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Exact dynamics of the spin-boson model at the Toulouse limit
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Starting from the stochastic Liouville equation, we obtain an integral functional equation for describing
the finite-temperature dynamics of the asymmetric spin-boson model. Like the zero-temperature case, this
equation displays a hierarchical structure characterizing the multiple-timescale nature of quantum dissipative
dynamics. We are thereby able to establish a perturbation series and illustrate the contributions with the
conventional concepts of blips and sojourns. We clarify the speciality of the Toulouse limit by presenting the
analytical properties of intrablip and blip-sojourn interactions. This speciality leads to a closed-form equation for
the blip, from which the exact result of the dissipative dynamics can be obtained. We also demonstrate the exact
solution by summing the perturbative series. Moreover, we calculate the exact equilibrium distribution at the
Toulouse limit and compare it with the Boltzmann distribution valid for weak dissipation.
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I. INTRODUCTION

The spin-boson model, which describes a spin under the
influence of a coupling heat bath, has been a paradigm to
understand the fundamental aspects of quantum dissipation
[1]. It can be used to understand a qubit perturbed by its
environment [2] and tunneling in solvents [3]. Moreover, it
can be mapped from the anisotropic Kondo model [4,5] and
the ferromagnetic Ising model with long-range forces [6,7].
The spin-boson model thus has fruitful applications in physics
and chemistry and plays an important role in understanding
quantum phase transitions [8–10], quantum computing [11],
quantum coherence [12], quantum optics [13], chemical reac-
tions [14–16], thermodynamics [17,18], and heat conduction
[19].

The spin-boson model is described by the Caldeira-Leggett
model [20,21] consisting of the system Ĥs, the bath Ĥb and the
system-bath interaction Ĥsb, namely,

Ĥsbm = Ĥs + Ĥb + Ĥsb. (1)

The Hamiltonian of the system is generally expressed in terms
of the Pauli matrices σx/y/z, Ĥs = −h̄�σx/2 − h̄εσz/2, where
h̄ denotes the reduced Planck constant. Note that in princi-
ple a reorganization term should be included to counteract
the bath-induced system shift. But for a two-state system,
the reorganization term is a constant, and its influence on
the system evolution is merely a global phase and hence is
omitted here. The system Hamiltonian is a reasonable two-
state approximation to a double-well system with a high
barrier. In this approximation ε represents the asymmetric-
ity of the double well [21], which is also called the bias.
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A symmetric double well will be approximated with ε = 0,
and Eq. (1) describes a symmetric spin-boson model. Other-
wise, when ε �= 0, it characterizes an asymmetric one. For
the symmetric case, the ground and first excited states are
|0〉 = (1,−1)T /

√
2 and |1〉 = (1, 1)T /

√
2, respectively, with

h̄� being their energy difference. Their linear superpositions
|L〉 = (|0〉 + |1〉)/

√
2 = (1, 0)T and |R〉 = (|0〉 − |1〉)/

√
2 =

(0, 1)T correspond to the localized states of the symmetric
double-well system and thus are called the left and right states.
The dynamics of the localized states is usually used to vi-
sualize quantum coherence. Therefore, the spin-boson model
also represents generic dissipative tunneling of particles in
double-well potentials.

For the Caldeira-Leggett model the bath comprises in-
finite independent harmonic oscillators Ĥb = ∑

j ( p̂2
j/2mj +

mjω
2
j x̂

2
j /2) which linearly couple to the system Ĥsb = f̂sĝb,

with f̂s = √
h̄σz/2 and ĝb = ∑

j c j x̂ j . For such a linear cou-
pling scheme, it is shown that the effect of the bath on the
evolution of the system is fully characterized by its spectral
density function [20]

J (ω) = π

2

∑
j

c2
j

m jω j
δ(ω − ω j ). (2)

Usually, the bath is assumed to form a continuum, and J (ω)
is thus a continuous function. In the present work, we treat
the bath as J (ω) = 2πKωe−ω/ωc , where K is the dimension-
less Kondo parameter characterizing the dissipation strength
and ωc is the high-frequency cutoff. Here, we focus on the
dynamical features at the scaling limit ωc → ∞. Such a bath
is Ohmic as J (ω) ∝ ω in the low-frequency regime.

Despite the apparent simplicity, the spin-boson model ex-
hibits rich physics [7]. At zero temperature the dissipative
dynamics is coherent and exhibits quantum coherence at weak
dissipation (K < 1

2 ). When K is increased to 1
2 , the Toulouse
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limit, it manifests a coherent-incoherent crossover with an
exponential decay. The Toulouse limit is related to the infinite-
U Anderson model [22] and has been extensively studied in
physics. It has been shown that the dynamics can be solved
by the real-time path-integral technique [23–25], mapping
to a solvable free-fermion resonant-level model [7,21] and
a solvable equivalent noninteracting nonequilibrium prob-
lem [26]. When the dissipation strength K further increases,
the dynamics becomes incoherent until K reaches a critical
value, K = 1. Then, the system will be localized in the initial
state, manifesting a transition from a delocalized state to a
local one, which is a typical signature of the quantum phase
transition.

We still do not know how to exactly solve the spin-
boson model in the whole physical parameter space because
of the involvement of multiple timescales, although it as-
sumes analytical solutions for specific cases such as the
Toulouse limit. As such, this model offers both a great
challenge and a versatile test bed for methodological de-
velopments. There have been several theoretical techniques
proposed to attack the spin-boson model and generic quan-
tum dissipative systems as well. For instance, to understand
the thermodynamics it is useful to transfer a number of rig-
orous, thermodynamical results of the inverse-square Ising
chain to the spin-boson model by exploiting their equivalence
[27–29]. Especially, Anderson used the mapping to show
that this model assumes quantum phase transition [6]. For
real-time dynamics, the Feynman-Vernon influence functional
serves as powerful theoretical machinery [30] and has stim-
ulated a bunch of analytical and numerical methods, such
as the noninteraction-blip approximation (NIBA) [31,32], the
quantum Monte Carlo method [33], the quasiadiabatic prop-
agator path-integral approach [34], the stochastic Liouville
equation (SLE) [35,36], and the functional-integral approach
[17,37]. Among these methods, SLE [35,36], first established
upon factoring the influence functional [35] and later re-
formulated with the stochastic decoupling of the dissipative
interaction [36], has become a fruitful framework. As a the-
oretical formulation, it has been shown to be equivalent to
the non-Markovian quantum state diffusion and used to de-
rive quantum master equations [38]. More importantly, SLE
provides a simulation protocol and a working formula for
developing highly efficient numerical procedures. The SLE-
based methods, including the hierarchical approach [39–42],
hybrid stochastic-hierarchical equations [43,44], and variance
reduction schemes [45–47], have already witnessed suc-
cessful applications to solve quantum dissipative dynamics.
Especially, the hierarchical approach and hybrid stochastic-
hierarchical equations have now become the benchmark
methods for solving the dynamics of the spin-boson model
[48,49]. Unfortunately, despite the impressive progress, the
zero-temperature dynamics of the spin-boson model at strong
dissipation (K > 1

2 ) still remains elusive, and results obtained
from the hybrid stochastic-hierarchical equations [48] differ
from those of the extended hierarchical approach [49] and are
challenged by simulations of the multilayer multiconfigura-
tion time-dependent Hartree method [50].

