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Unitary equivalence of twisted quantum states
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We present the time dynamics of twisted quantum states. We find an explicit connection between the
well-known stationary Landau state and an evolving twisted state, even when the Hamiltonian accounts for linear
energy dissipation. Utilizing this unitary connection, we analyze nonstationary Landau states and unveil some of
their properties. The proposed transformation enables simple evaluation of different operator mean values for the
evolving twisted state based on the solution to the classical Ermakov equation and matrix elements calculated on
the stationary Landau states. The suggested formalism may significantly simplify analysis and become a conve-
nient tool for further theoretical development on the dissipative evolution of the twisted quantum wave packet.
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I. INTRODUCTION

Cylindrical waves are a well-known phenomenon in the
field of waveguides and antennas [1]. Such waves naturally
appear as a solution to the D’Alembert equation in a cylin-
drical coordinate system as a consequence of the cylindrical
symmetry of the problem.

In Refs. [2,3] Allen et al. realized that cylindrical waves
could be generated in free space in the optical regime. More-
over, they pointed out that the azimuthal index, l , of the
cylindrical electromagnetic wave corresponds to the quantized
projection of the angular momentum of light. Indeed, cylindri-
cal symmetry implies invariance of the solution to elementary
rotations along the symmetry axis. The generator for cylin-
drical symmetry is the −i∂φ operator. Thus, the solutions of
the corresponding problem must be a superposition of the
eigenfunctions of this operator, which is known to form a
complete set under periodic boundary conditions. Eigenval-
ues l , with l ∈ Z, enumerate basis functions and correspond
to the orbital angular momentum (OAM), as, by definition,
L̂z = −i∂φ . With the development of the Berry theory, it was
pointed out that the orbital angular momentum is just a co-
efficient in a Berry phase (or geometric phase) defined by
[4,5]

l = lim
r→∞

1

2π

∫ 2π

0
dφ

d (arg ψ )

dφ
, (1)

where ψ is the particle (photon, electron, proton, etc.) wave
function normalized to unity, 〈ψ |ψ〉 = 1. On the other hand,
for the case of the defined orbital angular momentum (when
the wave function factorizes into the radial and angular parts),
the formula above could be reinterpreted as

l = lim
r→∞

1

4π |ψ |2
∫ 2π

0
Im[ψ∗∂φψ]dφ = 〈ψ |L̂z|ψ〉, (2)

unveiling the connection between the strength of the vortex
singularity and the eigenvalue of the L̂z operator. As a result,
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such waves are often referred to as waves with nontrivial
geometric phase, or waves that possess a phase vortex, as well
as waves that carry OAM.

Numerous applications of light beams with nonzero OAM,
or twisted photons, have been widely discussed [6–9]. It has
also been shown that electrons with a phase vortex—twisted
electrons—could be a new tool for microscopy, materials sci-
ence, and high-energy physics [10,11].

While significant understanding was gained on the theo-
retical side [12–21], there are still several challenges in the
complete description of the evolution of the twisted particles.
For instance, radiation and the possible consequent loss of
angular momentum is an open question, as it relates to the
acceleration of twisted massive charged particles to relativistic
energies.

In the present paper, inspired by the historical connec-
tion of the twisted states to geometry, we apply a geometric
transformation of the classical particle phase trajectory [22]
and build a corresponding transformation for Schrödinger’s
equation [23–25]. It is shown that the simple idea of vector
field rectification, discussed by Arnold in his famous book
[22], has far-reaching consequences [24,25]. In the present
paper we take the course of Refs. [23–25] called the quantum
Arnold transformation (QAT) as we find it the most intuitive.
A comprehensive study of the time-dependant quantum har-
monic oscillator can be found in Ref. [26].

The benefit of the QAT approach is twofold. First, it allows
mapping any state that satisfies Schrödinger’s equation for the
case of a temporally constant (or constant in the longitudinal
coordinate z with the paraxial approximation) magnetic field
(refractive index for the case of the photons) to the case of
time-varying potential, including a system with linear dissi-
pation within the Cardirola-Kanai (CK) model [27,28]. The
latter, in turn, enables accounting of media absorption for
the case of neutral particles, and the radiation friction in the
dipole approximation for the case of charged particles. Sec-
ond, it allows calculation of the mean values of the observable
operators, based on the corresponding matrix elements from
the solution of the system with stationary (time-independent)
potential.
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Throughout the paper we use the natural unit system with
h̄ = 1, c = 1, and assume that e < 0 is the electron charge.

II. QAT FORMALISM AND 2D ERMAKOV OPERATOR

We analyze the transverse part of the nonrelativistic
Schrödinger equation for a massive charged particle in a mag-
netic field that has the form

i∂tψ = Ĥ⊥ψ, Ĥ⊥ = [p̂⊥ − eA(t )]2

2m
. (3)

Here AT = {−yB(t )/2, xB(t )/2} is the transverse part of the
vector potential, and B(t ) is the modulus of the magnetic field
directed along the z axis.

Equation (3) is the basic equation for describing the evolu-
tion of the transverse part of the twisted particle wave function
[16,29], in the paraxial approximation for both photons in free
space and fibers [30] (with the proper change in the param-
eters [16]), and for relativistic electrons (after factoring out
the longitudinal part and substitution of t → z) [31]. Using a
point particle approximation [32], Eq. (3) describes the trans-
verse dynamics of a nonrelativistic electron traversing a set of
solenoid lenses. In all cases, the transverse part of the wave
function ψ defines the twisted structure of the corresponding
state. In the present paper for definiteness, we consider elec-
trons in a magnetic field. The same approach is valid for other
types of particles where Eq. (3) describes transverse dynamics
of the wave function.

If we account for the linear friction that may arise,
for instance, from radiation friction, then Schrödinger’s
equation generalizes to the CK model by a canonical trans-
formation [27,28]:

i∂tψ =
[

w(t )
[
p̂2

x + p̂2
y

]
2m

+ mω2(t )(x̂2 + ŷ2)

2w(t )
+ ω(t )L̂z

]
ψ

(4)

where w(t ) is the dissipation factor of the form w(t ) =
exp[− ∫ γ (t )dt] with γ (t ) being the classical friction coef-
ficient. We note that Eq. (4) is the sum of the Hamiltonians
of two one-dimensional (1D) quantum oscillators coupled
through the ωL̂z term.

Here

L̂z = x̂ p̂y − ŷ p̂x (5)

is the operator of the angular momentum z projection, and

ω(t ) = |e|B(t )

2m
. (6)

A CK system is equivalent to a master equation for
the density matrix without fluctuation, assuming there is no
stochastic process. However, a full equivalence of the CK
model to the standard Lindblad master equation [33,34] could
be achieved once the proper stochastic potential is incorpo-
rated into Eq. (4) [35]. For the present consideration, we
limit ourselves to a simplified CK model but note that the
analysis we present is extendable to the case of momentum
and coordinate diffusion.

