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Disfavoring the Schrödinger-Newton equation in explaining the emergence of classicality
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The main goal of this paper is to provide some insight into how promising the Schrödinger-Newton equa-
tion would be to explain the emergence of classicality. Based on the similarity of the Newton and Coulomb
potentials, we add an electric self-interacting term to the Schrödinger-Newton equation for the hydrogen atom.
Our results rule out the possibility that single electrons self-interact through their electromagnetic field. Next, we
use the hydrogen atom to get insight into the intrinsic difficulty of testing the Schrödinger-Newton equation itself
and conclude that the Planck scale must be approached before sound constraints are established. Although our
results cannot be used to rule out the Schrödinger-Newton equation at all, they might be seen as disfavoring it
if we base our reasoning on the resemblance between the gravitational and electromagnetic interactions at low
energies.
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I. INTRODUCTION

The emergence of the classical world from the quantum
paradigm remains elusive [1]. Among the different propos-
als to solve this issue, let us focus on the “quantum state
reduction” mechanism presented by Penrose [2,3]. In such a
mechanism, gravitational self-interaction would be responsi-
ble for vanishing coherent quantum superpositions. One may
think of it as follows. Suppose a Schrödinger-cat state where
a particle is set in a coherent superposition at two different
locations:

|ψ〉0 = 1√
2

(| • 〉 + | • 〉).

Now, let us assume the unorthodox view that the two branches
gravitationally interact with each other driving the system to
some sort of self-entanglement:

|ψ〉T = 1√
2

(| • 〉| ◦ 〉 + | • 〉| ◦ 〉),

with the transition time T being scaled by the gravita-
tional interaction. Then, by tracing out over the “immaterial”
{| ◦ 〉, | ◦ 〉}, one would end up with the mixed state given by
the density matrix

ρ̂T = 1
2 | • 〉〈 • | + 1

2 | • 〉〈 • |.
In Penrose’s view, (if confirmed) this would be a fac-
tual self-reduction responsible for the emergence of clas-
sicality. By the same token, Penrose propounds that the
Schrödinger equation for a particle is replaced by the so-called
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Schrödinger-Newton equation:

ih̄
∂

∂t
�(�r, t ) = − h̄2

2m
∇2�(�r, t ) + [V (�r, t ) + Ug(�r, t )]�(�r, t ),

(1)
where m is the particle mass, V (�r, t ) and

Ug(�r, t ) ≡ −Gm2
∫

d3�r ′ |�(�r ′, t )|2
|�r − �r ′| (2)

are the external and self-interacting potentials, respectively,
and G is the gravitational constant. In this sense, m|�(�r, t )|2
plays the role of real matter density, enabling different parts of
the wave function to interact with each other. Although Eq. (1)
is nonlinear, its results would be indistinguishable from the
ones given by the Schrödinger equation for typical labora-
tory experiments because of the weakness of the gravitational
interaction. Nevertheless, continuous efforts have been made
to solve it and find its properties (see, e.g., Refs. [4–11] and
references therein).

On the other hand, it is well known that, at low energies,
the electric and gravitational potentials only differ from each
other with respect to the coupling constant, and that they
have been successfully used in the Schrödinger equation to
describe phenomena from the hydrogen atom [12] to the inter-
ference of free-falling neutrons [13]. Based on this, it would
be “natural” to expect that if particles self-interact through the
gravitational interaction, they should also self-interact through
the electromagnetic one [14]. By the same token, it seems
interesting to consider the Schrödinger-Newton equation for
the hydrogen atom with the inclusion of the self-interacting
electric potential

Ue(�r, t ) ≡ kee2
∫

d3�r ′ |�(�r ′, t )|2
|�r − �r ′| , (3)

where ke is the Coulomb constant and e is the fundamental
charge.

This paper is organized as follows. In Sec. II, we in-
troduce the Schrödinger-Newton equation for the hydrogen
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atom modified by the addition of the electric self-interacting
potential. In Sec. III, we solve it numerically and compare
the outputs with experimental data. In Sec. IV, we use the
hydrogen atom to drive some conclusions about the intrinsic
difficulty of testing the Schrödinger-Newton equation itself.
In Sec. V, we discuss the results and present our conclusions.

II. THE HYDROGEN ATOM UNDER SELF-INTERACTION

The Schrödinger equation for the hydrogen atom is

ih̄
∂

∂t
�(�r, t ) = − h̄2

2μ
∇2�(�r, t ) + VT (r)�(�r, t ), (4)

where μ ≡ memp/(me + mp), me and mp are the electron and
proton masses, respectively, and

VT (r) ≡ Vg(r) + Ve(r) (5)

with Vg(r) = −Gmemp/r and Ve(r) = −kee2/r. (We recall
that the corresponding spectroscopy is completely determined
by the spherically symmetric eigenfunctions.)

