
PHYSICAL REVIEW A 108, 012210 (2023)

Analytical evaluation of the coefficients of the Hu-Paz-Zhang master equation:
Ohmic spectral density, zero temperature, and consistency check
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We investigate the exact master equation of Hu, Paz, and Zhang for a quantum harmonic oscillator at zero
temperature with a Lorentz-Drude type Ohmic spectral density. This master equation plays an important role in
the study of quantum Brownian motion and in various applications. In this paper, we give an analytical evaluation
of the coefficients of this non-Markovian master equation without Lindblad form, which allows us to investigate
consistencies of the solutions, the positivity of the stationary density operator, and the boundaries of the model’s
parameters.
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I. INTRODUCTION

Quantum Brownian motion is a prototype example in the
theory of open quantum systems [1,2]. The derivation of a
master equation for the reduced density operator is central to
the study of open quantum systems, and, in the case of the
quantum Brownian motion [3], the first result was obtained
by Caldeira and Leggett [4]. Later an exact non-Lindblad
master equation was derived by Hu, Paz, and Zhang (HPZ)
with the help of path integral methods [5]. An alternative and
simpler approach, which makes use of the Wigner function,
was found by Halliwell and Yu [6], but see also Ref. [7].
All these methods yield a time-convolutionless master equa-
tion. A good overview of the history of the early results
can be found in the book of Breuer and Petruccione [2] or
in the review article by Fleming, Roura, and Hu [8]. The
HPZ master equation can be subject to further approxima-
tions like the weak coupling or the high-temperature limit. In
general, this time-convolutionless master equation is a spe-
cial case of the Nakajima-Zwanzig equation, and perturbative
expansions developed within this context can also be applied
to get further master equations [9–11]. Therefore, the HPZ
and its approximative master equations, including also the
Caldeira-Leggett master equation, have a lot of applications
in different branches of physics with a considerable litera-
ture. This includes for example the topic of magnets [12],
spectroscopy [13,14], enzymes in a noisy environment [15],
quantum rate theory and dissipative tunneling [16], gravi-
tationally induced decoherence [17,18], and finally, but not
least, quantum field theory [19].

The model under study consists of a central harmonic
oscillator with mass M and bare frequency � coupled to a
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thermal bath composed of further oscillators with mass mn

and frequency ωn. The total Hamiltonian, which was already
used in the early studies of dissipation [20–22], reads

Ĥ = Ĥs +
∑

n

Ĥn + ĤI ,

where

Ĥs = p̂2

2M
+ 1

2
M�2q̂2,

Ĥn = p̂2
n

2mn
+ 1

2
mnω

2
nq̂2

n,

ĤI = q̂
∑

n

Cnq̂n, (1)

with q̂, p̂ and q̂n, p̂n being the coordinates and momenta of
the central and bath oscillators, respectively. The central har-
monic oscillator is coupled linearly to each bath oscillator
with strength Cn.

All the information of the full system is contained in the
density matrix ρ(q, q, q′, q′, t ) ≡ 〈q, q|ρ̂(t )|q′, q′〉, where we
used the notation q = (q1, q2, . . .). The equation of motion of
the density operator ρ̂ is given by the von Neumann equation

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂]. (2)

The state of the central oscillator described by the reduced
density matrix ρs can be obtained by tracing out the degrees
of freedom of the bath:

ρs(q, q′, t ) =
∫

dq dq′ δ(q − q′)ρ(q, q, q′, q′, t ). (3)

An equally good representation of the state of the central
oscillator is given by the Wigner function defined as

Ws(q, p, t ) = 1

2π h̄

∫
du eiup/h̄ρs(q − u/2, q + u/2, t ). (4)
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The full system evolution is calculated under two basic as-
sumptions:

(i) The central and the bath oscillators are initially un-
correlated, which involves the initial Wigner function being
factorized as

W (q, q, p, p, 0) = Ws(q, p, 0)
∏

n

Wb(qn, pn, 0). (5)

(ii) The bath oscillators are initially in thermal equilibrium
at temperature T = 1/(kBβ ), which restricts the forms of
Wb’s to

Wb(qn, pn, 0) = Nn exp

[
− 2

ωnh̄
tanh

(
h̄ωnβ

2

)
Hn

]
, (6)

where kB is the Boltzmann-constant, Nn is an appropriate
normalization factor.