Very recently, with the stochastic Liouville equation and
using the auxiliary functional averaging technique, we derived
an integral functional equation for the population dynamics

[51]. This equation displays a hierarchical structure of motion
in the sense that the later dynamics relies on the spontaneous
fields induced by the earlier one and allows us to develop a
nonperturbative treatment. Indeed, NIBA is feasibly acquired
by merely neglecting the earlier spontaneous fields. Moreover,
the exact solution at the Toulouse limit is readily obtained
for the symmetric spin-boson model. An approximation for
dealing with strong dissipation K > 1

2 is also proposed, which
results in an exponential-decay dynamics and in which the
scaled time does not change in the range of 1

2 � K < 1. Of
course, it correctly predicts that the decay rate vanishes at the
quantum critical point K = 1.

In this work we focus on the finite-temperature dissipative
dynamics. In particular we aim at exactly solving the Toulouse
dynamics of the asymmetric spin-boson model. The asym-
metricity makes the numerical simulations and the analytic
solution even harder [52,53]. Interestingly, for the symmetric
case ε = 0, NIBA gives an exponential decay at the Toulouse
limit [1,23,25] and yields an overall good approximation for
K < 1

2 . However, it is no longer a valid approximation in
the presence of a finite bias [21]. This notorious failure even
brought about doubt on the NIBA result for the coherent-
incoherent transition. Egger et al. investigated this transition
beyond NIBA and revealed that for the symmetric model at
K → 1

2 only blips of effectively vanishing length contribute,
which causes vanishing interblip interaction and makes NIBA
exact [53].

In an elaborate work [23] Sassetti and Weiss addressed
the exact solution at the Toulouse limit with the path-
integral method. Their derivation involves beautiful, profound
physical considerations and sophisticated techniques, which
motivates us to develop more accessible methods. We find
that the integral functional equation developed in Ref. [51]
is a suitable one. Indeed, by analyzing the particularity of the
Toulouse limit we can either solve the resultant equations of
motion or carry out the summation of the perturbation expan-
sion to obtain the exact solution.

The rest of this paper is organized as follows. In Sec. II
we outline the key ideas of the stochastic decoupling method
and show how to derive the bath-induced field when the bath
starts from a state that is equilibrated according to the initial
configuration of the two-state system. In Sec. III we give a
brief account of the integral functional equation method for
solving the dissipative dynamics. In Sec. IV we show that
the solution of the single-blip dynamics is available. With
this solution the exact Toulouse dynamics is feasibly reached.
We also demonstrate that the exact dynamics can be worked
out by iterating the integral functional equation and calcu-
lating the resultant series. In Sec. V we compare the exact
solution and the Boltzmann distribution that is suitable for
weak dissipation. We summarize our findings and discuss
their implications in Sec. VI.

II. STOCHASTIC DECOUPLING
OF THE SPIN-BOSON MODEL

For a given initial state, the dynamics of the spin-boson
model is fully characterized by its density operator ρ(t ),
which evolves according to the quantum Liouville–von Neu-
mann equation, ih̄∂ρ(t )/∂t = [Ĥsbm, ρ(t )]. The initial state is
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generally assumed to be a factorized one, ρ(0) = ρs(0)ρb(0).
In this work we suppose that the system evolves from the
left state, that is, ρs(0) = |L〉〈L|. We will focus on the dy-
namics z̃(t ) = Tr[ρ(t )σz], that is, the population difference
between the left and right states. Without the system-bath
interaction, the two-state system is a textbook example
manifesting quantum coherence with a periodic change in
the population in the initial state, resulting in z̃(t ) = (ε2 +
�2 cos

√
ε2 + �2t )/(ε2 + �2) [54]. The coupling to a heat

bath affects this coherent motion. We compare the quantum
coherence between the spin-boson model and a damped har-
monic oscillator. As we know, the periodic oscillation of a
harmonic oscillator is hampered by friction. When fiction gets
stronger, the harmonic oscillator returns to its equilibrium
point more slowly and exhibits an underdamped-overdamped
transition. The dynamics is frozen only when the dissipa-
tion is infinitely strong. For the two-state system, which is
a genuine quantum system, its dynamical feature is dramat-
ically changed by quantum dissipation. Like the frictional
classical oscillation exhibiting an underdamped-overdamped
transition, the dissipative two-state system also shows a
coherent-incoherent crossover as the dissipation strength in-
creases. However, there is a drastic difference between the
damped harmonic oscillator and the spin-boson model: When
the dissipation strength goes beyond a critical value, a dissi-
pative two-state system at zero temperature will be localized
in the initial state forever. This is the pivotal feature of the
quantum phase transition and has no classical counterpart.

We now consider the initial state of the bath. Usually, the
bath is assumed to start from a thermal equilibrium state,
i.e., ρb(0) = exp(−βĤb)/Tr[exp(−βĤb)], where β = 1/kBT ,
with kB being the Boltzmann constant and T being the temper-
ature. Such an initial bath state might be relevant in chemical
reactions and spectroscopic measurements where the bath
represents the solvent [55–57]. This choice simplifies theo-
retical derivation and ensuing computation and is thus widely
adopted in the literature. The thermal equilibrium according to
the bare bath Hamiltonian is by no means the only choice of
the initial condition, and there are studies on different initial
preparations [58–62]. A nonfactorized initial state may have
different consequences. For instance, Hakim and Ambegaokar
investigated a dissipative free particle and revealed that the
factorized and nonfactorized initial states lead to different
transient dynamics [63]. Qin and coworkers studied the spin-
boson model and found that different initial states yield the
same long-time dynamics [64]. These results confirm that the
two sets of initial states should give the same evolution in the
timescale 	 1/ωc. Generally speaking, the bath will quickly
return to equilibrium regardless of the initial condition, but
the difficulty in theoretical treatment differs for different ini-
tial conditions. We here set the bath initially equilibrated
according to the system. The equilibration can be realized
by applying a strong bias −h̄ε0θ (−t ), with ε0 	 �, from an
infinite past to trap the spin in the left state. The strong bias
is disabled at time t = 0, and later, the dynamics is dictated
by the Hamiltonian (1). Such a preparation results in a shifted
initial bath

ρb(0) = e−β(Ĥb+ f̄sĝb )/Tr
{
e−β(Ĥb+ f̄sĝb )

}
, (3)

where f̄ = Tr[ f̂sρs(0)].

With the initial state and the equation of motion, we are
ready to tackle the dynamics of the spin-boson model. Direct
propagation through the quantum Liouville–von Neumann
equation, however, has to deal with the coupled infinite de-
grees of freedom and is impossible. To avoid this difficulty,
we adopt a stochastic unraveling scheme [36] to decouple the
evolution into a set of equations,

ih̄
∂ρs

∂t
= [Ĥs, ρs] + χ

√
h̄

2
[ f̂s, ρs]μ(t ) + χ

√
h̄

2
{ f̂s, ρs}ν(t ),

(4a)

ih̄
∂ρb

∂t
= [Ĥb, ρb] + i

√
h̄

2χ
[ĝb, ρb]ν∗(t ) + i

√
h̄

2χ
{ĝb, ρb}μ∗(t ),

(4b)

where μ(t ) and ν(t ) are two uncorrelated complex
white noises satisfying the correlations M〈μ(t1)μ(t2)〉 =
M〈ν(t1)ν(t2)〉 = 0 and M〈μ∗(t1)μ(t2)〉 = M〈ν∗(t1)ν(t2)〉 =
2δ(t1 − t2), with δ(t ) being the Dirac delta function. The pa-
rameter χ is a free scaling factor with the dimension [T − 1

2 ]
to ensure all terms in Eq. (4) have the same dimension. Note
that the parameter χ could be important if Eq. (4a) is used
to describe the real or virtual stochastic physical processes.
When we aim at the exact dissipative dynamics, however, the
factors χ and χ−1 in Eq. (4a) will be canceled out by their
inverse arising from Eq. (4b), and thus, χ becomes irrelevant.
Therefore, we simply set χ = 1 in the following.