Now, we consider the QAT discussed in Refs. [23–25].
For a one-dimensional system, the transformation is an

interchange of the coordinates, time, multiplication of the
wave function by a phase factor, and a normalization factor.

Following Ref. [23] we consider the QAT operator that es-
tablishes a mapping between the Hilbert space Ht of solutions
ψ (x, t ) of the one-dimensional time-dependent Schrödinger
equation at time t , on the Hilbert space Hτ of solutions
ϕ(κ, τ ) of the time-dependent Schrödinger’s equation for the
Galilean free particle at a time τ . The explicit form for the 1D
QAT is (see Appendixes A and B)

Q̂ :

⎧⎪⎨
⎪⎩

κ = x
u2

,

τ = − u1
u2

,

ϕ(κ, τ ) = ψ (x, t )
√

u2 exp
[− i

2
m
w

u̇2
u2

x2
]
.

(7)

In the equality for the wave function, ϕ, the arguments x and
t on the right, as well as the argument t of the functions u2

and w, are understood as functions of κ and τ (x = x(κ, τ );
t = t (τ )). The dot above u2 denotes the total derivative by t .
The functions u1 and u2 are general solutions to the classical
Euler-Lagrange equation of the considered quantum oscillator

ü1,2 + γ (t )u̇1,2 + ω2(t )u1,2 = 0 (8)

and

w(t ) = u1u̇2 − u2u̇1 = exp

[
−
∫

γ dt

]
(9)

is the Wronskian built on these solutions. The initial condi-
tions for Eq. (8) are chosen such that linear independence of
u1 and u2 is guarantied and Eq. (9) holds.

The first part of the transformation is simply the coordinate
and time substitution that transforms part of a curved classical
phase trajectory in the extended phase space to a straight
line [22,23]. The coordinate transformation induces a gauge
transformation for the vector potential. Indeed, the classical
momentum could be expressed as

pτ = m
dκ

dτ
= dt

dτ

px

u2
− m

u̇2

u2
2

dt

dτ
x, (10)

and consequently, the gauge potential [36] is

G = −m
u̇2

u2
2

dt

dτ
x = −m

u̇2

w
x. (11)

Therefore, the phase of the wave function induced by the
transformation of time and coordinate is

θκ = −m
u̇2

w

∫ x

0
x̃dκ = −m

w

u̇2

u2

∫ x

0
x̃dx̃ = − m

2w

u̇2

u2
x2, (12)

and we recover the phase multiplier of the wave function in
Eq. (7).

Schrödinger’s equation is invariant under Q̂, consequently

i
∂ϕ

∂τ
= − 1

2m

∂2ϕ

∂κ2
,

Q̂−1 ⇓

i
∂ψ

∂t
= − w

2m

∂2ψ

∂x2
+ mω2x2ψ

2w
. (13)

The latter could be checked, for example, by direct substi-
tution (see Appendix B for the details). The transformation
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FIG. 1. Schematic diagram of the combined QAT mapping
[24,25].

holds up to a common multiplier u2
2
√

u2

w
in the second equa-

tion and is local in time, as it is valid for u2 �= 0.
We reiterate, Q̂−1 and Q̂ are operations that transform the

free 1D Schrödinger equation to the equation of the 1D CK
system and back.

For a given 1D system operator Q̂ is unique. This follows
from the fact that Q̂∗Q̂ = Î , i.e., Q̂ is a unitary operator. The
latter follows from the fact that the transformation Q̂ pre-
serves the norm, i.e., ||φx||Hτ

= ||ψx||Ht . Indeed, the Jacobian
determinant of the transformation for the fixed moment in
time, as it follows from the coordinate substitution, is just
1/u2, i.e., dκ = dx/u2, while the square of the amplitude of
the wave function calculates to |φ|2 = |ψ |2u2. Consequently∫ |φ|2dκ = ∫ |ψ |2dx.

Next, we consider two 1D oscillators that differ by their
dissipation factors, w1,2, and oscillator frequencies, ω1,2. Us-
ing the QAT formalism, both oscillators could be mapped
to a free particle (Hilbert space, Hτ ). As a result, the QAT
combination (as shown in the diagram Fig. 1) maps the Hilbert
space of one oscillator, Ht1 , to the Hilbert space of another,
Ht2 .

From Eq. (7), we derive [25] (see Appendix C)

Ê1�→2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = x2
b(t2 ) ,

w1(t1)dt1 = w2(t2 )
b2(t2 ) dt2,

ψ2(x2, t2) = ψ1(x1, t1)
exp[ i

2
m
w2

ḃ
b x2

2 ]√
b

,

(14)

where we have introduced the Ermakov mapping operator

Ê1�→2 ≡ Q̂2
−1Q̂1, and b(t2) is a scaling parameter that satisfies

the Ermakov-Pinney equation [37,38] with damping:

b̈ + γ2(t2)ḃ + ω2
2(t2)b = w2

2 (t2)

w2
1 (t1)

ω2
1(t1)

b3
. (15)

In general, ω1 and w1 depend on t1, expressed through t2. The
dots above b in Eqs. (14) and (15) indicate total derivatives
by t2. A direct check of this transformation, as well as the
derivation of Eq. (15), is provided in Appendix C.

The Ermakov operator Ê1�→2, in full analogy with the QAT
operator Q̂, maps the Hilbert space Ht1 of solutions ψ1(x1, t1)
of the 1D time-dependent Schrödinger equation of the first
oscillator at time t1, on the Hilbert space Ht2 of solutions
ψ2(x2, t2) of the 1D time-dependent Schrödinger equation of
the second oscillator at time t2.

To apply the Ermakov operator to Eq. (4), one needs to
extend it to the two-dimensional (2D) case. When the mag-
netic field is uniform and is directed strictly along the z axis,
frequencies of both quantum oscillators in x and y are iden-
tical. Consequently, we construct a 2D Ermakov operator as

follows:

Ê2D
1�→2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = x2
b(t2 ) ,

y1 = y2

b(t2 ) ,

w1(t1)dt1 = w2(t2 )
b2(t2 ) dt2,

ψ2(x2, y2, t2) = 1
bψ1(x1, y1, t1)χ (x2, y2, t2).

(16)

Here χ (x2, y2, t2) is the phase factor given by

χ (x2, y2, t2) = exp

[
i

2

m

w2

ḃ

b

(
x2

2 + y2
2

)]

× exp

[
−il

∫
ω2dt2 + il

∫
ω1dt1

]
, (17)

with l being the eigenvalue of the L̂z operator. Here, as before,
b(t2) satisfies Eq. (15).