Our main goal is to compare the results given by Eq. (4)
with the ones provided by the Schrödinger-Newton equa-
tion modified by the addition of the electric self-interacting
potential:

ih̄
∂

∂t
�(�r, t ) = − h̄2

2μ
∇2�(�r, t ) + [VT (r) + UT (�r, t )]�(�r, t ),

(6)
where

UT (�r, t ) ≡ Ug(�r, t ) + Ue(�r, t ). (7)

Clearly, the electric terms supersede the gravitational ones
by many orders of magnitude, and thus the latter could be
omitted at this point. Still, we opt to maintain them for the
sake of our further discussion. We shall note that Eq. (6) with
Vg(r) = Ug(�r, t ) = 0 was investigated in the past in Ref. [15]
but no bound states were found for the hydrogen atom.
This is at odds with our results and with the ones obtained
in Refs. [16,17], which considered the Dirac equation with
electric self-interaction to resolve the hydrogen atom. Interest-
ingly enough, by comparing the results of Refs. [16,17] with
ours, we see that the self-interacting term plays a more sig-
nificant role in the nonrelativistic realm than in the relativistic
one. In particular, the electron would be five times less bound
in the former case than in the latter case. (This may explain
why the authors of Ref. [15] were unable to find bound states
for the hydrogen atom.) Of the most importance, however, is
the fact that Refs. [15–17] consider electric self-interaction
in the hydrogen atom under a quite different mindset with
respect to ours; quoting Biguaa and Kassandrov (Ref. [17],
p. 965),

“From the point of view of quantum ideas, the electron in
the hydrogen atom represents a spatially distributed system,
according to the probability density �†�, whose elements
interact both with the field of the nucleus and between each
other.”

We refer to this quote as statement A. In order to fit their
results with experimental data, they appeal to a sort of finite
“classical renormalization” procedure. As expected, this is not

enough to recover consistency with experiments. We shall
emphasize that standard quantum mechanics does not assert
statement A. Instead, it states that |�(�r, t )|2 is the probability
density of finding the electron when its position is measured
by some apparatus. Also, allegations that radioactive correc-
tions of quantum field theory would endorse self-interaction
of single-particle states are unfounded.

Here we compare the results delivered by Eq. (6) with the
ones provided by quantum mechanics taken at its face value.
Let us look for stationary spherically symmetric solutions

�(�r, t ) = ψ (r)e−iEt/h̄

for Eq. (6). In this case, Eq. (6) can be cast as

− h̄2

2μ

1

r

d2

dr2
[rψ (r)] + [VT (r) + WT (r)]ψ (r) = Eψ (r), (8)

where

WT (r) = 4πα

(
1

r

∫ r

0
dr′r′2|ψ (r′)|2 +

∫ ∞

r
dr′r′|ψ (r′)|2

)

(9)
and α ≡ −Gmemp + kee2. In order to write it, we have used
(see, e.g., Ref. [18])

1

|�r − �r ′| = 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ ′, φ′)Ylm(θ, φ),

where r< ≡ min(r, r′), r> ≡ max(r, r′), and Ylm(θ, φ) are the
spherical harmonics. Equation (8) can be simplified by defin-
ing φ(r) ≡ rψ (r), in which case it becomes

− h̄2

2μ

d2

dr2
φ(r) + [VT (r) + WT (r)]φ(r) = Eφ(r), (10)

where

WT (r) = 4πα

(
1

r

∫ r

0
dr′|φ(r′)|2 +

∫ ∞

r
dr′ |φ(r′)|2

r′

)
(11)

and we recall that the probability of finding the electron in a
spherical shell with inner and outer radius ri and ro, respec-
tively, is

P(ri, ro) =
∫ ro

ri

drF (r) with F (r) ≡ 4π |φ(r)|2. (12)

Although the quest for stationary spherically symmetric
solutions simplifies the problem, Eq. (10) is still nontrivial. In
order to deal with it, we shall solve it numerically by adapting
the code of Ref. [5].

III. NUMERICAL PROCEDURE AND RESULTS

The code employed to numerically solve Eq. (10) is a user-
friendly adaptation of the one developed in Ref. [5]; in this
adaptation the external potential VT (r) is included and Ug(�r, t )
is replaced by UT (�r, t ). (Furthermore, the convergence pro-
cedure is somewhat improved.) Briefly speaking, we depart
from a test function, use it to calculate WT (r) in Eq. (11),
and replace the result in Eq. (10) to numerically evaluate
the eigenfunctions φ(r) (and corresponding eigenvalues E ).
Then, depending on the eigenvalue E we are interested in, we
select the associated eigenfunction φ(r), using it in the next
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TABLE I. Comparison of the output of the three smallest
eigenenergies given by Eq. (4) with the experimental data (restricted
to five significant figures).