The exact dynamics of the whole system is produced by
the stochastic average, ρ(t ) = M〈ρs(t )ρb(t )〉. Consequently,
the reduced dynamics of the system is given by ρ̃s(t ) =
M〈ρs(t )Tr[ρb(t )]〉. That is to say, the dissipative dynamics
can be acquired directly if the trace of the bath Tr[ρb(t )]
instead of the density matrix ρb(t ) itself is known. Actually,
we can feasibly evaluate the trace Tr[ρb(t )] with the operator
method [65], obtaining Tr[ρb(t )] = exp{∫ t

0 dt1μ∗(t1)[ḡ(t1) −
2 f̄ F (t1)]/

√
h̄}, where ḡ(t ) is the bath-induced field,

ḡ(t ) =
√

h̄
∫ t

0
dt1[αr (t − t1)μ∗(t1) + iαi(t − t1)ν∗(t1)], (5)

and F (t ) = ∫ ∞
0 dωJ (ω) cos(ωt )/ω, with αr and αi

respectively being the real and imaginary parts of
the bath correlation function α(t ) = Tr[exp(iĤbt/h̄)
ĝb exp(−iĤbt/h̄)ĝb exp(−βĤb)] /Tr[exp(−βĤb)]. This
correlation function can be expressed in terms of the spectral
density function

α(t ) = 1

π

∫ ∞

0
dωJ (ω)

[
coth

(
h̄βω

2

)
cos(ωt ) − i sin(ωt )

]
.

(6)

In calculating the stochastic average of ρs(t )Tr[ρb(t )], it is
more convenient to work out a variant of ρs, a new stochastic
density matrix ρ̂s, whose average directly produces the exact
reduced density matrix, ρ̃s(t ) = M〈ρ̂s(t )〉. To this end, we ab-
sorb the trace of the bath Tr[ρb(t )] into the stochastic measure
via the Girsanov transformation, which is essentially a shift of
the noise, μ(t ) → μ(t ) + 2ḡ(t )/

√
h̄ [36,66]. Accordingly, the

stochastic reduced density matrix ρs is modified to ρ̂s, which
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satisfies the equation of motion

ih̄
∂ρ̂s

∂t
= [Ĥs + ḡ(t ) f̂s, ρ̂s] +

√
h̄

2
[ f̂s, ρ̂s]μ(t ) +

√
h̄

2
{ f̂s, ρ̂s}ν(t ).

(7)

Equation (7) is the stochastic Liouville equation derived from
a microscopic model. Kubo originally suggested the stochas-
tic Liouville approach as a phenomenological one [67,68],
which can be viewed as the high-temperature limit of Eq. (7).
The ordinary stochastic differential equation in Eq. (7) is
straightforward to implement in numerics. Its performance
for strong dissipation, however, degrades due to the drastic
increase in the numerical errors at large times [45,46]. Re-
gardless, Eq. (7) may serve as a starting point to derive new
efficient algorithms. We now apply it to the spin-boson model.
Because the three Pauli matrices and the identity matrix con-
struct a complete basis for two dimensions, the stochastic
density matrix can be expressed as ρ̂s(t ) = [I (t ) + x(t )σx +
y(t )σy + z(t )σz]/2. Substituting it into Eq. (7) yields stochas-
tic equations of motion for the coefficients

dI (t )

dt
= −iξ2(t )z(t ), (8a)

dx(t )

dt
= [ε + F (t ) − ξ1(t )]y(t ), (8b)

dy(t )

dt
= �z(t ) − [ε + F (t ) − ξ1(t )]x(t ), (8c)

dz(t )

dt
= −�y(t ) − iξ2(t )I (t ). (8d)

The initial condition ρ̂s(0) then accordingly converts to
I (0) = 1, x(0) = 0, y(0) = 0, and z(0) = 1. Here, for con-
venience, we have regrouped the white noises and the
bath-induced stochastic field as ξ1(t ) = ḡ(t )/

√
h̄ + μ(t )/2

and ξ2(t ) = ν(t )/2. The two noises ξ1 and ξ2 are of
zero mean and assume the covariances M〈ξ1(t )ξ1(t ′)〉 =
αr (t − t ′), M〈ξ2(t )ξ2(t ′)〉 = 0, and M〈ξ1(t )ξ2(t ′)〉 = iθ (t −
t ′)αi(t − t ′), where θ (t ) is the Heaviside step function, which
is unity for t > 0 and zero otherwise.

III. FUNCTIONAL EQUATION
OF POPULATION DYNAMICS

Our task is to work out the exact dynamics z̃(t ) = M〈z(t )〉.
To this end, we derive the stochastic integral equation for z(t )
and establish equations for its stochastic average.

We first show how to achieve deterministic functional
equations dictating the dynamics. We solve the linear dif-
ferential equations (8b) and (8c) by treating z(t ) as an
inhomogeneous term and obtain the solution

x(t ) = −�

∫ t

0
dt1 sin[φ1(t, t1) − F (t, t1) − ε(t − t1)]z(t1),

(9a)

y(t ) = �

∫ t

0
dt1 cos[φ1(t, t1) − F (t, t1) − ε(t − t1)]z(t1),

(9b)

where, for simplicity, we denote F (t1, t2) = F (t1) − F (t2) and
φa(t1, t2) = ∫ t1

t2
dτξa(τ ) for a = 1, 2. Substituting the solution

(9b) into Eqs. (8a) and (8d), we find

z(t ) = e−iφ2(t,0) − �2
∫ t

0
dt1

∫ t1

0
dt2 cos φ2(t, t1)

× cos[φ1(t1, t2) − F (t1, t2) − ε(t1 − t2)]z(t2). (10)

In taking the average it becomes convenient to convert the
exponential inhomogeneous term in the linear integral equa-
tion (10) to unity. To this purpose, we recast z(t ) as z(t ) =
e−iφ2(t,0)z̆(t ), where z̆(t ) satisfies the following equation:

z̆(t ) = 1 − �2
∫ t

0
dt1

∫ t1

0
dt2 cos φ2(t, t1)eiφ2(t,t2 )

× cos[φ1(t1, t2) − F (t1, t2) − ε(t1 − t2)]z̆(t2). (11)

We now work out a variant of z̆(t ), denoted as z̄(t ),
whose stochastic average directly produces the dynamics,
i.e., z̃(t ) = M〈z̄(t )〉. For this purpose, we invoke the Gir-
sanov transformation ξ1(t ) → ξ1(t ) + F (t ) − �t , with � =
F (0) = ∫ ∞

0 dω J (ω)/πω, to absorb the factor e−iφ2(t,0) in
z(t ) = e−iφ2(t,0)z̆(t ) into the stochastic measure [51,69]. Then
z̄(t ) is acquired via the Girsanov transformation of z̆(t ) and
obeys the equation of motion,

z̄(t ) = 1 − �2
∫ t

0
dt1

∫ t1

0
dt2 cos φ2(t, t1)eiφ2(t,t2 )

× cos[φ1(t1, t2) − (� + ε)(t1 − t2)]z̄(t2). (12)