Due to the symmetry of the transformation, the ratio, y1/x1,
is conserved and polar angles

φ1 = arctan(y1/x1) = arctan(y2/x2) = φ2 (18)

have a one-to-one correspondence. This fact immediately
leads to the conservation of the orbital angular momentum
l of the twisted state under the transformation given by the
Ermakov operator, i.e., 〈ψ2|L̂z2 |ψ2〉 = 〈ψ1|L̂z1 |ψ1〉.

For the case of twisted states, it is convenient to represent
the Ermakov operator in polar coordinates where the trans-
formation becomes essentially 1D, with the only exception of
the multiplier in the wave function. Switching from x, y to
ρ, φ and using ρ =

√
x2 + y2 and Eq. (18), we arrive at the

expression for the Ermakov operator in polar coordinates:

Ê2D
1�→2 :

⎧⎪⎪⎨
⎪⎪⎩

ρ1 = ρ2

b(t2 ) ,

w1(t1)dt1 = w2(t2 )
b2(t2 ) dt2,

ψ2(ρ2, φ, t2) = 1
bψ1(ρ1, φ, t1)χ (ρ2, t2).

(19)

The operators in Eqs. (16) and (19) establish a unique unitary
transformation of the states of one two-dimensional quan-
tum harmonic oscillator into another (see Appendix D), and
provide a one-to-one correspondence between twisted states
of different types (stationary and dynamic). Thus, we con-
clude that all dynamic twisted states, including free states,
nonstationary states, and states that may appear in different
time-dependent fields, are unitarily equivalent to stationary
states. This observation opens a convenient way to analyze
the properties of dynamic states based on their stationary
counterparts.

III. APPLICATIONS

In this section, we consider several examples that illustrate
the power of the Ermakov mapping formalism.

We start from a well-known Landau model and recover
in a simple fashion nonstationary Landau states discussed in
Ref. [31]. We provide formulas for the energy and the mean-
square radius of the nonstationary Landau state and reveal
nontrivial features of these states.

Next, we consider a representative numerical example that
provides further insight into the evolution of the twisted elec-
tron in the axisymmetric magnetic field. We point out that
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the evolution of the twisted electron is essentially classical.
To complete the analogy with the classical electron in the
magnetic field we introduce a quantum emittance operator that
is a quantum analog of the corresponding classical geometric
emittance.

We conclude by providing a formula for the current op-
erator for the twisted charged massive particle in the general
time-dependent magnetic field that can be readily used to ana-
lyze the interaction of these particles with the electromagnetic
vacuum and to study various scattering processes.

We note that the simplified model Eq. (4) and its exten-
sion to the mean-field interaction with the electromagnetic
bath have found a variety of applications in nonlinear op-
tics [39–46]. One of the widely known extensions is the
Lugiato-Lefever equation model [39,47] for spontaneous spa-
tial pattern formation [40]. We point out that it is most likely
that the formalism and ideas developed in the field of lasers
and nonlinear optics can be, with some modifications, applied
to the description of the massive charged vortex particles.

A. Nonstationary Landau states

We chose the Landau model [17,48] as a reference system
with w1 = 1 and ω1 = ω0 = const:

i∂tψ1 =
[[

p̂2
x + p̂2

y

]
2m

+ mω2
0(x̂2 + ŷ2)

2
+ ω0L̂z

]
ψ1. (20)

The solution is a stationary Landau state given by

ψ1(ρ, φ, t ) = N

(
ρ

ρH

)|l|
L|l|

n

[
2ρ2

ρ2
H

]

× exp

[
− ρ2

ρ2
H

+ ilφ − iε⊥t

]
, (21)

where L|l|
n is the generalized Laguerre polynomial, n is the

radial quantum number, l is the orbital angular momentum,

ρH =
√

4

|e|B0
=
√

2

mω0
(22)

is the characteristic radius of the orbit, and

ε⊥ = ω0(2n + |l| + l + 1) (23)

is the transverse part of the energy.
Now, we consider a mapping of the Landau system onto

itself, and Eq. (15) reduces to

b̈ + ω2
0b = ω2

0

b3
. (24)

With Eqs. (19) and (17) we immediately recover the nonsta-
tionary Landau state discussed in detail in Ref. [31]:

ψ2(ρ, φ, t )

= N

b

(
ρ

bρH

)|l|
L|l|

n

[
2ρ2

b2ρ2
H

]
exp

[
− ρ2

b2ρ2
H

]

× exp

[
−ilω0t + ilφ + im

2

ḃ

b
ρ2 − i(ε⊥ − ω0l )

∫
dt

b2

]
.

(25)

The Ermakov operator is a convenient tool for the analysis of
different matrix elements based on the known mean values of
the stationary Landau state. For instance, 〈ρ2

2 〉2 is simply〈
ρ2

2

〉
2 = b2

〈
ρ2

1

〉
1, (26)

where 〈
ρ2

1

〉
1 = 1

mω0
(2n + |l| + 1). (27)

Indeed, with Eq. (19) and accounting for the fact that
dx2dy2 = b2dx1dy1, we have〈

ρ2
2

〉
2 =

∫
ψ∗

2 ρ2
2ψ2dx2dy2 = b2

∫
ψ∗

1 ρ2
1ψ1dx1dy1. (28)

Under the transformation of Eq. (19), the action of the mo-
mentum operator transforms to

p̂2ψ2 = χ (ρ2, t2)

[
1

b2
p̂1ψ1 + m

w2

ḃ

b
r̂1ψ1

]
, (29)

and, consequently, the mean value of the momentum for a gen-
eral nonstationary twisted state could be expressed in terms of
the mean values of the stationary Landau states:

〈p̂2〉2 = 〈p̂1〉1

b
+ m

w2
ḃ〈r̂1〉1, (30)

with b being a solution to Eq. (15), and ω1 = ω0 and w1 = 1.
For the nonstationary Landau state one must set w2 = 1 in the
formula above and use Eq. (24) for b.

A more interesting and insightful example is the transfor-
mation of the mean energy. To evaluate the time derivative, we
again utilize Eq. (19) and get

〈n′|i ∂

∂t2
|n〉2 = ḃ

b
〈n′| p̂1r̂1|n〉1

+ 1

b2

[
〈n′|i ∂

∂t1
|n〉1 − lω0δn′,n

]
+ lω0δn′,n

+ m

2

[
ω2

0b2 + ḃ2 − ω2
0

b2

]
〈n′|r̂2

1 |n〉1. (31)

In the expression above, the bra and ket vectors are not
necessarily the same. Strikingly, along with the diagonal term
(the mean energy of the nonstationary Landau state ε2 ≡
〈n|i ∂ψ2

∂t2
|n〉2) that reads

ε2 = ω0(2n + |l| + 1)

2

[
b2 + ḃ2

ω2
0

+ 1

b2

]
+ lω0, (32)

we retrieve a nondiagonal term that reflects the mixing of
states with different radial indices. This result is in full agree-
ment with that derived by Lewis and Riesenfeld in Ref. [49];
however, it comes almost at no effort. Mixing terms in the
Hamiltonian matrix results in nonzero probabilities for the
corresponding transitions and consequent radiation processes.