The Wigner function Ws for the central oscillator evolves
according to a Fokker-Planck type equation,

∂Ws

∂t
= − p

M

∂Ws

∂q
+ M�2q

∂Ws

∂ p
+ A(t )q

∂Ws

∂ p

+ B(t )
∂ (pWs)

∂ p
+ C(t )

∂2Ws

∂ p∂q
+ D(t )

∂2Ws

∂ p2
, (7)

which is equivalent to the HPZ master equation [5]. The time-
dependent real coefficients A(t ), B(t ), C(t ), and D(t ) strongly
depend on the spectral density of the thermal bath,

I (ω) =
∑

n

δ(ω − ωn)
C2

n

2mnωn
. (8)

The calculation of the coefficients in (7) is a rather compli-
cated task and depends on solutions of the time-dependent
equation of motion of the central oscillator. Exact formulas for
the coefficients were obtained by Hu, Paz, and Zhang with the
help of path integral methods in Ref. [5] and further simplified
by Halliwell and Yu in Ref. [6]. Simpler formulas have been
derived from the beginning for the so-called weak coupling
limit. As the central oscillator and the bath exchange energy
in time, the oscillator magnitude is controlled by the couplings
Cn. Thus, the weak coupling limit corresponds to the case
when Cn’s are small. This limit can also be achieved as a
systematic perturbation expansion of the time-convolutionless
projection operator method [23]. These coefficients, being
either exact or approximated, are used for the study of the
stationary Gaussian state or to calculate averages of physical
quantities and their standard deviations [8,24]. Most of the
previous research performed a consistency check on the HPZ
master equation by investigating only the stationary state,
where the Robertson-Schrödinger uncertainty principle, i.e.,
the positivity of the density operator, has to be fulfilled. In
the case of the weak coupling limit with initial Gaussian
states, we found that the analysis of the stationary state is
not enough to get all the consistency conditions [25]. A full
consistency check of the exact master equation is still missing,
even though investigations or applications of the quantum
Brownian motion have increased in the last decade; see for
example Refs. [26–28]. The mathematical reason to be care-
ful is that this master equation is not in Lindblad form [29]
and even when its coefficients become constant the evolution
is not described by a uniformly continuous semigroup [30].

Therefore, this paper is devoted to the consistency study of
solutions of the HPZ master equation at zero temperature
with an Ohmic spectral density, which is considered to be a
Lorentz-Drude type function with a high-frequency cutoff. We
pick the T = 0 case because this is the most interesting situa-
tion for describing decoherence and dissipation in a quantum
Brownian motion [31,32].

In this paper, we evaluate analytically the exact coefficients
A(t ), B(t ), C(t ), and D(t ). The cornerstones of a rather long
calculation are presented, where we also revisit the approach
of Halliwell and Yu [6]. One of the main hurdles is that we
consider a more realistic spectral density than a purely Ohmic
environment without a cutoff, which yields simple solutions
of the generalized Langevin equation [24], but they lead to
instantaneous dissipation, i.e., nonphysical behavior [5].

We study the stability and positivity of the asymptotic
solutions of the master equation in three models with dif-
ferent couplings between the central system and the bath by
including their behaviors in the weak coupling limit, too.
Furthermore, we will provide the short-time behaviors of the
coefficients together with their asymptotics. It is known that
all four time-dependent coefficients tend to a stationary value
with time. When that happens the central harmonic oscilla-
tor evolves according to Markovian dynamics. Therefore, it
is also worth knowing when the dynamics stop being non-
Markovian and how this transition depends on the parameters
of the model.

The paper is organized as follows. In Sec. II we discuss
some inequalities from the point of view of stability and posi-
tivity of the solution of the master equation in the Markovian
limit. In Sec. III, we briefly recall the main results of Halliwell
and Yu [6]. This is followed up in Sec. IV by determining
exactly the time-dependent coefficients, which are then stud-
ied both analytically and numerically. In Sec. V, we study
different models from the literature, which handle different
couplings to the bath and the shift of the bare frequency of the
central harmonic oscillator. Section VI summarizes the results
and gives a concluding discussion. Long technical details are
provided in four Appendixes.