Note that the noises φ2(t, t1) and φ2(t1, t2) do not correlate
with z̄(t2) and thus can be handled independently in averag-
ing. By contrast, the correlation between φ1(t1, t2) and z̄(t2)
persists and causes the difficulty. Therefore, we try to disen-
tangle this correlation by decomposing the noise φ1(t1, t2) into
two uncorrelated parts, φ1(t1, t2) = φ

(a)
1 (t1, t2) + φ

(b)
1 (t1, t2),

so that only φ
(b)
1 (t1, t2) correlates with z̄(t2). Such a decom-

position can be conveniently realized via the white noise
representation of the noise ξ1, resulting in

φ
(a)
1 (t1, t2) =

∫ t1

t2

dt3

{ ∫ t3

t2

dt4[αr (t3 − t4)μ∗(t4)

+ iαi(t3 − t4)ν∗(t4)] + μ(t3)

2

}
, (13a)

φ
(b)
1 (t1, t2) =

∫ t2

0
dt3

[
B′

t1,t2 (t3)μ∗(t3) + iB′′
t1,t2 (t3)ν∗(t3)

]
,

(13b)

where B′ and B′′ are integrals of the real and imaginary parts
of the bath correlation function, respectively,

B′
t1,t2 (t3) =

∫ t1

t2

dt4αr (t4 − t3), (14a)

B′′
t1,t2 (t3) =

∫ t1

t2

dt4αi(t4 − t3). (14b)

To go further, we exploit the auxiliary functional technique
in calculating stochastic averages [70]. The key point is to
view z̄(t ) as a functional of the noises ξ1 and ξ2. Then we may
shift ξ1 and ξ2 with arbitrary deterministic functions B1 and
B2, respectively. As a consequence, the equation of motion of
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z̄(t ), Eq. (12), is transformed as

z̄([ξ1 + B1, ξ2 + B2], t ) = 1 − �2

4

∫ t

0
dt1

∫ t1

0
dt2

[
1 + e2iφ2(t,t1 )+2i

∫ t
t1

dτB2(τ )]eiφ2(t1,t2 )+i
∫ t1

t2
dτB2(τ ){eiφ(a)

1 (t1,t2 )+iφ(b)
1 (t1,t2 )+i

∫ t1
t2

dτ [B1(τ−�−ε]

+ e−iφ(a)
1 (t1,t2 )−iφ(b)

1 (t1,t2 )−i
∫ t1

t2
dτ [B1(τ )−�−ε]}z̄([ξ1 + B1, ξ2 + B2], t2). (15)

We now take the average with respect to the noises ξ1 and
ξ2. To do so, we have to deal with mutual correlations among
processes e2iφ2(t,t1 ), eiφ2(t1,t2 )±iφ(a)

1 (t1,t2 ), eφ
(b)
1 (t1,t2 ), and z̄(t2). The

averaging can be simplified by noticing the following facts.
(1) The stochastic processes φ2(t, t1) and iφ2(t1, t2) ±

iφ(a)
1 (t1, t2) do not correlate with other processes, and

the averages M〈e2iφ2(t,t1 )〉 and M〈eiφ2(t1,t2 )±iφ(a)
1 (t1,t2 )〉 can

be carried out independently. The corresponding results
are M〈e2iφ2 (t,t1 )〉 = 1 and M〈eiφ2(t1,t2 )+iλφ

(a)
1 (t1,t2 )〉 = Q(t1 −

t2; λ)eiλ�(t1−t2 ), where

Q(t ; λ) = e−B(t )−iλA(t )−iλ� t , (16)

with A(t ) = ∫ t
0 dt1

∫ t1
0 dt2αi(t1 − t2) and B(t ) = ∫ t

0 dt1
∫ t1

0
dt2αr (t1 − t2).

(2) The correlation between z̄(t2) and φ
(b)
1 (t1, t2) can

be solved with the help of the Girsanov transform,
M〈e±iφ(b)

1 (t1,t2 )z̄([ξ1 + B1, ξ2 + B2], t2)〉 = z̃([B1 ± iB′
t1,t2 ,

B2 ∓ B′′
t1,t2 ], t2). Accordingly, upon the stochastic averaging,

Eq. (15) becomes

z̃([B1, B2], t ) = 1 − �2

4

∫ t

0
dt1

∫ t1

0
dt2

[
1 + e2i

∫ t
t1

dτB2(τ )]

×
∑
λ=±1

Q(t1 − t2; λ)eiλ
∫ t1

t2
dτ [B1(τ )+λB2(τ )−ε]

× z̃
([

B1 + iλB′
t1,t2 , B2 − λB′′

t1,t2

]
, t2

)
. (17)

A remark on the averaging procedure is in order. If it directly
applies to Eq. (10), we then end up with the following integral
functional equation:

z([B1, B2], t ) = e−i
∫ t

0 dτB2(τ ) − �2

2

∫ t

0
dt1

∫ t1

0
dt2

∑
λ=±1

× cos

[ ∫ t

t1

dτB2(τ )

]
Q(t1 − t2; λ)

× eiλ
∫ t1

t2
dτ [B1(τ )−ε]

× z
([

B1 + iλB′
t1,t2 , B2 − λB′′

t1,t2

]
, t2

)
. (18)

These two equations can be transformed into each other by
using z([B1, B2], t ) = e−i

∫ t
0 dτB2(τ )z̃([B1, B2], t ), which keeps

the population dynamics unchanged, i.e., z([0, 0], t ) =
z̃([0, 0], t ). However, it turns out that Eq. (17) makes approx-
imations such as NIBA easier and is thus the focus in the
following.

In Eq. (17) functions B′
t1,t2 (τ ) and B′′

t1,t2 (τ ) may be regarded
as dissipative fields spontaneously produced during evolution.
They will be induced as z̃([B1, B2], t ) propagates and in turn
exert a feedback on the evolution. To further illustrate this
idea, we simply set the auxiliary functions B1 and B2 to zero
and thereby obtain the wanted quantity z̃(t ) ≡ z̃([0, 0], t ),

which reads

z̃(t ) = 1 − �2

2

∫ t

0
dt1

∫ t1

0
dt2

∑
λ=±1

Q(t1 − t2; λ)

× e−iλε(t1−t2 )z̃λ,t1 (t2), (19)

where z̃λ,t1 (t2) = z̃([λiB′
t1,t2 ,−λB′′

t1,t2 ], t2). When t1 = t2,
z̃±1,t1 (t2) = z̃(t1) by definition. In addition, we have
z̃−1,t1 (t2) = [z̃1,t1 (t2)]

∗
, which ensures a real z̃(t ).

