close to practical realization. To perform
the process in practice, we thus require an understanding of
the processes of insertion and removal of the potential barrier
in finite time. An analysis of how the energy levels shift
and change with a δ-function potential barrier of growing
height has been done in Ref. [66]. However, this result is not
translated to understanding the thermodynamics of the com-
plete cycle and how the physics changes and what interesting
effects appear over different speeds of operation in terms of
insertion and removal of the potential barrier. In addition, it is
very important to note that these processes take place under
a constant interaction with thermal baths and the working
substance is constantly subjected to thermalization. Therefore,
any analysis of these processes must necessarily include the
added interaction of the thermal baths treated with the help of
techniques of open quantum system dynamics.

To describe a quantum heat engine operating a quantum
Stirling cycle in finite time, we need to model the insertion
and removal of the barrier in a way that is consistent with
quantum mechanics. In addition to this, we must deal with
the interaction of the heat engine with the thermal baths ac-
cordingly. A Stirling cycle begins with a particle (or many
particles) in a chamber in equilibrium with a heat bath at a
temperature Th. The chamber is impervious to any particle but
is able to exchange heat with the thermal bath. To realize the
quantum version of the cycle, the chamber is replaced by a
one-dimensional potential box and a potential barrier in the
form of a δ potential of increasing or decreasing height, with
time, is placed in the middle to simulate the insertion and
removal of the partition, respectively.

At any time t , the potential profile of the system for a
potential box of length 2a with a barrier in the middle is given
by

V (x, t ) =
{

α(t )δ(x), −a < x < a

∞, x < −a, x > a,
(1)

with α(0) = 0 in the case of insertion. We now explain how
we describe the speed of operation of the cycle. By speed
of operation we refer to how rapidly the potential barrier is
inserted or removed. We can choose a constant increase �α in
the height of the potential barrier corresponding to each time
step �t . In this approach, we consider that the insertion or
removal of the barrier consists of adiabatic and thermalization
steps. The time taken for each adiabatic step is �t ′, during
which α → α + �α. After each adiabatic step, the system is
in contact with the bath and thermalization takes place for
�t = r�τ time. Thus each thermalization step following an

adiabatic change of the potential barrier height is made up of r
elementary thermalizations of equal duration �τ . We consider
the limit �t ′ → 0, i.e., a sudden process. Therefore, the total
time taken for the composite step is r�τ . The quasistatic limit
is achieved when r → ∞ with finite �t = r�τ . This scenario
is equivalent to the case where the system is in contact with
thermal bath throughout and r discrete steps, during which the
height of the barrier changes as α → α + �α and the interval
between the discrete steps is �τ . A large �t would then
indicate a slowly driven process leading to a longer interaction
with the thermal bath and a longer time to thermalize, with α

remaining constant through the duration of the thermalization.
The reasoning can be applied accordingly for a fast process.
Figure 2 helps to better understand these representations and
the relationships between the time durations and the differ-
ence between a fast and a slow process.

The adiabatic insertion of a potential barrier in a potential
box and thereby splitting the wave function into two parts has
been treated extensively in Ref. [66]. The exercise is essen-
tially solving for the energy eigenfunctions and eigenvalues
of a potential box with a time-dependent potential barrier.
Therefore, we use these results to treat the insertion as well
as the removal of the barrier. We consider the potential box to
be extending from −a to +a, in the x direction, and locate the
time-dependent potential barrier at x = 0. In this approach,
the time-dependent Hamiltonian of a particle of mass m cor-
responding to the insertion of the potential barrier is given by

H (x, t ) = − h̄2

2m

∂2

∂x2
+ α(t )δ(x). (2)

If |ψn(x, t )〉 is the instantaneous eigenfunction of the Hamil-
tonian H (t ), corresponding to the eigenvalue En(t ),

H (x, t )|ψn(x, t )〉 = En(t )|ψn(x, t )〉. (3)

In the case of a potential box in one dimension of length
2a with the potential barrier of increasing height being in-
troduced in the middle, using Ref. [66], the wave functions
corresponding to the instantaneous eigenvectors are given by

ψn(x, t ) =
{

An(t ) sin kn(t )[x + a], −a < x < 0

Bn(t ) sin kn(t )[x − a], 0 < x < a,
(4)

where kn(t ) =
√

2mEn (t )
h̄ and

An(t ) =
(

a − sin 2kn(t )a

2kn(t )

)−1

. (5)

For odd n, we have Bn(t ) = −An(t ) and for even n we have
Bn(t ) = An(t ). Note here that∫ 0