II. CONSISTENCY CHECKS OF THE MASTER
EQUATION’S SOLUTIONS IN THE

MARKOVIAN t → ∞ LIMIT

In this section, in the context of consistency check, we dis-
cuss the stability of the master equation in the Markovian limit
and positivity of the steady state. Starting from a Gaussian Ws,
the time-evolution given by Eq. (7) always keeps the Gaussian
form for any time t . A further property of the HPZ master
equation is that if the time evolution of the solution of Eq. (7)
is physical under quite general conditions then there exists a
characteristic time τM such that for t � τM the coefficients
attain their asymptotic time-independent values, which is the
so-called Markovian limit. For shorter times the evolution is
non-Markovian, i.e., the coefficients in (7) are time dependent.
Let us analyze the final Markovian dynamics. It is best given
in the representation

W̃s(k,
, t ) =
∫ ∞

−∞

∫ ∞

−∞

dq d p

(2π h̄)1/2
Ws(q, p, t )ei(kq+ 
p

h̄ ), (9)
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which is the so-called characteristic function of the central
oscillator. In the new representation, Eq. (7) reads as

∂W̃s

∂t
=

(
h̄k

M

∂

∂

− M�2

obs

h̄



∂

∂k
− 2λ 


∂

∂


− 2Dpx 
k − Dpp

h̄

2

)
W̃s, (10)

with
M�2

obs(∞)

h̄
= M�2 + A(∞)

h̄
, 2λ = B(∞),

2Dpx = C(∞)

h̄
,

Dpp

h̄
= D(∞)

h̄2 . (11)

Similar quantities, but at finite time t , [e.g., 2λ(t ) = B(t ), and
so on] are called on page 477 in Ref. [2] physically observable
frequency �obs(t ), damping coefficient λ(t ), and diffusion co-
efficients Dpx(t ), Dpp(t ). Let us use the notation k ≡ (
, k)T .
The initial condition is given as W̃s(k, t = 0) = W̃0(k). A
correctly normalized Ws(q, p, 0) dictates that W̃0 at the origin
k = 0 should be equal to 1, i.e., W̃0(0) = 1. Hence, Eq. (10)
contains only first derivatives and thus can be solved with the
method of characteristics [33]. Here we quote the solution:

W̃s(k, t ) = W̃0[exp (−Mt ) · k] exp[−kT · R̃(t ) · k]. (12)

The matrix M can be expressed with its orthogonal projections
Pi, PiP j = δi, jPi, i = 1, 2 as

M =
(

2λ − h̄
M

M�2
obs(∞)
h̄ 0

)
= �1P1 + �2P2, (13)

where the eigenvalues �i are

�1,2 = λ ±
√

λ2 − �2
obs(∞), (14)

and the projections are given by

Pi = �2
obs(∞)

�2
obs(∞) − �2

i

⎛
⎜⎝− �2

i

�2
obs(∞)

h̄�i

�2
obs(∞)M

M�i
h̄ 1

⎞
⎟⎠, i = 1, 2.

(15)

The first factor in (12) ensures that the stationary distribution
W̃s(k, t = ∞) is independent of the initial condition W̃0(k)
chosen if the limiting matrix is zero: limt→∞ exp (−Mt ) = 0.
In that case due to W̃0(0) = 1 the first factor in (10) is asymp-
totically 1. This requires that real parts of the two eigenvalues
�i should be non-negative, otherwise the time evolution of
the solution W̃s(k, t ) will not converge to a unique asymptotic
characteristic function W̃s(k,∞). From (14) it follows that the
following inequalities must hold:

λ � 0, �2
obs(∞) � 0, (16)

which we call the stability conditions. Straightforward calcu-
lations lead to the matrix R̃(t ) in the second factor of (12) to

R̃(t ) = (
PT

1 RP2 + PT
2 RP1

)1 − e−(�1+�2 )t

�1 + �2

+
2∑

i=1

PT
i RPi

1 − e−2�i

2�i
, (17)

where the constant matrix R is built up from the diffusion
coefficients as

R =
( Dpp

h̄ Dpx

Dpx 0

)
. (18)

Using the above formulas the asymptotic matrix

R̃(∞) = lim
t→∞ R̃(t ) =

(Dpp

4h̄λ
0

0
h̄(Dpp+4DpxλM)

4λM2�2
obs(∞)

)
(19)

must be positive, otherwise W̃s(k,∞) tends to infinity as
|k| → ∞. This requirement implies that

Dpp

4h̄λ
� 0 and

h̄(Dpp + 4DpxλM )

4λM2�2
obs(∞)

� 0. (20)

Conditions in Eqs. (16) and (20) are necessary so that the
solution of the master equation (7) in the limit t → ∞ tends to
a stationary Gaussian function decaying to zero as |k| → ∞.
However, this asymptotic Gaussian solution does not nec-
essarily describe a physical situation belonging to a density
operator.