Level Numerical (eV) Experimental (eV)

1 −13.593 −13.598
2 −3.3993 −3.3996
3 −1.5109 −1.5109

round as a new test function to recalculate WT (r) and so on.
The process is repeated until the eigenenergy E of interest
converges.

As a consistency check, we verify at the end that the
obtained eigenfunctions and corresponding eigenenergies do
satisfy Eq. (10). We have also confirmed that the code repro-
duces in good approximation the experimental results for the
energy levels of the hydrogen atom in the absence of self-
interaction [19]; see Table I. (By “level n,” n = 1, 2, 3, . . ., we
implicitly mean level n s1/2, since the solutions are spherically
symmetric.)

Now, we are in a position to determine the impact of
considering self-interaction on the spectroscopy of the hy-
drogen atom as ruled by the modified Schrödinger-Newton
equation (10). We shall stress here that any deviations from
the experimental data must be imputed to the electric self-
interaction due to the huge dominance of kee2 over Gmemp.
In Table II, we exhibit the three smallest eigenenergies for
the hydrogen atom. It becomes clear, in particular, that the
ionization energy is at odds with the experimental result due to
the electric self-interaction. Indeed, the whole hydrogen atom
spectroscopy is ruined, as can be seen in Table III.

Let us note that the energy levels assuming electric self-
interaction shown in Table II do not follow the usual Bohr
relationship En = E1/n2. This is expected since the self-
interacting term should screen the proton charge differently
depending on the quantum state.

In Figs. 1–3, we compare the radial probability densities
F (r) [see Eq. (12)] associated with the eigenfunctions of
the three smallest eigenenergies given by the Schrödinger
equation (4) and modified Schrödinger equation (10). We see
that the electric self-interaction pushes the probability density
farther from the nucleus, in agreement with the larger eigenen-
ergies found for the corresponding eigenfunctions displayed
in Table II.

Although the results above experimentally discard the
existence of electromagnetic self-interaction and may be
understood as disfavoring the Schrödinger-Newton equa-
tion (based on the similarity of the Newton and Coulomb

TABLE II. Comparison of the three smallest eigenenergies, nu-
merically obtained through Eq. (10), with the experimental data
(restricted to five significant figures).

Level Numerical (eV) Experimental (eV)

1 −1.2561 −13.598
2 −0.21601 −3.3996
3 −0.074618 −1.5109

TABLE III. Comparison of the energy gap for three transitions,
numerically obtained through Eq. (10), with the experimental data
(restricted to five significant figures). By “transition ni → nf ,” we
mean the electronic transition from the nith to the nf th energy
eigenstate.

Transition Numerical (eV) Experimental (eV)

3 → 2 −0.14139 −1.8887
2 → 1 −1.0400 −10.199
3 → 1 −1.1814 −12.087

potentials), they cannot discard gravitational self-interaction
at all. In order to test it itself, we must analyze situations
where the gravitational self-interaction turns out to be dom-
inant. In the next section, we use the hydrogen atom to gain
insight into how challenging this can be.

IV. THE HYDROGEN ATOM RESTRICTED
TO GRAVITATIONAL SELF-INTERACTION

Let us start by replacing Eq. (6) by

ih̄
∂

∂t
�(�r, t ) = − h̄2

2μ
∇2�(�r, t ) + [VT (r) + Ug(�r, t )]�(�r, t ),

(13)

where the electric self-interaction was promptly discarded in
the face of the previous results. It is fair to expect that the pres-
ence of Ug(�r, t ) should effectively increase the nucleus mass
by no more than a factor of the electron mass. This comes
from Sec. III, where Ue(�r, t ) was shown to effectively screen
part of the proton charge. Note that by driving Z → 0.3Z , the
ionization energy

E1 = − Z2μ

2h̄2n2
(kee2)2 (Z = 1, n = 1) (14)

would change about as follows −13.598 eV → −1.2561 eV
(see Table II). By the same token, the ionization energy, as

FIG. 1. Plot of the radial probability density F (r) for the ground
state obtained from Eq. (4) (solid line) and Eq. (10) (dashed line).
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FIG. 2. Plot of the radial probability density F (r) for the first
excited state obtained from Eq. (4) (solid line) and Eq. (10) (dashed
line).

ruled by Eq. (13), can be estimated to be of the order

E ′
1 ∼ − Z2μ

2h̄2n2
(kee2 + Gmpme)2 (Z = 1, n = 1), (15)

where any enhancement of the proton mass due to the grav-
itational self-interaction of the electron will be neglected
for now since it would only lead to a tiny correction to
the Gmemp term. Hence gravity would affect the ionization
energy by