−a
|ψn(x, t )|2dx = 1

2
,

∫ a

0
|ψn(x, t )|2dx = 1

2
. (6)

We now bring the thermal bath into the picture. Consider
the system to be in equilibrium with a thermal bath at temper-
ature T . A useful description of such a system is the thermal
state ρ, in which the population of each energy level of the
potential box depends on the temperature of the system, in
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FIG. 2. Slow vs fast process in a quantum Stirling engine. Every time step begins with an adiabatic increase �α of the height of the
potential barrier in a duration �t ′. Eventually we consider that �t ′ → 0 so that this adiabatic increase is instantaneous. After this the working
substance is in contact with a thermal bath for a duration �t = r�τ . For a slow process, r is considerably larger than for a fast process. The
quasistatic limit is achieved for r → ∞.

this case the bath temperature. Accordingly, at the beginning
of the cycle,

ρ(0) = e−βH (0)

Tr(e−βH (0) )
= 1

Z0

∑
n

e−βEn (0)|ψn(0)〉〈ψn(0)|, (7)

where β = 1
kBT and Z0 = ∑

n e−βEn (0) is the canonical parti-
tion function of the system.

As the potential barrier is changed, the energy spectrum of
the system changes. Heat is exchanged with the bath and work
is performed. Let us understand the isothermal insertion of the
potential barrier. Starting from an initial state where there is no
barrier, as the barrier is introduced, the odd-numbered energy
levels begin shifting towards the next higher even-numbered
energy levels that remain stationary. This can be very easily
seen from Eq. (4). The even-numbered wave functions have
nodes at x = 0 throughout the entire process and hence do not
undergo any change in their shapes. On the other hand, the
odd-numbered wave functions have antinodes at x = 0 and
consequently, with the increase in the height of a potential
barrier, dips appear in the wave function and then grow at
that point, culminating in the points being transformed into
nodes when the barrier reaches infinity. The previously odd
energy levels now coincide with their next higher even energy
levels and the new energy levels are doubly degenerate. At this
point it is important to clarify what we mean by the height
of the potential barrier to be infinity. For very large values
of t , the potential barrier is very high and the time required
for tunneling of a particle from one side of the well to the
other is significantly higher than the time of thermodynamic
processes. So for all practical purposes, we consider that after
such a long time, the height of the barrier is infinity and

the insertion is complete. In other words, the single infinite
potential well has now been converted to a double well.

As the insertion of the barrier is performed with the sys-
tem in contact with a thermal bath, the system is now an
open quantum system and cannot be described by closed
system dynamical equations. The Schrödinger–von Neumann
equation is no longer sufficient for such situations. We use
Lindblad’s master equation to study the dynamics of such
systems,

ρ̇ = − i

h̄
[H, ρ] +

∑
k

γk (Nωk + 1)[LkρL†
k

− 1

2
(L†

k Lkρ + ρL†
k Lk )] +

∑
k

γkNωk [L†
kρLk

− 1

2
(LkL†

kρ + ρLkL†
k )], (8)

where the set of operators {Lk} are called jump operators or
Lindblad operators and are given by Lk = |ψk−1(t )〉〈ψk (t )|.
Essentially, they cause transitions from the kth to the (k − 1)th
energy level in the potential well. Note that the Lindblad
operators are defined with respect to instantaneous eigenbasis
of the Hamiltonian at every step lasting time �t . Here γk

is the decay rate corresponding to the transition Lk . In this
paper we work with an Ohmic bath so that γk ∝ �ωk , where
�ωk = Ek−Ek−1

h̄ [67–69]. Here Nωk = 1
eβ h̄�ωk −1

represents the
Bose-Einstein distribution function for the angular frequency
transition �ωk . The first term containing the commutation of
the system Hamiltonian and the density operator gives the
unitary evolution. The second and third terms are the results of
interactions with the thermal bath accompanied by transitions
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from an energy level to the next lower level and vice versa,
respectively.

Note that Eq. (8) is Markovian. This can be ensured in the
following way. The decay rate should be such that γk ∝ g2,
where g is the coupling between the system and the bath. In
the regime g 	 �ωk , the coupling is weak and the process
is Markovian [68,69]. The point to be noted is that at certain
times, say, at the end of the first step or at the beginning of
the third step of the quantum Stirling cycle, �ωk → 0. This
corresponds to the limit when pairs of energy levels overlap
or nearly overlap and result in near degeneracy. In this limit of
�ωk → 0, the process is no longer Markovian. However, the
contribution of this limit towards work output is negligible
and hence the process remains practically Markovian for the
entire duration of the insertion and the removal steps.