The eigenvalue problem in coordinate representation of
a bivariate, self-adjoint and trace-class operator ρ(x, y) =
〈x|ρ̂|y〉 is ∫ ∞

−∞
ρ(x, y)φn(y)dy = λnφn(x). (21)

For Gaussian ρ(x, y) with unit trace the eigenvalues and
eigenvectors were determined in Refs. [34,35]. The crite-
rion there that all the eigenvalues are in the interval [0,1],
which is called positivity criterion for a density matrix,
can be stated for W̃s(k, t = ∞) as follows: the requirement
16 Det(R̃(∞)) � 1 should be also true, which reads as

Q ≡ 4D(∞)[D(∞) + MC(∞)B(∞)]

h̄2M2B2(∞)�2
obs(∞)

� 1. (22)

A little calculation shows that this inequality for the asymp-
totic Gaussian state is the same as that used as a complete
positivity condition in bosonic Gaussian channels in Eqs. (7)
and (9) of Ref. [36], namely σy + 4R̃(∞) � 0, where σy is the
second Pauli matrix.

In the case of non-Gaussian initial states, the positivity
check is a difficult problem, because the analytical solution of
the eigenvalue equation (21) is generally not known. However,
positivity can be monitored by the method of Ref. [35], which
uses the different moments of ρ̂ and Newton’s identities by
checking the positivity of infinitely many scalar quantities.
This method can always be applied for the solution of the
master equation at any time starting from a non-Gaussian
initial ρ(x, y, t = 0).

III. THE FORMS OF THE TIME-DEPENDENT
COEFFICIENTS

In this section, we summarize the results of Halliwell and
Yu [6]. This approach leads indeed to exact solutions of the
coefficients compared to the attempt based on a local in-time
approximation of the central oscillator’s equation of motion
[24]. The time-dependent coefficients A(t ), B(t ), C(t ), and
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D(t ) are determined by deriving and solving the differential
equations for the central oscillator as

d2

ds2
q(s) + �2q(s) + 2

M

∫ s

0
dλ η(s − λ)q(λ) = f (s)

M
(23)

with appropriate initial conditions. The form of f (s) is fixed
by the statistical properties of the bath of oscillators. The exact
expressions for the coefficients A(t ), B(t ), C(t ), and D(t ), in-
cluding all the orders of the interactions with the bath, requires
the solution of (23) in two cases: (i) the forward solution for
s > 0 when q(0) and q̇(0) = p(0)/M are fixed and (ii) the
backward solution for s < t when q(t ) and q̇(t ) = p(t )/M are
fixed as initial conditions.

In Eq. (23) the temperature-independent kernel η(s) is
fixed by spectral density as

η(s) = −
∫ ∞

0
dω I (ω) sin(ωs). (24)

C(t ) and D(t ) bring a new temperature-dependent kernel ν(s)
into the theory, which is

ν(s) =
∫ ∞

0
dω I (ω) coth

(
h̄ωβ

2

)
cos(ωs). (25)

A few comments are in order. At the heart of the present
problem is how to solve (23) with appropriate boundary con-
ditions. In Refs. [2,8,24] an equivalent form of Eq. (23) was
been used by performing integration by parts in the convo-
lution of η(s) and q(s). In that way, a so-called generalized
Langevin equation ought to be solved, and several initial
conditions have been proposed to solve it. However, exact
solutions must be equal in all versions of the formalisms. To
our best knowledge, the solution of Halliwell and Yu is exact,
and by using the backward solutions they were able to give a
full account of the interplay between the central oscillator and
the bath.