Equation (19) presents the exact dissipative dynamics.
Unfortunately, it is not in closed form because the relation
between z̃([±iB′

t1,t2 ,∓B′′
t1,t2 ], t2) and z̃(t ) is unknown. To solve

these equations, therefore, we have to know z̃1,t1 (t2), which
can be deduced from Eq. (17) [71]:

z̃1,t1 (t2) = 1 − �2

2

∫ t2

0
dt3

∫ t3

0
dt4P(t1, t2, t3)

× {
Q(t3 − t4; +1)S(t1, t2, t3, t4; +1)e−iε(t3−t4 )

× z̃
([

iB′
t1,t2 + iB′

t3,t4 ,−B′′
t1,t2 − B′′

t3,t4

]
, t4

)
(20)

+ Q(t3 − t4; −1)[S(t1, t2, t3, t4; −1)]−1eiε(t3−t4 )

× z̃
([

iB′
t1,t2 − iB′

t3,t4 ,−B′′
t1,t2 + B′′

t3,t4

]
, t4

)}
,

where

P(t1, t2, t3) = 1
2 + 1

2 e− 2i
h̄

∫ t2
t3

dt4B′′
t1 ,t2

(t4 ) (21)

and

S(t1, t2, t3, t4; λ) = Q(t1 − t4; λ)

Q(t1 − t3; λ)

Q(t2 − t3; λ)

Q(t2 − t4; λ)
. (22)

Equation (20) is not in closed form either, and more dissipa-
tive fields B′

t3,t4 and B′′
t3,t4 are included. The above procedure

shows that evolution continuously induces dissipative fields
and the motion of z̃(t ) involves z̃([iλ1B′

t1,t2 ,−λ1B′′
t1,t2 ], t2),

whose propagation in turn generates dissipative fields in more
periods and depends on z̃([iλ1B′

t1,t2 + iλ2B′
t3,t4 ,−λ1B′′

t1,t2 −
λ2B′′

t3,t4 ], t4). For convenience we introduce the nota-
tion Zn = z̃([iλ1B′

t1,t2 + · · · + iλnB′
t2n−1,t2n

, −λ1B′′
t1,t2 − · · · −

λnB′′
t2n−1,t2n

], t2n) by omitting the arguments. Iterating Eq. (17)
repeatedly, we discover that the equation for Zn is deter-
mined by an integral over Zn+1 that involves more complex,
more time-advanced dissipative fields. This procedure essen-
tially establishes a hierarchical description for the dissipative
dynamics.

The hierarchical structure may be explained in terms
of blips and sojourns [21]. To clarify this connection we
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iterate Eq. (17) to express z̃(t ) as an infinite series of �2,

z̃(t ) = 1 +
∑
n=1

(−�2

2

)n ∫ t

0
Dn{t}

∑
λ1,...,λn=±1

n∏
j=1

Q(t2 j−1 − t2 j ; λ j )e
−iλ jε(t2 j−1−t2 j )

1

2

[
1 +

n∏
k= j+1

W (t2 j−1, t2 j, t2k−2, t2k−1; λ j )

]

×
n∏

k= j+1

[S(t2 j−1, t2 j, t2k−1, t2k ; λk )]λ jλk , (23)

where
∫ t

0 Dn{t} = ∫ t
0 dt1

∫ t1
0 dt2 · · · ∫ t2n−1

0 dt2n and W (t1, t2, t3,
t4; λ) = exp{−2iλ[A(t2 − t3) + A(t1 − t4) − A(t2 − t4) − A(t1
− t3)]}. Here, a blip corresponds to the period t2n < t < t2n−1

spanned by dissipative fields B′
t2n−1,t2n

and B′′
t2n−1,t2n

, whereas a
sojourn is the period t2n+1 < t < t2n between two successive
blips. Correspondingly, the function Zn describes the n-blip
dynamics containing the effect of all the blip-blip and
blip-sojourn interactions.

Note that Eq. (23) can also be obtained by iterating
Eq. (12) and then taking the stochastic average. Within the
framework of stochastic processes, interactions among blips
and sojourns becomes clearer: They are nothing but conse-
quences of their stochastic correlations. The nth-order term
in the series actually is the n-blip contribution and com-
promises all possible interactions between n blips and n
sojourns. For instance, the W function in Eq. (23) arises from
the factor exp{−2λ jM〈φ1(t2 j−1, t2 j )φ2(t2k−2, t2k−1)〉} defin-
ing the correlation between a blip noise φ1(t2 j−1, t2 j ) and a
sojourn noise φ2(t2k−2, t2k−1) and hence stands for the blip-
sojourn correlation or interaction. The Q function is rooted
in the autocorrelation of the blip noise λ jφ1(t2 j−1, t2 j ) +
φ2(t2 j−1, t2 j ), i.e., M〈exp{i[λ jφ1(t2 j−1, t2 j ) + φ2(t2 j1 , t2 j )]}〉
and corresponds to the intrablip correlation. Meanwhile,
the S function originates from the correlation between
two different blip noises, i.e., exp{−M〈[λ jφ1(t2 j−1, t2 j ) +
φ2(t2 j−1, t2 j )][λkφ1(t2k−1, t2k ) + φ2(t2k−1, t2k )]〉} and stands
for the interblip interaction. In addition, λ j = ±1 can
be viewed as the phase factor for the jth blip. When
two blips t2 j < t < t2 j−1 and t2k < t < t2k−1 assume the
same phase factors, their interblip interaction is given by
S(t2 j−1, t2 j, t2k−1, t2k ; λk ) itself. Otherwise, the interaction is
described by its inverse, [S(t2 j−1, t2 j, t2k−1, t2k ; λk )]−1.

Upon clarifying the blip-and-sojourn concept, the connec-
tion to NIBA may be revealed straightforwardly. As illustrated
by Dekker [32] and Aslangul et al. [72], NIBA can be obtained
by using the Born approximation after a polaron transfor-
mation. In the path-integral formulation NIBA neglects the
contribution of the sojourns and adopts vanishing sojourn-blip
and interblip interactions [1]. In our case NIBA neglects the
evolution-induced fields B1 and B2 in Eq. (19), yielding the
differential equation

dz̃(t )

dt
= −�2

2

∫ t

0
dτ

∑
λ=±1

Q(t − τ ; λ)e−iλε(t−τ )z̃(τ ), (24)

which is the NIBA equation obtained with the path-integral
method.

We now use these results to solve the dynamics at the
Toulouse limit.

IV. TOULOUSE LIMIT: EXACT SOLUTION

Let us first look at the correlation function α(t ) that deter-
mines the bath-induced noise. At temperature T it reads

α(t ) = 2Kω2
c

(
ω2

ct2 − 2iωct − 1
)

(
1 + ω2

ct2
)2 + 4K

h̄2β2
Reψ ′

(
1 + iωct

h̄βωc

)
,

where ψ is the digamma function. Functions A(t ) and B(t ),
the double integrals of α(t ), become A(t ) = 2K arctan ωct −
2Kωct and B(t ) = −K ln(1 + ω2

ct2) + 2 ln �(1/h̄βωc) −
ln{�[(1 + iωct )/h̄βωc] �[(1 − iωct )/h̄βωc]}, where �

denotes the gamma function. By noticing the identities
�(a + bi)�(a − bi) = �2(a)/

∏∞
k=0[1 + b2/(a + k)2] and∏∞

k=1(1 + b2/k2)−1 = bπ/sinh bπ for real quantities a and
b [73], at the scaling limit ωc → ∞ we readily find the
asymptotic form B(t ) = K ln(1 + ω2

ct2) − 2K ln(κt/2) +
2K ln sinh(κt/2), where κ = 2π/h̄β is the Matsubara
frequency.

At the Toulouse limit K = 1
2 functions Q(t ; λ) and

P(t1, t2, t3) acquire the following results:

Q(t ; λ) = 1

1 + iλωct

κt

2 sinh 1
2κt

, (25a)

P(t1, t2, t3) = 1

2
+ 1

2
exp(2i{arctan[ωc(t1 − t2)]

− arctan[ωc(t1 − t3)] + arctan[ωc(t2 − t3)]}).