The mean energy of the nonstationary Landau state itself,
Eq. (32), has an interesting structure as well. Although the first
term in Eq. (32) explicitly depends on time, it is constant as
the factor

1

2

[
b2 + ḃ2

ω2
0

+ 1

b2

]
� 1 (33)
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is the first integral of Eq. (24). From the inequality of Eq. (33),
it immediately follows that the mean energy of the non-
stationary Landau state is always greater than the energy
of the stationary Landau state. Along with the off-diagonal
terms in the Hamiltonian matrix, and nonvanishing time-
dependant quadrupole moment proportional to b2 according
to the Eq. (26), this indicates that nonstationary Landau states
should be far less stable than the stationary Landau states.

B. Propagation of the twisted electron through a set of solenoids

We consider the propagation of the twisted electron
through two consequent solenoids. We assume the electron is
twisted, nonrelativistic, and moving along the z axis at a speed
V . We assume localization of the electron in the longitudinal
direction [the longitudinal density is ρz ∝ δ(z − V t )]. The
latter is always possible when the longitudinal momentum
dispersion is small �pz/〈pz〉 � 1 (see Ref. [32] for details
on the approximation). The problem has an exact solution
with the transverse motion that factors out. The corresponding
setup in the transverse plane corresponds to Eq. (3). After
simplifications, the final equation that describes transverse
motion reads

i∂tψ2 =
[[

p̂2
x + p̂2

y

]
2m

+ mω2(t )(x̂2 + ŷ2)

2
+ ω(t )L̂z

]
ψ2,

(34)

with ω(t ) given by Eq. (6). As before, we consider Landau
model Eq. (20) as a reference system. With the help of the
Ermakov operator Eq. (19) and the expression for the Landau
wave function Eq. (21) one may write the solution to Eq. (34)
as

ψ2(ρ, φ, t ) = N

b

(
ρ

bρH

)|l|
L|l|

n

[
2ρ2

b2ρ2
H

]

× exp

[
− ρ2

b2ρ2
H

]
exp

[
−il

∫ t

0
ω(t ′)dt ′

+ ilφ + im

2

ḃ

b
ρ2 − i(ε⊥ − ω0l )

∫
dt

b2

]
. (35)

Scaling parameter b according to the mapping prescription
must satisfy Eq. (15) with γ2 = 0, w1 = w2 = 1, and ω1 =
ω0 = const:

b̈ + ω2(t )b = ω2
0

b3
. (36)

Equation (36) must be complimented with the initial condi-
tions defined by the initial state of the twisted electron. We
assume that at t = 0 the transverse mean-square radius of
the electron wave packet is 〈ρ2〉(0) = 0.82ρ2

H (2n + |l| + 1)
and ∂t 〈ρ2〉(0) = 0. This corresponds to the focal point in a
free space. Initial conditions on the mean-square radius trans-
late into the initial conditions for the scaling parameter b as
follows:

b(0) = 0.8, ḃ(0) = 0. (37)

To solve Eq. (36) numerically, we will need to use the initial
conditions Eq. (37) and the magnetic-field variation shown

FIG. 2. Time evolution of the scaling parameter b(t ) (middle
panel) and normalized transverse part of the energy of the twisted
electron state (bottom panel) in the time varying magnetic field F (t )
(upper panel). The red line in the middle panel and in the bottom
panel represents scaling parameter b = 1 and scaled energy Eq. (23)

ε⊥
ω0 (2n+|l|+1) for the stationary Landau state and serves as a reference.
For this example we chose n = 0 and l = 10.

in Fig. 2 (upper panel). We introduce a dimensionless func-
tion F (t ) defined as ω2(t )/ω2

0. The magnetic field consists of
several segments, starting from free space, a solenoid lens,
another free space segment, a second solenoid lens, and a final
third free space segment. With these parameters in place, we
can proceed with our numerical solution.

As we can see from the middle panel of Fig. 2, the wave
packet parabolically expands in free space—a well-known
fact in quantum optics. However, inside the first solenoid,
the scaling parameter oscillates, leading to oscillations of
all wave-packet observables and an increase in state energy,
as shown in the bottom panel of Fig. 2. This results in
time-dependent nonvanishing multipole moments. The low-
est quadrupole moment, which is proportional to the average
square distance from the origin, is given by

Q ∝ 〈ρ2〉 ∝ b2(t ). (38)

This in turn must result in the intensive radiation as

∂tε ∝ [∂3
t Q(t )]2 ∝ [∂3

t b2(t )]2 �= 0. (39)

The latter is the distinct feature of the charged particles only.
The packet divergence in free space prevents it from be-

ing directly captured into the Landau state. The packet size√
〈ρ2〉(t ) oscillates in all practical cases, which means that

under the assumptions of the model, a charged quantum wave
packet will always radiate when entering a magnetic solenoid.
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Another observation that follows from Fig. 2 is that the
time average of 〈ρ2〉(t ) over one period of oscillations T =
2π/ω0 is always greater than the corresponding value 〈ρ2

1 〉1

of the Landau state given by Eq. (27), as

1

2π

∫ 2π

0
b2(τ )dτ > 1 (40)

with τ = ω0t .
However, the geometric average

max [b(t )] min [b(t )] = 1 (41)

always holds inside the lens.
This results in√

max[〈ρ2〉(t )] min[〈ρ2〉(t )] = 1

mω0
(2n + |l| + 1), (42)

an invariant geometric size of the packet.
It is worth mentioning that the selection of appropriate pa-

rameters plays a crucial role in capturing free twisted electrons
into the Landau state. As evident from Fig. 2, placing a second
lens at the right spot enables a smooth transition from the
vacuum to the Landau level.

It is important to keep in mind that the direct transition to
the Landau state is never exact and can only be achieved at
one specific point in the parameter space. As a result, b(t ) will
always oscillate within the lens in any practical setup. How-
ever, the amplitude of these oscillations can be minimized,
as shown in Fig. 2. Additionally, it is important to note that
these oscillations will result in radiation as all the multipole
moments oscillate while the electron is in the magnetic field.
This radiation induced by the oscillations is different from the
common spontaneous emission and is most likely classical.
However, further investigation and evidence are needed to
fully understand this phenomenon.

One of the immediate consequences of the QAT formalism
and the Ermakov mapping is the Ermakov-Lewis invariant
[19,49–51] that for the Hamiltonian Eq. (34) after scaling
ω0 → 1 and m → 1 is just the sum of the 1D invariants:

Î = Îx + Îy

= 1

2b2
[x̂2 + (b2 p̂x − bḃx̂)2] + 1

2b2
[ŷ2 + (b2 p̂y − bḃŷ)2].