The coefficients A(t ), B(t ), C(t ), and D(t ) of the master
equation can be determined by the time evolution of the
first and second moments of p and q. For the details see
Refs. [6,24]. Then, we have that A(t ) and B(t ) are temperature
independent and they are given by [6]

A(t ) = 2
∫ t

0
ds η(t − s)u2(s) − 2

u̇2(t )

u̇1(t )

∫ t

0
ds η(t − s)u1(s)

(26)
and

B(t ) = 2

Mu̇1(t )

∫ t

0
ds η(t − s)u1(s), (27)

respectively. Here in Eqs. (26) and (27) the functions u1(t )
and u2(t ) are two elementary functions, which are the
two solutions of the homogeneous, linear integro-differential
equation corresponding to (23),

d2

ds2
u(s) + �2u(s) + 2

M

∫ s

0
dλ η(s − λ)u(λ) = 0. (28)

Boundary conditions for u1 and u2 are

u1(s = 0) = 1, u1(s = t ) = 0, (29)

u2(s = 0) = 0, u2(s = t ) = 1. (30)

The coefficients C(t ) and D(t ) depend on temperature and re-
quire also the knowledge of two Green’s functions, which are
the solutions of the inhomogeneous, linear integro-differential
equation connected to (23),

d2

ds2
Gi(s, τ ) + �2Gi(s, τ ) + 2

M

∫ s

0
dλ η(s − λ)Gi(λ, τ )

= δ(s − τ ), i = 1, 2. (31)

Boundary conditions for G1 and G2 are prescribed by

G1(s = 0, τ ) = 0, d
ds G1(s = 0, τ ) = 0, (32)

G2(s = t, τ ) = 0, d
ds G2(s = t, τ ) = 0. (33)

It is worth mentioning that the boundary conditions in (33) are
not explicitly shown by Ref. [6].

Thus, the coefficients C(t ) and D(t ) are

C(t ) = h̄

M

∫ ∞

0
dλ G1(t, λ)ν(t − λ)

− 2h̄

M2

∫ t

0
ds

∫ ∞

0
dτ

∫ ∞

0
dλ η(t − s)

× G1(t, λ)G2(s, τ )ν(τ − λ), (34)

D(t ) = h̄
∫ ∞

0
dλ G′

1(t, λ)ν(t − λ)

− 2h̄

M

∫ t

0
ds

∫ ∞

0
dτ

∫ ∞

0
dλ η(t − s)

× G′
1(t, λ)G2(s, τ )ν(τ − λ), (35)

where the signs of the triple integrals are minus compared to
Haliwell and Yu [6], but they agree with the arXiv version
of that work (see parenthetical note in Ref. [6]). The prime
on G1(t, λ) means derivative with respect to the first variable
of G1. Equations (26), (27), (34), and (35) give the exact
coefficients of the master equation in our problem.

An important special case, which is widely studied in
the literature (cf. [2]), is the case of weak coupling, i.e.,
the coupling constants Cn in (1) are small. By calculating
the coefficients in leading order in the coupling constant Cn,
Halliwell and Yu also obtained the formulas of a consistent
weak coupling limit. Now, the time-dependent coefficients
read as

Aw(t ) = 2
∫ t

0
ds η(s) cos(�s), (36)

Bw(t ) = − 2

M�

∫ t

0
ds η(s) sin(�s), (37)

Cw(t ) = h̄

M�

∫ t

0
ds ν(s) sin(�s), (38)

Dw(t ) = h̄
∫ t

0
ds ν(s) cos(�s). (39)

where we have indicated this approximation with the index w.
We note that the derivation of the weak coupling limit requires
the expansion of q(t ) and qn(t ) up to the second order of Cn.
In the next section, we make use of these compact formulas
and calculate explicitly the exact coefficients.
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IV. EXACT SOLUTIONS TO A(t ), B(t ), C(t ), AND D(t )

A. Calculation of u1, u2, G1, G2

To solve the integrodifferential equations (28) and (31),
one needs to pick a spectral density. Here, we consider an
Ohmic spectral density with a Lorentz-Drude type function
[1,2,25] and a high-frequency cutoff �c:

I (ω) = 2Mγ�2
c

π

ω

ω2 + �2
c

, (40)

where γ is a frequency-independent constant. The cutoff fre-
quency �c is large compared to the bare oscillator frequency
�. An increase in the couplings Cn implies a bigger value
for γ . We note that some authors call γ a damping constant
because at large temperature T the effective damping constant
(the damping constant for a long time t) is almost equal to γ