(25b)

The function Q(t ; λ), acting as a kernel of the integral over
positive time, assumes the asymptotic behavior

Q(t ; λ) = π

2ωc
δ(t ) − λκi

2ωc
P

1

sinh 1
2κt

, (26)

where P denotes the Cauchy principal value. The P function
at the scaling limit turns out to be real because its imaginary
part is of O(1/ωc) and negligible compared to the real part. Its
asymptotic form reads P(t1, t2, t3) = [1 + ω2

c (t1 − t2)2]−1 +
[1 + ω2

c (t1 − t3)2]−1 + [1 + ω2
c (t2 − t3)2]−1. Because

P(t1, t2, t3) is defined with the constraint t1 � t2 � t3 except
t1 = t3, the P function can be replaced with Dirac δ functions
when serving as an integral kernel,

P(t1, t2, t3) = π

2ωc
[δ(t1 − t2) + δ(t2 − t3)]. (27)

The zero-temperature dynamics of a symmetric spin-boson
model can feasibly be solved by taking advantage of the
asymptotic property of the kernel Q(t ; λ) [51]. Indeed, when
ε = 0 and κ → 0, we substitute Eq. (26) into Eq. (19)
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and obtain

z̃(t ) = 1 − �r

∫ t

0
dt1z̃(t1) + i

�r

π
P

∫ t

0
dt1

∫ t1

0
dt2

1

t1 − t2

×{z̃1,t1 (t2) − [z̃1,t1 (t2)]∗}, (28)

where �r = π�2/2ωc. The third term can be neglected be-
cause z̃1,t1 (t2) becomes real at the scaling limit for t1 −
t2 > 1/ωc. Consequently, Eq. (28) yields the exact solution
z̃(t ) = e−�r t .

Now we consider the asymmetric case at finite tempera-
ture. Inserting Eq. (26) into Eq. (19) and regarding z±1,t1 (t2)
as known functions, we readily solve this equation and obtain

z̃(t ) = e−�r t + �2

2ωc

∫ t

0
dt1P

∫ t1

0
dt2

κe−�r (t−t1 )

sinh 1
2κ (t1 − t2)

× Im
[
e−iε(t1−t2 )z̃1,t1 (t2)

]
. (29)

Now we only need to solve z̃1,t1 (t2) for t1 > t2 due to the
presence of the Cauchy principle integral. To this end, we
substitute the expressions for Q and P into Eq. (20) to get

z̃1,t1 (t2) = 1 − π�2

4ωc

∫ t2

0
dt3

{
Q(t2 − t3; +1)e−iε(t2−t3 )

× S(t1, t2, t2, t3; +1)z̃1,t1 (t3)

+ Q(t2 − t3; −1)[S(t1, t2, t2, t3; −1)]−1eiε(t2−t3 )

× z̃
([

iB′
t1,t2 − iB′

t2,t3 ,−B′′
t1,t2 + B′′

t2,t3

]
, t3

)}
. (30)

Now a key step is to calculate the products Q(t3 −
t4; λ)S(t1, t2, t3, t4; λ) and Q(t3 − t4; λ)[S(t1, t2, t3, t4; λ)]−1

under the constraint t2 = t3. Recognizing the definition of
the S function given in Eq. (22), we immediately obtain the
following results for t2 = t3:

Q(t3 − t4; λ)S(t1, t2, t3, t4; λ) = Q(t1 − t4; λ)

Q(t1 − t2; λ)
(31)

and

Q(t3 − t4; λ)

S(t1, t2, t3, t4; λ)
= [Q(t2 − t4; λ)]2Q(t1 − t2; λ)

Q(t1 − t4; λ)
. (32)

Note that once the constraint t2 = t3 is imposed, t1, t2, and t4
are mutually different times. Therefore, Eq. (31) is of the order
O(1), whereas Eq. (32) is of the order O(1/ω2

c ). Exploiting
these results and based on Eq. (30), we obtain

z̃1,t1 (t2) = 1 − π�2

4ωc

∫ t2

0
dt3e−iε(t2−t3 )z̃1,t1 (t3)

Q(t1 − t3; +1)

Q(t1 − t2; +1)
.

(33)

Equation (33) is an integral equation and can feasibly be
solved with iteration, yielding

z̃1,t1 (t2) = 1 +
∞∑

n=1

(
−�r

2

)n ∫ t2

0
dt3 · · ·

∫ tn+1

0
dtn+2

× Q(t1 − tn+2; +1)

Q(t1 − t2; +1)
e−iε(t2−tn+2 ). (34)

Here, the multidimensional integral can be simplified to a
simple one-dimensional one. With the expression Q(t ; λ)

we have

z̃1,t1 (t2) = 1 − �r

2

∫ t2

0
dt3

sinh κ
2 (t1 − t2)

sinh κ
2 (t1 − t3)

e−( �r
2 +iε)(t2−t3 ).

(35)

Inserting it into Eq. (29) and carrying out the involved multi-
dimensional integral, we find

z̃(t ) = e−�r t + κ

π

∫ t

0
dt1

sin εt1
sinh κt1

2

e− �r t1
2 [1 − e−�r (t−t1 )],

(36)

which is the exact result first obtained by Sassetti and Weiss
[24].

With the above procedure, we can also calculate the quan-
tity x̃(t ) = M〈x(t )〉 characterizing the change in coherence.
Starting with Eq. (9a) and following the derivation of Eq. (19),
we find that x̃(t ) can be related to z̃λ,t (t1),

x̃(t ) = −�

2i

∫ t

0
dt1

∑
λ=±1

λQ(t − t1; λ)e−iλ1ε(t−t1 )z̃λ,t (t1).

(37)
Substituting Eq. (35) into Eq. (37), we get

x̃(t ) = 1

2
ωcκ�

∫ t

0
dt1

t2
1 cos εt1(

1 + ω2
ct2

1

)
sinh 1

2κt1
e− �r

2 t1 . (38)

In order to understand the interaction between blips and
sojourns, we will also solve the dynamics with the perturba-
tive expansion (23). For k > j + 1 and at the scaling limit, the
function W (t2 j−1, t2 j, t2k−2, t2k−1; λ) = 1. Then Eq. (23) sim-
plifies to z̃(t ) = 1 + ∑∞

n=1 zn(t ), where zn(t ) is the nth-order
contribution

zn(t ) =
(−�2

2

)n ∫ t

0
Dn{t}

∑
λ1,...,λn=±1

n∏
j=1

× e−iλ jε(t2 j−1−t2 j )Q(t2 j−1 − t2 j ; λ j )

× P(t2 j−3, t2 j−2, t2 j−1)

×
∏
k< j

[S(t2k−1, t2k, t2 j−1, t2 j ; λ j )]
λ jλk . (39)

Here, P(t−1, t0, t1) = 1 is introduced. In calculating the term
zn(t ) we have to deal with the Q, P, and S functions si-
multaneously. We find that the asymptotic form of P should
be taken before that of Q, and Eqs. (31) and (32) will be
useful in omitting higher-order terms in 1/ωc. These two
equations actually reflect the interplay between the intra- and
interblip interactions and imply that when a sojourn collapses,
its preceding and subsequent blips merge into a longer one
only when they have the same phase factors. This is the key
observation that helps us complete multiple integrations in the
perturbative treatment. To illustrate this point clearly, we first
treat the cases with n = 1 and n = 2. For n = 1, the P and S
functions are not involved. Substituting Eq. (26) into Eq. (39),
we obtain

z1(t ) = −�rt − κ�r

π

∫ t

0
dt1

sin εt1
sinh 1

2κt1
(t − t1). (40)