(43)

We note that the classical counterpart of the Ermakov-Lewis
invariant is the Courant-Snyder invariant [52,53]:

εx = 1

β
[x2 + (βpx + αx)2], (44)

a quadratic invariant that can aid interpretation of the dynam-
ics in the classical limit.

The Courant-Snyder invariant up to a π multiplier equals
the area of the phase-space ellipse of the system and usually
referred to as the geometric emittance. Here β is the so-called
envelope function or Twiss beta function; α is the Twiss alpha
function that is connected to β as

α = − β̇

2
. (45)

Geometric emittance also equals twice the action. We note
that the Ermakov-Lewis invariant is the action. To bridge these

two quantities we introduce a quantum emittance operator as

ε̂x,y = 2Îx,y,

ε̂x = 1

b2
[x̂2 + (b2 p̂x − bḃx̂)2],

ε̂y = 1

b2
[ŷ2 + (b2 p̂y − bḃŷ)2]. (46)

Dimensionless Twiss beta function β is connected to b as

β = b2 (47)

and the α parameter is just

α = −bḃ. (48)

We point out that the quantum emittance as well as its variance
are conserved and defined by the initial conditions and the
quantum state only.

C. Nonstationary current operator

It is convenient to recast the current operator in terms of the
current operator for the stationary Landau state, to analyze the
coupling of the nonstationary states to the quantized external
electromagnetic field. This is extremely helpful when it comes
to the analysis of the possible decay channels of the general
nonstationary states to the stationary Landau states as well
as to study different scattering processes that involve twisted
particles (see Ref. [11] for the details).

One may use known formulas for the corresponding in-
tegrals for the stationary Landau states (see, for instance,
Ref. [54] and some recent results in Ref. [55]) when calcu-
lating the S matrix with nonstationary states.

First, we consider a general case of a nonstationary mag-
netic field with a dissipation guided by Eq. (4). The transverse
part of the vector potential for this model has the form

AT
2 =

{
−B(t2)y2

2
√

w2
,

B(t2)x2

2
√

w2

}
. (49)

As an initial system for the mapping, we chose the Landau
model guided by Eq. (20). According to the transformation,
Eq. (19), and expression for the transformed momentum,
Eq. (29), the potential for the gauge field is

G = m

w2

ḃ

b
r1. (50)

The probability current is given by

ĵ2 = Reψ∗
2
√

w2 p̂2ψ2

m
− e

m
A2|ψ2|2. (51)

Taking into account that

−eA2|ψ2|2 = −e
1√
w2

B(t2)

bB0
A1|ψ1|2, (52)

where AT
1 = (−B0y1

2 , B0x1
2 ) is the transverse part of the vector

potential for the Landau system, we combine Eqs. (50), (29),
and (51) to achieve

ĵ2 =
√

w2

b2

{
ĵ1

b
+
[(

1

b
− B(t2)b

B0w2

)
eA1

m
+ b

m
G
]
|ψ1|2

}
. (53)
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For the case of the nonstationary Landau states one should
set w2 = 1 and B(t2) = B0, and b must satisfy Eq. (24). We
note that the probability current is not invariant under the Er-
makov transformation. However, the structure of ĵ2 is simple.
Namely, it consists of the rescaled original current, ĵ1, and
two vector potentials that are linear functions of the coordi-
nates. We highlight that spatial integrals over dx2dy2 could be
evaluated using stationary states only. This opens a simple and
powerful method for the calculation of scattering amplitudes.

IV. CONCLUSION

We have discussed a QAT approach to the time solution
of Schrödinger’s equation within the Cardirola-Kanai model.
This approach takes into account the classical friction in a
quantum system. The QAT formalism has been applied to
analyze the evolution of the general twisted quantum state
based on the corresponding stationary state. We have explic-
itly derived the 2D Ermakov mapping given by Eqs. (16)
and (19), which provides a unique correspondence between
the stationary twisted state and its evolving counterpart. We
reiterate that the unitary property of the 2D Ermakov operator
leads to the fact that all dynamic twisted states, including
free states, nonstationary states, and states that may appear
in different time-dependent fields, are unitarily equivalent to
the corresponding stationary states. We illustrated the method
by a trivial derivation of the nonstationary Landau state and
provided an explicit formula for the energy of this state. We
established a connection between a classical motion of the
electron and a quantum electron wave packet in the time-
dependent magnetic field and introduced the wave-packet
emittance operator. Finally, we derived the current operator
for the nonstationary system, which provides a convenient
way to analyze the coupling to the quantized external fields
of the nonstationary twisted state.

In conclusion, we emphasize that the 2D Ermakov map-
ping given by Eqs. (16) and (19) is valid for any wave function
(not necessarily eigenstates of the Hamiltonian) and applies to
the analysis of the dynamics of a wide class of wave-packet
solutions, including nonpure states. Once combined with the
Foldy-Wouthuysen transformation [56,57], it can become a
convenient tool for a relativistic packet state description. The
Ermakov mapping naturally accounts for radiation friction,
which becomes essential in problems related to the generation
of high-energy twisted electrons in linear accelerators.
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APPENDIX A: ARNOLD TRANSFORMATION

We consider two classical systems, a linear oscillator with
linear friction and a free system [23]. The Euler-Lagrange
equation of the oscillator is

ẍ + ḟ ẋ + ω2x = 0, (A1)

and for the free particle

◦◦
κ = 0. (A2)

The dot above denotes the total derivative by the time t ,

df

dt
≡ ḟ , (A3)

and the circle above denotes the total derivative by the time τ :

dg

dτ
≡ ◦

g . (A4)

A local map that establishes a connection between these
two systems is given by the classical Arnold transformation
discussed in Ref. [23]:

R × T → R × T ,

(x, t ) �→ (κ, τ ),

and

κ = x

u2
,

τ = −u1

u2
(A5)

where u1 and u2 are two linearly independent solutions of
Eq. (A1).

We notice the following connection between the time
derivatives:

τ̇ = − u̇1u2 − u̇2u1

u2
2

= w

u2
2

⇒ ◦
t = u2

2

w
(A6)

where w ≡ u1u̇2 − u̇1u2 is the Wronskian built on u1 and u2.
For the Wronskian w the following is true:

w = e− f ⇒ ẇ = − ḟ w. (A7)

We make a local change of variables explicitly as follows:

0 = ẍ + ḟ ẋ + ω2x = κ̈u2 + 2κ̇ u̇2 + κ ü2

+ ḟ κ̇u2 + ḟ κ u̇2 + ω2κu2

= d

dt

(
◦
κ

w

u2
2

)
u2 + 2

◦
κ

w

u2
2

u̇2 + ḟ
◦
κ

w

u2
2

u2

+ κ (ü2 + ḟ u̇2 + ω2u2
�������������

)

= ◦◦
κ

w2

u4
2

u2 − 2
◦
κ

w

u3
2

u̇2u2

+ ◦
κ

ẇ

u2
+ 2

◦
κ

w

u2
2

u̇2 + ḟ
◦
κ

w

u2

= ◦◦
κ

w2

u3
2

− ◦
κ

ḟ w

u2
+ ḟ

◦
κ

w

u2
=◦◦

κ
w2

u3
2

. (A8)

Thus we observe that one system is mapped to another un-
der the coordinate substitution Eq. (A5) up to a multiplier
w2/u3

2. The idea behind the transformation is quite simple and
goes back (according to Arnold) to Newton [22]. The locality
of the transformation follows from the coordinate substitu-
tion, which is inversely proportional to u2. Consequently, the
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applicability condition is u2 �= 0. This implies that if u2 is pe-
riodic, then the transformation holds only within one period.