(see, e.g., [2]).
The temperature-independent kernel in Eq. (24) is an odd

function of s. For s > 0 it reads

η(s) = −Mγ�2
ce−�cs, s > 0. (41)

The other kernel ν(s) in Eq. (25) is even as a function of s. It
is evaluated at a finite temperature usually by expanding the
hyperbolic cotangent function and integrating term by term
for ω. Here we are interested in the zero-temperature limit,
which simply means that the hyperbolic cotangent function in
(25) is replaced by 1:

ν(s) =
∫ ∞

0
dω I (ω) cos(ωs), T = 0. (42)

It can be given explicitly; however, our strategy is to insert
(42) into the expressions of the coefficients of the master
equation and perform the ω integral as the last step.

Now, as we have established the function η(s), Eq. (28) can
be solved with the help of the Laplace transformation

ũ(z) = Ls[u(s)](z) ≡
∫ ∞

0
u(s)e−sz ds. (43)

This leads to(
�2 + z2 − 2γ�2

c

�c + z

)
ũ(z) − u′(0) − zu(0) = 0. (44)

Values for u(0) and u′(0) will be fixed after performing the
inverse Laplace transformation

u(s) = L−1
z [ũ(z)](s) ≡ 1

2π i

∫
C

ũ(z)ezs dz. (45)

The path of integration C has to be chosen in such a way that
all poles of ũ(z) are included.

Let us write the combination in parentheses of Eq. (44) as

�2 + z2 − 2γ�2
c

�c + z
≡ (z − z1)(z − z2)(z − z3)

�c + z
, (46)

where z1, z2, z3 are the three roots of the cubic equation

z3 + �cz2 + �2z + �2�c − 2γ�2
c = 0. (47)

In Fig. 1 we show a typical (�c � �) plot for the real parts
of the roots. At

γcr = �2/(2�c) (48)

-1

-0.5

 0

 0.5

 1
0 0.005 0.01  γcr/Ω 0.015 0.02

R
e(

z 2
)/

Ω
, R

e(
z 3

)/
Ω

Re(z2)/Ω
Re(z3)/Ω

-41

-40

-39

0 0.005 0.01 γcr/Ω 0.015 0.02R
e(

z 1
)/

Ω

γ/Ω

Re(z1)/Ω

FIG. 1. Real parts of the three roots of Eq. (47) as a function
of dimensionless coupling constant γ /�. For both figures we have
set the cutoff frequency �c = 40�. The vertical line indicates the
critical coupling constant γcr in (48).

the largest real part of the roots becomes positive. Later,
we will show that this leads to the violation of the stability
criterion �2

obs(∞) > 0.
In those cases, when the parameters γ and �c are fixed,

one needs to solve this cubic equation only once. Therefore,
the best general strategy is to consider the roots as elementary
functions of the system’s parameters and use Vieta’s formulas,

z1 + z2 + z3 = −�c, (49)

z1z2 + z2z3 + z3z1 = �2, (50)

z1z2z3 = −(
�2�c − 2γ�2

c

)
, (51)

whenever possible. From Eq. (44) we can express ũ(z) as

ũ(z) = (�c + z)[u′(0) + zu(0)]

(z − z1)(z − z2)(z − z3)
. (52)

After decomposing the right-hand side in terms of partial
fractions, one can perform the inverse Laplace transformation
to obtain

u(t ) = − (�c + z1)[u′(0) + zu(0)]

(z1 − z2)(z3 − z1)
ez1t + Cycl. (53)

Here we used the shorthand notation “Cycl.” for those terms
which can be obtained from the shown one by the cyclic
permutations of the roots z1 → z2 → z3 → z1 as

f (z1, z2, z3) + Cycl. ≡ f (z1, z2, z3) + f (z2, z3, z1)

+ f (z3, z1, z2). (54)

Making use of the boundary conditions in (29) together with
(53) one can calculate and fix the constants u(0) and u′(0).
Inserting these values back into (53), the function u1 can be
expressed as

u1(s) = (ez1t+z2s − ez1s+z2t )(�c + z1)(�c + z2) + Cycl.

ez1t (�c + z1)(z2 − z3) + Cycl.
.