E ′
1 − E1

E1
∼ 2

(
Gmpme

kee2

)
, (16)

corresponding to 1 part in 1039 parts. To put this in context,
we recall that the value recommended by the Committee
on Data of the International Science Council (CODATA)
for the Newtonian constant has only six significant digits:
G = 6.674 30(15) × 10−11 m−3 kg−1 s−2 [19]. We note that
in order to drive the right-hand side of Eq. (16) to ap-
proach the unity, we should have had memp ∼ (MP/10)2,

FIG. 3. Plot of the radial probability density F (r) for the second
excited state obtained from Eq. (4) (solid line) and Eq. (10) (dashed
line).

where

MP ≡
√

h̄c/G ≈ 2 × 10−5 g

is the Planck mass.
Eventually, the paramount obstacle faced by every at-

tempt to test gravitational self-interaction is that it must
approach the quantum gravity regime by combining coher-
ently a large number of particles to act as a single quantum
particle with mass m � MP. It is unclear, however, in what
sense the Schrödinger equation and other quantum wave equa-
tions would be approximately valid close to the Planck scale.
Relativistic,

�φ + λ̄−2φ = 0, i /∂ ψ − λ̄−1ψ = 0, (17)

and nonrelativistic,

i∂tφ + (cλ̄/2)∇2φ = 0, (18)

wave equations are solely characterized by the (reduced)
Compton wavelength λ̄ = h̄/(mc). The closer m approaches
to MP, the closer λ̄ approaches to the Planck length:

λ̄ ∼ LP ≡
√

h̄G/c3 .

Hence, in order to write Eqs. (17) and (18) for Planck-mass
particles, one must presuppose that classical space-times are
reliable at such distance scales, which does not seem to be the
case.

In relativistic space-times, spatial distances can be mea-
sured using solely bona fide classical clocks. By bona fide
classical clocks we mean “pointlike” apparatuses that ascribe
the same real number (time interval) to any given arbitrarily
close, causally connected pair of events they visit regardless of
the state of motion and past history (as defined by relativity).
Thus, in order to measure λ̄ ∼ LP, there must exist bona fide
clocks with size Lclock < LP and accuracy

δt � TP ≡
√

h̄G/c5 ,

in which case one would end with a ruler with accuracy δl ≡
cδt < λ̄. On the other hand, quantum mechanics teaches us
that clocks with such an accuracy would involve Planck-scale
energies: Eclock � h̄/δt [20], leading to a clock mass

Mclock � MP.

It happens, however, that according to Thorne’s hoop conjec-
ture, such clocks should collapse into black holes since they
would be small enough to fit in spheres with the corresponding
Schwarzschild radii RS

clock (see, e.g., Ref. [21]):

Lclock < LP < 2GMP/c2 � 2GMclock/c2 ≡ RS
clock.

Not only are black holes not supposed to function as clocks,
but also such apparatuses would disturb the background
space-time raising doubts as to the validity of Eq. (1) written
for the Galilean space-time.

As a result, any proposal to assess the Schrödinger-Newton
equation must approach the Planck scale but still not cross the
line where bona fide clocks are absent and Galilean space-
time cannot be assumed. In Ref. [9], it is suggested that Paul
(ionic) traps be employed to confine osmium disks of 10−9 g
subjected to a harmonic potential. Traces of gravitational
self-interaction would be fingerprinted in the corresponding
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energy spectrum. For this purpose, it would be necessary to
reach temperatures of a few milikelvins. This has already been
achieved in Paul traps for masses of 10−14 g [22–24] but not
for ones of 10−9 g yet. (We refer the reader to Ref. [25] for an
actual review of particle-trapping technology.)

V. CONCLUSIONS

The Schrödinger-Newton equation was proposed as a trial
to recover the classical world from the quantum paradigm.
Briefly speaking, particles would decohere due to gravita-
tional self-interaction. On the other hand, at low energies,
the gravitational and electric potentials are formally the same
(only differing due to the universality of the coupling constant
in the gravitational case). This has motivated us to revisit
the hydrogen atom, assuming that the electron self-interacts
through its proper charge. We quested for spherically sym-
metric stationary solutions and compared the outputs with
the experimental data. We have obtained that, according to
the modified Schrödinger equation (10), the ionization energy
of the hydrogen atom and the corresponding spectroscopy
data are at odds with each other, ruling out the possibility

that electrons self-interact through their charge. Although our
results only refer to the electromagnetic interaction, they may
be seen as disfavoring the Schrödinger-Newton equation in
the sense that if a single electron “perceived” itself through its
mass distribution, it would be “natural” to argue that the same
would be true concerning its charge distribution. Finally, we
assessed some intrinsic difficulties of testing the Schrödinger-
Newton equation as such.

The code employed to numerically solve Eq. (10) is in-
cluded in the Supplemental Material [26].
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