APPENDIX B: QUANTUM ARNOLD TRANSFORMATION

Along with the classical transformation, one may introduce
its quantum analog that maps the Hilbert space of solutions
of the Schrödinger’s equation for the quantum oscillator Ht

to the Hilbert space of solutions Hτ of the Schrödinger’s
equation for the free particle [23].

It is apparent that coordinate substitution Eq. (A5) gener-
ates the change in the momentum given by

pτ = m
dκ

dτ
=

◦
t

u2
px − m

u̇2

u2
2

◦
t x, (B1)

and consequently the gauge potential [36] is

G = −m
u̇2

u2
2

◦
t x = −m

u̇2

w
x. (B2)

On the other hand

G = dθκ

dκ
, (B3)

where θκ is the phase of the wave function.

Therefore, the phase of the wave function induced by the
transformation Eq. (A5) is

θκ = −m
u̇2

w

∫ x

0
x̃dκ = −m

w

u̇2

u2

∫ x

0
x̃dx̃

= − m

2w

u̇2

u2
x2. (B4)

Accounting for the change in norm induced by the coordinate
substitution one may introduce the QAT as

Q̂ :

⎧⎪⎨
⎪⎩

κ = x
u2

,

τ = − u1
u2

,

ϕ(κ, τ ) = ψ (x, t )
√

u2e− i
2

m
w

u̇2
u2

x2

.

(B5)

The QAT provides the mapping of one Schrödinger equa-
tion to another as

i
∂ϕ

∂τ
= − 1

2m

∂2ϕ

∂κ2
⇒ i

∂ψ

∂t
= − w

2m

∂2ψ

∂x2
+ mω2x2

2w
ψ.

Explicitly the wave function of the free system ϕ(κ, τ )
reads

ϕ(κ, τ ) = ψ
(
κu2[t (τ )], t (τ )

)√
u2[t (τ )]

× e− i
2

m
w[t (τ )] u̇2[t (τ )]u2[t (τ )]κ2

.

Next, we write left- and right-hand side of the Schrödinger
equation in the expanded form and proceed with the substitu-
tion (B5). The left-hand side reads

i
∂ϕ

∂τ
=
[

i
∂ψ

∂x
κ u̇2

◦
t
√

u2 + i
∂ψ

∂t

◦
t
√

u2 + iψ
u̇2

◦
t

2
√

u2
+ iψ

√
u2

{
− i

2
mκ2 ◦

t

(
ü2u2 + u̇2

2

w
− ẇ

w2
u̇2u2

)}]
e− i

2
m
w

u̇2u2κ
2

=
[

i
∂ψ

∂x
κ

u̇2u2
2

w

√
u2 + i

∂ψ

∂t

u2
2

w

√
u2 + iψ

u̇2u2
2

2w
√

u2
+ iψ

√
u2

{
− i

2
mκ2 u2

2

w2

(
−ω2u2

2 + u̇2
2
�

)}]
e− i

2
m
w

u̇2u2κ
2
.

The right-hand side reads

− 1

2m

∂2ϕ

∂κ2
=
[
− 1

2m

∂2ψ

∂x2
u2

2
√

u2 − 1

m

∂ψ

∂x
u2

√
u2

{
−i

m

w
u̇2u2κ

}
− 1

2m
ψ

√
u2

{
−imu̇2u2

1

w
− m2

w2
u̇2

2u2
2κ

2

����������

}]
e− i

2
m
w

u̇2u2κ
2
.

After cancellation of the common terms on both sides we
arrive at

i
∂ψ

∂t

u2
2

w

√
u2 − mω2x2

2w2
ψu2

2

√
u2 = − 1

2m

∂2ψ

∂x2
u2

2

√
u2.

Thus the free Schrödinger equation under the inverse QAT
transforms to the Schrödinger equation of the quantum har-

monic oscillator up to a common multiplier u2
2
√

u2

w
.

APPENDIX C: ONE-DIMENSIONAL ERMAKOV MAPPING

We consider the following mapping diagram [24,25]:

H1
Q̂−1

2 Q̂1−−−−−−−→ H2

Q̂1 ↘ ↙ Q̂2

Hfree

where Hfree,H1, and H2 are Hilbert spaces that correspond
to the free quantum particle and two 1D quantum harmonic
oscillators with frequencies ω1 and ω2 correspondingly. It is
apparent that the mapping

Q̂−1
2 Q̂1 : H1 −→ H2,

ψ1(x1, t1) �→ ψ2(x2, t2)

maps one oscillator onto another. The classical Euler-
Lagrange equation for system 1 that has a Hilbert space of
solutions H1 is

◦◦
x 1 +

◦
f 1

◦
x1 + ω2

1x1 = 0. (C1)

For the two linearly independent solutions of this equation we
adopt following notation u(1)

1 and u(1)
2 , and the Wronskian

for these solutions is w1 = u(1)
1 u̇(1)

2 − u(1)
2 u̇(1)

1 = e− f1 . One
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may check that the following is true [by analogy to (A7)]:
◦
w1= −

◦
f 1 w1.

The Classical Euler-Lagrange equation for system 2 with
the Hilbert space of solutions H2 is

ẍ2 + ḟ2ẋ2 + ω2
2x2 = 0. (C2)

We denote by u(2)
1 and u(2)

2 two linear independent solutions
of Eq. (C2), and w2 = u(2)

1 u̇(2)
2 − u(2)

2 u̇(2)
1 = e− f2 is the Wron-

skian. Similarly to the previous case ẇ2 = − ḟ2w2.

We introduce new function b(t2) = u(2)
2

u(1)
2

= x2k
x1k = x2

x1
. From

Eq. (B5) for Q̂1 and Q̂2 one may derive

w1(t1)(
u(1)

2

)2 dt1 = dτ = w2(t2)(
u(2)

2

)2 dt2 ⇒ ṫ1 = w2(t2)

w1(t1)

1

b2(t2)
.