We now briefly recapitulate how we intend to enforce the
speed of a process. As discussed earlier, if for a constant value
of barrier height α, the time duration �t for which the system
interacts with the thermal bath is longer, then the process is
slow. However, if for a constant α, �t is smaller, then the
process is fast. As defined earlier, the time duration is �t =
r�τ . Here �τ is an elementary constant time duration and r
is a parameter that determines the speed of operation of the
cycle. Thus a larger r means a larger �t and hence a slower
process and so on.

Suppose at any given time t the state of the system is

ρ(t ) =
∑

n

∑
m

pnm|ψn(t )〉〈ψm(t )|, (9)

with pmn ∈ C. The instantaneous height of the potential bar-
rier is α and the Hamiltonian of the system at this stage is
given by

H (t ) =
∑

n

En(t )|ψn(t )〉〈ψn(t )|. (10)

At the beginning of the next time step, there is a sudden
change α → α + �α and then α remains constant for the
entire duration �t . With the change in α, the energy eigenval-
ues and the corresponding eigenfunctions shift. Consequently,
there is also a change in the Lindblad operator Lk . The new
Hamiltonian of the system is given by

H (t + �t ) =
∑

n

En(t + �t )|ψn(t + �t )〉〈ψn(t + �t )|.
(11)

At the end of the first elementary time �τ , with �τ → 0, the
density operator updates according to

ρ(t + �τ ) = ρ(t ) + ρ̇(t )�τ, (12)

and for the entire time step �t this gives

ρ(t + �t ) = ρ(t ) +
r−1∑
m=0

ρ̇(t + m�τ )�τ. (13)

In any time step, the heat exchanged with the thermal bath is
given by

�Q(t, t + �t ) = Tr{H (t )[ρ(t + �t ) − ρ(t )]}, (14)

while the work done is

�W (t, t + �t ′) = Tr{[H (t + �t ′) − H (t )]ρ(t )}. (15)

To obtain the heat exchanged or work done for a complete
step of the cycle such as insertion or removal of the potential
barrier, one simply has to add the contributions of each time
step as given by Eqs. (14) and (15). Therefore, we have

Qins =
n�t∑
i=1

�Q(ti, ti + �t ),

(16)

Wins =
n�t∑
i=1

�W (ti, ti + �t ),

where the n�t represents the number of time steps required to
introduce the potential barrier for a given increase �α or vice
versa for removal of the barrier.

As discussed earlier, to demonstrate our point using the
example of the insertion of the potential barrier, the process is
complete when the barrier height is infinity. This means that
the barrier height must be large enough so that the timescales
of all thermodynamic operations, such as changing the bar-
rier height, are much shorter than the time required for any
tunneling of a particle. Another way to determine whether
the insertion of the potential barrier is complete is to check
whether an odd energy level coincides with or is sufficiently
close to the next higher even energy level. Similar reasoning
can be used for the step involving the removal of the potential
barrier, only in reverse.

We must also take into account the heat exchanged in the
other two steps of the cycle, in which the working substance
is disconnected from one thermal bath at temperature Th (Tc)
and brought into equilibrium with the other bath at temper-
ature Tc (Th). Let us take one of the cases. When the bath
at temperature Th is removed and the system is allowed to
go to equilibrium with the bath at temperature Tc, the initial
state is a nonequilibrium state ρh(tins) with a configuration of
eigenstates {|ψn(tins)〉} achieved at the end of barrier inser-
tion at time tins when they correspond to energy eigenvalues
{En(tins)}. When the system goes into equilibrium with the
thermal bath at the lower temperature Tc, the new state is a
thermal state given by

ρc(thc) = 1

Z (Tc)

∑
n

e−β(Tc )En(tins )|ψn(tins)〉〈ψn(tins)|, (17)

where Z (Th,c) = ∑
n e−β(Th,c )En , β(Th,c) = 1

kBTh,c
, and we have

assumed that the system goes into equilibrium with the bath at
temperature Tc at a time thc. Note that, during this stroke of the
cycle, the energy eigenvalues and eigenstates do not change.
The heat lost to the bath in this step is then given by

Qhc = Tr{H (tins)[ρc(thc) − ρh(tins)]}. (18)

We can use similar logic to calculate the heat Qch absorbed by
the system at the next interchange of the thermal baths after
the removal of the potential barrier.