For n = 2, Eqs. (31) and (32) are needed to deal with the
product between the Q and S functions. Substituting the
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asymptotic behavior of the P function and using Eq. (32), we
find that for the summation over λ1 and λ2, terms with δ(t2 −
t3) for λ1 �= λ2 are of high order in 1/ωc and thus neglectable.
Recognizing the fact that Q(t1 − t2; λ) = S(t1, t2, t3, t4; λ) = 1
for t1 = t2, we may write z2(t ) as

z2(t ) =
(−�2

2

)2 ∫ t

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

2π

ωc

× Re
[
Q(t3 − t4; +1)e−iε(t3−t4 )]

+
(−�2

2

)2 ∑
λ=±1

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt4

π

2ωc

× Q(t1 − t2; λ)e−iλε(t1−t4 )

× Q(t2 − t4; λ)S(t1, t2, t2, t4; λ). (41)

Calculating the product between the Q and S functions with
Eq. (31) and rearranging the triple integrals, we may rewrite
Eq. (41) in a compact form:

z2(t ) = (−�r )2 ωc

2π

2∑
k=1

2k
∫ t

0
dt1

∫ t1

0
dt2

∫ tk−1

tk

dt ′

× Re
[
Q(t ′ − t2; +1)e−iε(t ′−t2 )

]
. (42)

For general cases n > 2, the product of the P functions has
2n−1 terms. By using Eqs. (31) and (32) repeatedly, terms
involving δ(t2 j+1 − t2 j )δ(t2 j+1 − t2 j+2), which collapse a so-
journ and its successive blip at the same time, turn out to
be of higher order in 1/ωc and can be omitted. Taking these
results into account, we find that only n terms

∏m
l=1 δ(t2l−1 −

t2l )
∏n−1

l=m+1 δ(t2l − t2l+1) for 1 � m � n contribute out of
the 2n−1 above-mentioned terms. By noticing Q(t1 − t2; λ) =
S(t1, t2, t3, t4; λ) = 1 for t1 = t2 again, Eq. (39) reduces to

zn(t ) = 2ωc

π
(−�r )n

∫ t

0
dt1

∫ t1

0
dt3 · · ·

∫ t2n−3

0
dt2n−1

×
∫ t2n−1

0
dt2n

∑
λ1,...,λn=±1

n∑
m=1

×
n∏

j=m+1

Q(t2 j−1 − t2 j+1; λ j )e
−iλ jε(t2 j−1−t2 j+1 ) (43)

×
j−1∏

k=m+1

[S(t2k−1, t2k+1, t2 j−1, t2 j+1; λ j )]
λ jλk ,

where t2n+1 = t2n is assumed. The next step is to simplify the
summation over λ1, . . . , λn. Indeed, Eq. (32) reveals that in
Eq. (43) the terms with λl �= λl+1 for l > m are of higher order
in 1/ωc, which implies λl = λm+1 for all l > m. That is to
say, we now need to solve only the product of the P and S
functions, and terms involving S−1 can be neglected. To deal
with this product, a direct calculation using Eq. (22) yields

n∏
j=m

Q(t j − t j+1; λ)
j−1∏

k=m

S(tk, tk+1, t j, t j+1; λ) = Q(tm − tn+1; λ).

(44)

Substituting Eq. (44) into Eq. (43), we find that the integrand
of the multidimensional integral in Eq. (43) depends on only
two time variables. Again, such an integral can be simplified
to a one-dimensional one. Putting all results together, we
finally get

zn(t ) = (−�r )n

n!

2ωc

π

∫ t

0
dt1Re

[
Q(t1; +1)e−iεt1

]

×
[(

t − t1
2

)n

−
(

t1
2

)n]
, (45)

which is the analytical result for the nth-order contribution.
It is straightforward to verify that Eqs. (40) and (42) are
special cases of Eq. (45) with n = 1 and n = 2, respectively.
Summing up all contributions and imposing the scaling limit
on Q(t ; λ), the exact result naturally comes out as it should be.

Equation (35) is the central result of this work. We would
like to point out that it is the scaling-limit speciality of the
interaction between blips and sojourns that allows us to work
out analytical results. This speciality is rigorously reflected in
the asymptotic behavior of the P and Q functions in Eq. (39).
A qualitative description goes as follows. At the scaling limit,
the P function becomes real and local. Meanwhile, the real
part of the Q function becomes local, and the imaginary part
becomes nonlocal but is treatable. Accordingly, the nonlocal
component affects the dynamics by acting on the imaginary
part of the single-blip function. In the symmetric case the
single-blip function is real, and therefore, only the local part
contributes, which coincides with the findings by Egger et al.
[53]. In the asymmetric case, however, the finite bias intro-
duces a phase to the single-blip function, so that nonlocal
interactions also play a role. The presence of the nonlocal
component involves the blip-sojourn, intrablip, and interblip
correlations. As suggested in Eqs. (31) and (32), the interplay
among these interactions may merge successive blips into
longer ones and reduces the n-blip contribution to the intrablip
interaction with different lengths. It is this consequence of
the scaling-limit speciality that leads to the solvability of the
Toulouse limit.

A comparison to the derivation using the real-time path in-
tegral by Sassetti and Weiss [23,24] is worthwhile. They also
started with the exact series of z̃(t ). In their treatment, how-
ever, all relevant coefficients were set to the scaling limit, and
the time length O(1/ωc) was omitted at the very beginning.
As a result, they had to deal with the series of �2 cos Kπ ,
which is zero for the Toulouse limit K = 1

2 . Instead of K = 1
2

they used K = 1
2 − δ, the analysis of interactions of charges

and dipoles and a trick of regularization to compensate the
omission of time length O(1/ωc). They finally took the limit
δ → 0 to obtain the desired result. In contrast, our procedure
based on the asymptotic behavior defining the interactions
between blips and sojourns is more straightforward and easy
to follow.

V. COMPARISON BETWEEN THE EXACT SOLUTION
AND THE BOLTZMANN DISTRIBUTION

After sufficiently long time evolution the spin-boson model
approaches the thermal equilibrium, and all the dynamical
quantities take their static values. At the Toulouse limit the
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FIG. 1. The exact equilibrium (a) population difference and (b) coherence of the spin-boson model at the Toulouse limit and the relative
differences from that given by the Boltzmann distribution. The depicted relative difference is |z̃(tl)

eq − z̃(bl)
eq |/(z̃(tl)

eq + z̃(bl)
eq ) for (c) and |x̃(tl)

eq −
x̃(bl)

eq |/(x̃(tl)
eq + x̃(bl)

eq ) for (d). The high-frequency cutoff is ωc = 100�.

equilibrium value of z̃(t ) and x̃(t ) can feasibly be obtained
from Eqs. (36) and (38). To separate the asymptotic values
from these exact expressions, we may also analyze how these
quantities reach the equilibrium. For the coherence x̃(t ) there
is

x̃(t ) = x̃(∞) − ωcκ�

2

∫ ∞

t
dt1

t2
1 cos εt1(

1 + ω2
ct2

1

)
sinh κt1

2

e− �r t1
2 .

(46)

When κt1 	 1, the function sinh(κt1/2) may be replaced
by exp(κt1/2), which leads to x̃(t ) = x̃(∞) − κ�ω−1

c [4ε2 +
(�r + κ )2]−1[(�r + κ ) cos εt − 2ε sin εt] exp[−(�r + κ )
t/2]. Therefore, the coherence assumes a damped oscillation
with the damping rate (�r + κ )/2 and the oscillation
frequency ε. The same dynamical feature applies to z̃(t ).