Next we derive the differential equation for b(t2):

0 = ẍ2 + ḟ2ẋ2 + ω2
2x2 = x1b̈ + 2ẋ1ḃ + ẍ1b + ḟ2x1ḃ + ḟ2ẋ1b + ω2

2x1b = x1b̈ + 2
◦
x1

w2

w1

1

b2
ḃ

+ ◦◦
x 1

w2
2

w2
1

b

b4
+ ◦

x1
ẇ2b

w1b2
− 2

◦
x1

w2ḃb

w1b3
− ◦

x1
w2ẇ1b

w2
1b2

+ ḟ2x1ḃ + ḟ2
◦
x1

w2

w1

1

b
+ ω2

2x1b

= x1b̈ −
◦
f 1

◦
x1

w2
2

w2
1

1

b3
− ω2

1x1
w2

2

w2
1

1

b3
− ◦

x1 ḟ2
w2

w1b
���������

+ ◦
x1

w2
2

w2
1b3

◦
f 1 + ḟ2x1ḃ + ḟ2

◦
x1

w2

w1

1

b
����������

+ ω2
2x1b

= x1b̈ − w2
2

w2
1

ω2
1

b3
x1 + ḟ2x1ḃ + ω2

2x1b ⇒ b̈ + ḟ2ḃ + ω2
2b = w2

2

w2
1

ω2
1

b3
. (C3)

The last equation is a well-known Ermakov-Pinney equation [37,38]. The mapping of one oscillator onto another is possible if
and only if the b mapping parameter satisfies the Ermakov-Pinney equation as given above.

Combining direct and inverse QATs for the two systems one can build a mapping that maps one system onto another in a
sense of Hilbert spaces. Explicitly this transformation is given by the Ermakov operator and reads

Ê1�→2 = Q̂−1
2 Q̂1 :

⎧⎪⎪⎨
⎪⎪⎩

x2 = bx1,

dt2 = w1(t1 )
w2(t2 ) b

2(t2)dt1,

ψ2(x2, t2) = ψ1(x1, t1) 1√
b
e

i
2

m
w2

ḃ
b x2

2 .

(C4)

It consists of coordinate and time substitution and a phase multiplier due to the gauge transformation.
This mapping enables the following transition:

i
∂ψ2

∂t2
= − w2

2m

∂2ψ2

∂x2
2

+ mω2
2x2

2

2w2
ψ2 ⇒ i

∂ψ1

∂t1
= − w1

2m

∂2ψ1

∂x2
1

+ mω2
1x2

1

2w1
ψ1.

Next, we show this transition explicitly. The left-hand side reads

i
∂ψ2

∂t2
=
[
−i

∂ψ1

∂x1

x2ḃ

b2

1√
b

+ i
∂ψ1

∂t1
ṫ1

1√
b

− iψ1
ḃ

2b
√

b
− m

2
ψ1

x2
2√
b

{
− ẇ2

w2
2

ḃ

b
+ 1

w2

b̈b − ḃ2

b2

}]
e

i
2

m
w2

ḃ
b x2

2

=
[
−i

∂ψ1

∂x1

x2ḃ

b2

1√
b

+ i
∂ψ1

∂t1

w2

w1b2

1√
b

− iψ1
ḃ

2b
√

b
− m

2
ψ1

x2
2

w2b
√

b

{
ḟ2w2ḃ

w2
�����

− ḟ2ḃ
����

− ω2
2b

�����

�����

+ w2
2

w2
1

ω2
1

b3
− ḃ2

b

}]
e

i
2

m
w2

ḃ
b x2

2 .

The right-hand side reads

− w2

2m

∂2ψ2

∂x2
2

=
[

− w2

2m

∂2ψ1

∂x2
1

1

b2
√

b
− i

2

∂ψ1

∂x1

1

b
√

b

ḃ

b
2x2 − i

2
ψ1

ḃ

b
√

b

{
1 + i

2

m

w2

ḃ

b
2x2

2

}]
e

i
2

m
w2

ḃ
b x2

2 ,

mω2
2x2

2

2w2
ψ2 = mω2

2x2
2

2w2
ψ1

1√
b

e
i
2

m
w2

ḃ
b x2

2

�����������������

�����������������

.

After cancellation of the common terms on both sides we arrive at

i
∂ψ1

∂t1

w2

w1b2

1√
b

− m

2

w2

w2
1

ω2
1x2

1

b2
√

b
ψ1 = − w2

2m

∂2ψ1

∂x2
1

1

b2
√

b
.

The equation above is exactly the Schrödinger equation for the first system up to a common multiplier w2

w1b2
√

b
.
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APPENDIX D: TWO-DIMENSIONAL ERMAKOV MAPPING

We consider a two-dimensional Hamiltonian of the form

Ĥ2 = p̂2
x + p̂2

y

2m
w2 + mω2

2(x̂2 + ŷ2)

2w2
+ ω2L̂z, (D1)

along with the 2D Ermakov mapping that reads

Ê2D
1�→2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 = bx1,

y2 = by1,

dt2 = w1(t1 )
w2(t2 ) b

2(t2)dt1,

ψ2(x2, y2, t2) = 1
bψ1(x1, y1, t1)e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il2

∫
ω2dt2+il1

∫
ω1dt1 .

(D2)

First we prove that under the mapping (D2) the eigenvalue of the L̂z operator is conserved: l1 = l2. We consider an action of
the operator L̂z2 on the wave function

L̂z2ψ2 = (x̂2 p̂y2 − ŷ2 p̂x2 )ψ2

with

p̂x2ψ2 = −i
∂ψ2

∂x2
=
[
−i

∂ψ1

∂x1

1

b2
+ m

w2

ḃ

b2
x2ψ1

]
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il2

∫
ω2dt2+il1

∫
ω1dt1

and

p̂y2ψ2 = −i
∂ψ2

∂y2
=
[
−i

∂ψ1

∂y1

1

b2
+ m

w2

ḃ

b2
y2ψ1

]
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il2

∫
ω2dt2+il1

∫
ω1dt1

and we have

L̂z2ψ2 =
⎡
⎣−ix1

∂ψ1

∂y1

1

b
+ m

w2
ḃx1y1ψ1

�����������

+ iy1
∂ψ1

∂x1

1

b
− m

w2
ḃx1y1ψ1

�����������

⎤
⎦e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il2

∫
ω2dt2+il1

∫
ω1dt1

= 1

b
[L̂z1ψ1]e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il2

∫
ω2dt2+il1

∫
ω1dt1 .

Accounting for the fact that the Jacobian determinant of the coordinate transformation is just b2 we have

l2 = 〈ψ2|L̂z2 |ψ2〉 =
∫

ψ∗
2 L̂z2ψ2dx2dy2 =

∫
1

b
ψ∗

1
1

b
L̂z1ψ1b2dx1dy1 = 〈ψ1|L̂z1 |ψ1〉 = l1.