The heat exchanged and the work done by the quantum
Stirling engine is now straightforward:

Q = Qins + Qhc + Qrem + Qch,

W = Wins + Wrem. (19)
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The efficiency is given by

η = 1 + Qhc + Qrem

Qch + Qins
. (20)

The expression for power for the steps involving insertion and
removal of the potential barrier is

P = W

2rn�t�τ
. (21)

As a reminder, first we consider that the system is in
equilibrium at the beginning of the strokes involving insertion
and removal of the potential barrier. Second, the expression
for power in Eq. (21) does not take into account the time
taken by the nonequilibrium states at the end of insertion or
removal of the potential barrier to go into equilibrium follow-
ing changes in contact with thermal baths, corresponding to
the isochoric strokes. In the subsequent section we evaluate
the performance of the quantum Stirling engine in different
regimes of operation, in terms of the speed of operation, using
numerical simulations.

III. NUMERICAL SIMULATIONS AND PERFORMANCE
OF THE FINITE-TIME STIRLING ENGINE

In this section we investigate the extractable work, ef-
ficiency, and power of the quantum heat engine we have
modeled, at low temperatures. The numerical simulations are
performed for thermal baths at temperatures Th = 0.1 K and
Tc = 0.05 K and considering the first four levels of the po-
tential well so that nmax = 4. The elementary time step �τ is
chosen to be very small, 2π h̄

10 000(E4−E3 ) . The half-length of the
potential box a = 20 nm and m = me, the mass of electron.
The decay rate for the kth transition is chosen as γk = �ωk

50 to
ensure a Markovian evolution as discussed earlier. For the first
set of study, we choose �α = E1

σ
, with σ = 50, and recall that

�α is the change in the height of the potential barrier in the
vanishing time �t ′. In the next set of study, data are generated
using σ = 100 so that during insertion, in each vanishing time
�t ′, the increase in the height of the potential barrier is much
smaller.

It is interesting to study work output of a finite-time quan-
tum Stirling engine in different regimes of operation. As
discussed before, we control the speed of operation by varying
the time of interaction of the working substance with the
thermal bath for a constant value of the height of the potential
barrier. Therefore, the higher this interaction time, the slower
the process. We plot the work output with the parameter r,
which is proportional to the duration of the time step for the
two values of �α (see Fig. 3).

Clearly, the behavior can be divided into two separate
regimes. For very small values of r, the speed of driving is
very fast and the work output is negative. This indicates that
the system heats up as a result of internal friction. In this
region the system does not function as a heat engine. In the
regime where work extracted is positive, the system functions
as a heat engine and for large values of r, the work out-
put asymptotically tends to a limiting value kB(Th − Tc) ln 2,
which is the low-temperature case for quasistatic speed of
operation [61]. The plot for the larger value of change in the
height of the potential barrier in vanishing time �t ′, i.e., �α,

FIG. 3. Plot of work output W , in units of kBTc, vs cycle speed
r for Th = 0.1 K and Tc = 0.05 K. The speed of the operation de-
creases as r increases. The plot can be divided into two regimes,
corresponding to the different signs of W . For a very fast driving
regime, W is negative and the system does not function as a heat
engine. In the regime where W is positive, useful work is extracted
and the system functions as a heat engine. For very slow operation W
approaches the value kB(Th − Tc )ln2 (blue dotted line), which is the
value of work output for a quantum Stirling engine driven quasistati-
cally. The purple and red plots represent different changes �α = E1

50

and E1
100 , respectively, of the potential barrier in the vanishing time

for �t ′.

is shifted to the right with respect to the smaller value plot.
The larger �α requires a larger value of r or a longer time to
interact with the heat bath to reach the regime where useful
work can be extracted.

We witness this behavior once again for efficiency of the
quantum Stirling engine as a function of r as shown in Fig. 4.
In the limit of very slow driving or large values of cycle
speed r, the efficiency of the quantum heat engine approaches

FIG. 4. Plot of efficiency η vs cycle speed r for Th = 0.1 K and
Tc = 0.05 K. Here η increases with r, which means the quantum
Stirling engine is more efficient when operated slowly. In very slow
operating regime, η asymptotically tends to the Carnot efficiency
value of 0.5 (blue dotted line). The purple and red plots correspond
to �α = E1

50 and E1
100 , respectively, which are different changes of the

potential barrier in vanishing time �t ′.
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FIG. 5. Plot of power P in attowatts vs efficiency η. The maxi-
mum P is reached for an intermediate value of η, much lower than the
limiting value of Carnot efficiency at quasistatic rate. For �α = E1

50
(purple solid line), Pmax = 75.71 aW corresponds to η = 0.39 (purple
dashed line). The maximum power Pmax = 71.53 aW is lower for
�α = E1

100 (red solid line) and this also corresponds to a lower value
of efficiency η = 0.36 (red dashed line) of the heat engine.

the Carnot efficiency at the corresponding temperatures. This
aspect of the quasistatically driven quantum Stirling engine at
low temperatures was shown in Ref. [61]. The dependence on
�α matches our intuition discussed regarding the W vs r plot.