We now compare the exact thermal equilibrium and that
dictated by the Boltzmann distribution that is valid only for
weak dissipation. For the exact Toulouse solution, the equi-
librium value x̃(tl)

eq = x̃(∞) is of O(1/ωc), which is consistent
with the physical intuition that equilibrium means no quantum
coherence. The population difference z̃(tl)

eq = z̃(∞) at equilib-
rium reads [1]

z̃(tl)
eq = 2

π
Imψ

(
1

2
+ �r + i2ε

2κ

)
, (47)

which is nonvanishing as long as ε �= 0. For the Boltzmann
distribution, ρ̃bl = exp(−βĤs )/ Tr[exp(−βĤs )], which gives
x̃(bl)

eq ≡ Tr[ρ̃blσx] = �/
√

�2 + ε2 tanh(h̄β
√

�2 + ε2/2)

and z̃(bl)
eq ≡ Tr[ρ̃blσz] = ε/

√
�2 + ε2 tanh(h̄β

√
�2 + ε2/2).

Hereafter, the superscripts (tl) and (bl), corresponding to the
exact Toulouse solution and the Boltzmann distribution, re-
spectively, will be omitted if no confusion arises. We notice
that ỹeq is zero for either the exact equilibrium or the Boltz-

mann distribution, which reflects the invariance of Ĥsbm under
the symmetry transformation σy → −σy.

The exact thermal equilibrium depends on �, ε, T , and
ωc. Here, we use � as the reference quantity and choose
a fixed, large cutoff ωc = 100�. The equilibrium popula-
tion difference and coherence are plotted against kBT/h̄ε

in Figs. 1(a) and 1(b), respectively, for ε/� = 1 × 10−3,
2 × 10−3, 5 × 10−3, 1 × 10−2, 2 × 10−2, 5 × 10−2, and 1.
The curves clearly show that the bias, which differentiates
the two local states, enhances the population difference and
suppresses the coherence. For a given bias, the population
difference and the coherence generally decrease as the temper-
ature increases. In the low-temperature regime we observe a
temperature-independent feature both for z̃(tl)

eq and for x̃(tl)
eq . This

happens because at low temperature T � h̄
√

4ε2 + �2
r /kB,

the function sinh(πkBT t/h̄) can be replaced with πkBT t/h̄.
Consequently, the equilibrium expectations given by Eqs. (36)
and (38) become temperature independent at low temperature,

x̃eq = − �

2ωc

(
2γ + ln

4ε2 + �2
r

4ω2
c

)
, (48a)

z̃eq = 2

π
arctan

(
2ε

�r

)
, (48b)

where γ is the Euler gamma constant. The deviations of the
exact results from Eq. (48), scaling as ε�rT 2/(4ε2 + �2

r )2,
decrease quadratically with decreasing temperature. The high-
temperature behaviors of xeq and zeq are different from the
low-temperature ones. It turns out that in the high-temperature
regime zeq is a univariate function of kBT/h̄ε, while xeq is
independent of ε.

The dependence of the exact Toulouse solution on ε/�

and T differs qualitatively from that of the Boltzmann
distribution. Figure 1(c) displays the relative difference
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|z̃(tl)
eq − z̃(bl)

eq |/(z̃(tl)
eq + z̃(bl)

eq ) in predicting zeq between the exact
Toulouse solution and the Boltzmann distribution. We observe
that in the high-temperature regime the difference gradually
declines with temperature because at the limit T → ∞ both
the exact Toulouse solution and the Boltzmann distribution
yield a zero expectation for zeq. But in the low-temperature
regime the difference, which becomes independent of temper-
ature, is significant even for a very small bias. The reason is
that the Boltzmann distribution at low temperature is dom-
inated by the ground state and gives z(bl)

eq = ε/
√

�2 + ε2,
while the exact Toulouse solution predicts Eq. (48b), a drasti-
cally different picture about the bias-dependence. Regarding
the coherence, the difference, as illustrated in Fig. 1(d), is
big even at high temperature because x̃eq/z̃eq = �/ε for the
Boltzmann distribution but x̃eq/z̃eq = 0 for the Toulouse solu-
tion at the scaling limit.

VI. SUMMARY AND OUTLOOK

Starting with the stochastic decoupling and the resul-
tant stochastic Liouville equation, we were able to establish
an integral functional equation (IFE) describing the finite-
temperature dynamics of the asymmetric spin-boson model.
We first developed a stochastic integral equation and then
resorted to the Girsanov transform and the auxiliary functional
approach in taking the average, arriving at a deterministic
IFE. It is clear that the desired dissipative dynamics comes
out when the auxiliary function is set to zero. The evolution
of the dissipative dynamics, however, spontaneously produces
extra fields exerting on itself, which may change the dynamics
and makes the solution extremely difficult, if not impossible.
Further, the induced fields determine a new kind of dynamics
that fully defines the original one. The new dynamics is not in-
dependent and also induces more new fields and leads to next
level dynamics. Therefore, the functional equation provides
a picture of a hierarchical structure for dissipative dynamics.
The key to solving the IFE lies in the properties of sponta-
neous fields.

Note that the concepts of blips and sojourns expounded in
the framework of the influence functional theory correspond
to the duration of evolution without the influence of the spon-
taneous field and the interval between such evolutions. The
interaction between the blips and sojourns is also illustrated as
the consequence of their random correlations in the stochas-
tic description. When the spontaneous field or the blip-blip

correlation is neglected, the functional equation reproduces
the result from the noninteracting blip approximation, which
has witnessed widespread applications. As is well known,
however, NIBA works for weak dissipation and is valid only
for the symmetric case at the Toulouse limit.

By applying iteration to the IFE, we arrived at an infinite
series, which is identical to the celebrated known result from
the influence functional method. For the biased case at the
Toulouse limit we find that the spontaneous fields result in
blip-blip interactions with a local real part plus a treatable
nonlocal imaginary part. By exploiting this specialty we were
able to obtain the single-blip dynamics. The exact dynamics
thus is feasibly solved by virtue of the equation of motion.
Summing up the perturbative series, we also reproduced the
exact result obtained by Sassetti and Weiss using the path-
integral method.

We analyzed the decay of quantum coherence x̃(t ) as well
as the population difference z̃(t ) and revealed a damped os-
cillation. In addition, we demonstrated the difference between
the reduced equilibrium state and the Boltzmann distribution
at the Toulouse limit. It can be large at low temperature
and becomes negligible only at high temperature. For a
fixed frequency cutoff, the reduced equilibrium values x̃(∞)
and z̃(∞) are univariate functions of ε/� at low tempera-
ture. At high temperature x̃(∞) and z̃(∞) depend on only
kBT/h̄� and kBT/h̄ε, respectively. By contrast, the tempera-
ture dependence of the Boltzmann distribution always follows
h̄
√

�2 + ε2/kBT .
The FIE may be established for solving both the dynamics

and thermodynamics of quantum impurity systems. It is also
expected that our method may directly be extended to the case
with external fields, which may clarify the interplay between
dissipation and driving and help us to understand nonequi-
librium quantum features for strong coupling. Moreover, for
strong dissipation, the asymptotic behavior of those functions
determining the interaction between the blips and sojourns is
worth exploring, and the FIE might be applicable for revealing
the dynamical feature for K > 1

2 .
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