This simplifies 2D Ermakov mapping (D2) to

Ê2D
1�→2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 = bx1,

y2 = by1,

dt2 = w1(t1 )
w2(t2 ) b

2(t2)dt1,

ψ2(x2, y2, t2) = 1
bψ1(x1, y1, t1)e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1 .

(D3)

The 2D Ermakov mapping (D3) enables the following transition:

i
∂ψ2

∂t2
= − w2

2m

(
∂2ψ2

∂x2
2

+ ∂2ψ2

∂y2
2

)
+ mω2

2

(
x2

2 + y2
2

)
2w2

ψ2 + ω2L̂z2ψ2

⇒ i
∂ψ1

∂t1
= − w1

2m

(
∂2ψ1

∂x2
1

+ ∂2ψ1

∂y2
1

)
+ mω2

1

(
x2

1 + y2
1

)
2w1

ψ1 + ω1L̂z1ψ1.

We show this explicitly below.
The left-hand side reads

i
∂ψ2

∂t2
=
[

− i
∂ψ1

∂x1

ḃ

b3
x2 − i

∂ψ1

∂y1

ḃ

b3
y2 + i

∂ψ1

∂t1
ṫ1

1

b
− iψ1

ḃ

b2
− m

2

ψ1

b

{
1

w2

b̈b − ḃ2

b2
− ḃ

b

ẇ2

w2
2

}(
x2

2 + y2
2

)

+ lω2
ψ1

b
− lω1

ψ1

b

w2

w1

1

b2

]
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1
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=
[
− i

∂ψ1

∂x1

ḃ

b3
x2 − i

∂ψ1

∂y1

ḃ

b3
y2 + i

∂ψ1

∂t1

w2

w1

1

b3
− iψ1

ḃ

b2
− m

2
ψ1

1

w2b2

{
− ḟ2ḃ
����

− ω2
2b

�����

�����

+ w2
2

w2
1

ω2
1

b3
− ḃ2

b
+ ḟ2ḃ
����

}

× (x2
2 + y2

2

) + lω2
ψ1

b
�������

− lω1
ψ1

b

w2

w1

1

b2

]
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1 .

The right-hand side reads

− w2

2m

∂2ψ2

∂x2
2

+ mω2
2x2

2

2w2
ψ2 =

[
− w2

2m

∂2ψ1

∂x2
1

1

b3
− i

∂ψ1

∂x1

1

b2

ḃ

b
x2 − i

2
ψ1

ḃ

b2

⎧⎨
⎩1 + i

m

w2

ḃ

b
x2

2

⎫⎬
⎭ + mω2

2x2
2

2w2

ψ1

b
����������

����������

]

× e
i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1 ,

− w2

2m

∂2ψ2

∂y2
2

+ mω2
2y2

2

2w2
ψ2 =

[
− w2

2m

∂2ψ1

∂y2
1

1

b3
− i

∂ψ1

∂y1

1

b2

ḃ

b
y2 − i

2
ψ1

ḃ

b2

⎧⎨
⎩1 + i

m

w2

ḃ

b
y2

2

⎫⎬
⎭ + mω2

2y2
2

2w2

ψ1

b
����������

����������

]

× e
i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1 .

Next, we assume that the wave function is an eigenstate of the L̂z operator, i.e., ψ1, ψ2 ∼ eilφ . Then the action of L̂z = −i ∂
∂φ

for
the second system is

ω2L̂z2ψ2 = ω2(−i(il ))ψ2 = lω2
ψ1

b
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1

�����������������������������

,

and for the first it is

ω1L̂z1ψ1 = ω1[−i(il )]ψ1 = lω1ψ1. (D4)

After some simplifications we arrive at

i
∂ψ1

∂t1

w2

w1

1

b3
− m

2

w2

w2
1

ω2
1

b3

(
x2

1 + y2
1

)
ψ1 − lω1

w2

w1

1

b3
ψ1 = − w2

2m

∂2ψ1

∂x2
1

1

b3
− w2

2m

∂2ψ1

∂y2
1

1

b3
.

Dividing by w2
w1

1
b3 , with (D4) we get

i
∂ψ1

∂t1
= − w1

2m

(
∂2ψ1

∂x2
1

+ ∂2ψ1

∂y2
1

)
+ mω2

1

(
x2

1 + y2
1

)
2w1

ψ1 + ω1L̂z1ψ1.

APPENDIX E: TRANSFORMATION OF THE PROBABILITY CURRENT

We consider a system H2 where a probability current is given by

ĵ2 = 1

m
(
√

w2Re{ψ∗
2 p̂2ψ2} − eA2|ψ2|2). (E1)

First, we consider an action of the operator p̂2 = −i ∂
∂x2

ex − i ∂
∂y2

ey on ψ2 and then express the result in terms of system 1 and
vectors from H1:

p̂2ψ2 =
[
−i

(
∂ψ1

∂x1
ex + ∂ψ1

∂y1
ey

)
1

b2
+ m

w2

ḃ

b
ψ1(x1ex + y1ey)

]
e

i
2

m
w2

ḃ
b (x2

2+y2
2 )e−il

∫
ω2dt2+il

∫
ω1dt1 .

The first term from (E1) reads
√

w2

m
Re{ψ∗

2 p̂2ψ2} =
√

w2√
w1

1

b3

1

m
Re{√w1ψ

∗
1 p̂1ψ1} +

√
w2√
w1

1

mb
|ψ1|2G, (E2)

where G = m
√

w1

w2

ḃ
br1 and rT

1 = (x1, y1, 0).
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Next, we consider the transformation of the second term (51) under the mapping (D3). Under the symmetric gauge we
have

AT
2 =

(
− B2y2

2
√

w2
,

B2x2

2
√

w2
, 0

)
=

√
w1√
w2

B2

B1

(
− B1by1

2
√

w1
,

B1bx1

2
√

w1
, 0

)
=

√
w1√
w2

B2

B1
bAT

1 ,

and consequently

− e

m
A2|ψ2|2 = − e

m

√
w1√
w2

B2

B1

1

b
A1|ψ1|2. (E3)

We combine (E2) and (E3) and arrive at

ĵ2 =
√

w2√
w1

1

b3

1

m
Re{√w1ψ

∗
1 p̂1ψ1} +

√
w2√
w1

1

mb
|ψ1|2G − e

m

√
w1√
w2

B2

B1

1

b
A1|ψ1|2

=
√

w2√
w1

1

b3
ĵ1 +

√
w2√
w1

1

b3

e

m
A1|ψ1|2 +

√
w2√
w1

1

mb
|ψ1|2G − e

m

√
w1√
w2

B2

B1

1

b
A1|ψ1|2

=
√

w2√
w1

1

b2

{
ĵ1

b
+
[(

1

b
− B2

B1

w1

w2
b

)
eA1

m
+ b

m
G
]
|ψ1|2

}
. (E4)
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