Another property of the quantum Stirling engine driven in
finite time is seen from the plot of power, for the insertion and
removal steps, as a function of efficiency in Fig. 5. We point
out once more that at the beginning of these steps, the working
substance is considered to be in equilibrium with the respec-
tive thermal bath. The time required for the nonequilibrium to
equilibrium state transition is not considered in the expression
for power. Interestingly, the maximum power of the engine
is not achieved at maximum efficiency. We have already seen
that maximum efficiency is reached in the limit of quasistatic
speed of operation or very large r (see Fig. 6). However, power
reaches its maximum at a lower value of cycle speed r, i.e., at
an intermediate speed of operation. This important aspect is
a different result, not in previous treatments of the quantum
Stirling engine. The maximum power achieved for a change
in potential barrier �α = E1

50 in time �t ′ is greater than that
for �α = E1

100 . Also, the value of efficiency corresponding to
the maximum power for the former is greater than in the other
case.

Clearly, to understand the operation of the quantum Stirling
heat engine, we need to appreciate the interplay of the param-
eters �α and r. The larger value of r corresponds to a longer
time available to thermalize and hence a slower process. The
maximum output powers in the two cases show that most
efficient operation does not yield maximum power.

To better understand the role of �α, the change in the
potential barrier in the vanishing time step �t ′, we analyze
the plot of maximum power with the ratio σ = E1

�α
as shown

in Fig. 7. To expand on this, σ is a quantity that has a bearing
on the change in the potential barrier in time �t ′. A higher
value of σ implies that this change is smaller and vice versa.
As the value of σ is decreased from 100, we first observe

FIG. 6. Plot of power P in attowatts vs r. The maximum P is
achieved for r = 650 (purple dashed line) in the case of �α = E1

50
(purple solid line) and for r = 450 (red dashed line) in the case
of �α = E1

100 (red solid line). The corresponding maximum values
of power are 75.71 and 71.53 aW, respectively. This indicates that
the quantum Stirling engine gives the highest power at an operating
speed which is neither too fast nor too slow, for a given choice
of �α.

a gradual increase in maximum power (due to greater work
output). However, below σ = 4, we see a sharp decline in the
value of maximum power. It should be noted that the lower the
value of σ , the greater the change in the height of the potential
barrier in �t ′. Consequently, a larger value of r is required to
extract useful (positive) work, as we have seen in Fig. 3. As we
decrease σ beyond the maximum value of maximum power,
the r needed to achieve useful work increases greatly. Thus a
much larger time �t is need to get thermalized and this causes
the sudden decrease of maximum power.

The efficiency at maximum power for finite-time quantum
heat engines is usually given by Curzon-Ahlborn effi-
ciency [40,70–74]. However, in our work we cannot include
the Curzon-Ahlborn value in our discussion as we have
considered, for simplicity, instantaneous thermalization in
steps 2 and 4 (labeled in Fig. 1) of the quantum Stirling cycle.

FIG. 7. Plot of maximum power output vs σ . A lower value of σ

indicates a greater change �α in the barrier height in time �t ′. As σ

is lowered from 100, we first see an increase in the maximum output
power and then a sharp decline.

012220-7



DAS, THOMAS, AND JORDAN PHYSICAL REVIEW A 108, 012220 (2023)

FIG. 8. Plot of output power as a function of r and σ in the
regime of slow insertion and removal of the potential barrier. For
a constant value of σ , larger values of output power are obtained for
intermediate values of r. In the upper half of the plot, for a constant
r, a decrease in σ results in an increase in output power. In the lower
half of the plot, however, the opposite is observed.

The summary of our results can perhaps be best expressed
using a contour plot of output power as a function of r and
σ (or equivalently �α) as shown in Fig. 8. The dependence
of output power on r and σ is demonstrated in the regime of
relatively slow insertion and removal of the potential barrier.
In this regime, for a constant value of σ , the power increases
with an increase in r and then decreases. The larger values of
power are achieved at intermediate values of r. This behavior
mirrors what we have previously seen in Fig. 6. If, on the
other hand, r is kept constant at a high value (roughly in the
top half of the plot) and σ is decreased progressively, we see
an increase of the power. This aspect is related to the tail
end of the plot (on the right side of the peak) in Fig. 7. The
idea that can be understood from this plot is that if r is kept
constant at a relatively low value (roughly the lower half of
the plot) and σ is decreased, we see a decrease of the power
output.

In the regime of very fast insertion and removal of the po-
tential barrier or for σ < 4, we should see a different behavior.
Here power decreases as we decrease σ and this is related to
the behavior seen in Fig. 7 on the left side of the peak. How-
ever, positive output power in this region requires very large
values of r (�106) and many points are difficult to obtain for
the purpose of plotting. Hence we have concentrated on the
regime of slow driving speed. In particular, certain points in
the white regions the plot represent values of r and σ where
there is no output power.

Let us recapitulate our results. The quantum Stirling cycle
is realized in two ways. In the first approach, the length of
the time step is varied and the change in the height of the
potential barrier is kept constant. In this way a longer time step
corresponds to a longer interaction time with the thermal bath
and a slower cycle. We see that a quantum Stirling engine does
not yield useful work if operated very fast. In the quasistatic
regime, the efficiency approaches the Carnot efficiency. How-
ever, the output power is higher when the quantum Stirling

cycle is operated faster than the quasistatic rate of operation,
although the efficiency progressively declines. In the second
approach, the time step is constant but the change in the height
of the potential barrier is varied. A bigger change corresponds
to a faster cycle. We see that in this case the maximum output
power initially increases as the cycle is operated faster, but
after a certain speed it decreases steeply.

IV. CONCLUSION

We have modeled a finite-time Stirling engine at low tem-
peratures, based on a particle in a box. In our model, in each
time step an instantaneous adiabatic change in the potential
barrier occurs, followed by a period of thermalization. We
have discussed the dependence of work, efficiency, and power
on both the duration of the thermalization step and the adi-
abatic change of the potential barrier. In the slow operating
regime, the work extracted approaches the limiting value of
the work obtained in a quasistatic quantum Stirling cycle.
Also, the efficiency of the engine approaches the Carnot value
in this regime. For very fast operation of the cycle the system
does not function as a heat engine. The output power for inser-
tion and removal steps is found to attain its maximum value,
not in the quasistatic regime, but at an intermediate operating
speed. For a constant duration of thermalization, there is an
optimal change of potential barrier for which the maximum
output power is highest. This investigation is important to
obtain the practical implementations of this quantum heat
engine or similar quantum heat engines.

The model of interaction with the thermal bath that has
been used here can be used to analyze other quantum heat
engines in finite time that operate by inserting and removing a
potential barrier. The quantum Szilard engine, for example,
has been explored in the context of a harmonic potential
well [58] instead of the traditional potential box. However,
an implementation in practice requires an understanding of
the operation in finite time, involving the interaction with the
thermal bath, which our method can provide. Other future di-
rections of this work can involve potentials that might provide
additional benefits and asymmetric insertion and removal of
the barrier potential. For example, a single-conduction-band
effective-mass envelope function for confined electrons in
two-dimensional GaAs quantum double dots conceivably can
be used to mimic the double-well potential of a quantum
Stirling engine [75]. In GaAs, the application of appropriate
electric voltages over nanoscale electrodes, lithographically
engineered, produces a suitable confining potential by creat-
ing a depletion area in a two-dimensional electron gas. The
confinement potential and the barrier height are defined by
controllable parameters and could be suitable for realizing this
quantum heat engine. Double quantum wells have also been
realized using InAs/GaSb quantum dots [76–79]. The double-
potential-well structure appropriate for a quantum Stirling
engine can also be created using a symmetric two-electron Si
quantum double dot by manipulating the mixing of conduc-
tion band valleys [80].

The mass has been chosen as me and the size of the box
has been chosen as 20 nm for all the simulations as they
correspond to the mass and length scales suitable for practical
applications. The role played by the size of the potential
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box was previously studied and discussed in Ref. [61]. A
large-size box corresponds to the classical limit. In this limit,
the energy levels approach a continuous energy spectrum. At
length scales smaller than the Compton wavelength, relativis-
tic effects enter the picture and the analysis would require a
different kind of treatment.
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