(55)
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In a similar way one can determine u2(s), which is

u2(s) = ez1s(�c + z1)(z2 − z3) + Cycl.

ez1t (�c + z1)(z2 − z3) + Cycl.
. (56)

The same method is applied to the inhomogeneous equa-
tion (31). The solution with the boundary condition (32) reads

G1(s, τ ) = �(τ )�(s − τ )G̃1(s, τ ), (57)

where �(s) is the Heaviside function and the smooth part
G̃1(s, τ ) ≡ G̃1(s − τ ) is given by

G̃1(s, τ ) = − (ez1(s−τ )(�c + z1)(z2 − z3) + Cycl.)

(z1 − z2)(z2 − z3)(z3 − z1)
. (58)

Despite the simplicity of G1(s, τ ) the expression for G2(s, τ )
is much more complicated:

G2(s, τ ) = �(τ )�(s − τ )G̃1(s, τ ) + �(τ )�(t − τ )G̃2(s, τ ),

(59)

G̃2(s, τ ) = G̃2num(s, τ )

G̃2den(t )
. (60)

The denominator in (60) is given by

G̃2den(t ) = (z1 − z2)(z2 − z3)(z3 − z1)

×(e(z1+z2 )t (�c + z1)(�c + z2)(z1 − z2)

+ Cycl.), (61)

while the numerator can be expressed as

G̃2num(s, τ ) = {e(z1+z2 )t (�c + z1)(�c + z2)(z1 − z2)

× [ez2(s−τ )(�c + z2)(z3 − z1)

+ ez1(s−τ )(�c + z1)(z2 − z3)

− ez3s−z1τ (�c + z3)(z2 − z3)

− ez3s−z2τ (�c + z3)(z3 − z1)] + Cycl.}. (62)

It is worth noting that the forms of G1(s, τ ), G2(s, τ ) as given
in Eqs. (57) and (59) are also valid for general spectral den-
sities as well. This is proved by using the translation property
of the inverse Laplace transform [37]. We derive this result in
Appendix A.

In Refs. [8,24] the solution to (23) was written in the
following form (we use our notation):

q(s) = Mq(0)Ġ(s) + p(0)G(s) +
∫ s

0
dλ G(s − λ) f (λ) (63)

for s ∈ (0, t ), where this G fulfills the homogeneous, gener-
alized Langevin equation with boundary conditions G(0) = 0
and Ġ(0) = 1/M. Despite the different formalisms our solu-
tion is the same in the time window (0, t ) due to the equations

G̃1(s, τ ) ≡ G̃1(s − τ ) = G(s − τ ), (64)(
u1(s) − u̇1(0)

u̇2(0)
u2(s)

)
= MĠ(s), (65)

u2(s)

u̇2(0)
= MG(s). (66)

In other words, the smooth part of the first Green’s function G̃1

in our approach is the same as theirs. However, the Heaviside

functions in Eqs. (57) and (59) play an important role: they
determine the bounds of single and triple integrals for the
coefficients of the master equation [see Eqs. (34) and (35)].
We devote Appendix B to this question and show that we have
only causal contributions to C(t ) and D(t ).

Now, we have the explicit solutions of u1, u2, G1, G2 and
thus time-dependent coefficients can be determined, which
will be subject of our next subsection.

B. Calculation of A(t ), B(t ), C(t ), D(t )

By using Eqs. (26), (27), (55), and (55) with (41) a direct
calculation promptly leads to the exact coefficients A(t ) and
B(t ) for Ohmic spectral density with a Lorentz-Drude type
function and a high-frequency cutoff (40):

A(t ) = 2Mγ�2
c (e(z1+z2 )t (z1 − z2)z3 + Cycl.)

e(z1+z2 )t (z1 − z2)(�c + z1)(�c + z2) + Cycl.
, (67)

and

B(t ) = 2γ�2
c (e(z1+z2 )t (z1 − z2) + Cycl.)

e(z1+z2 )t (z1 − z2)(�c + z1)(�c + z2) + Cycl.
, (68)

where we have used (49).
Let us define the linear operators acting on a function r(t )

with one argument as

Ĉ1r(t ) =
∫ ∞

0
dλ G1(t, λ) r(t − λ), (69)

Ĉ3r(t ) = G̃2den(t )
∫ t

0
ds

∫ ∞

0
dτ

∫ ∞

0
dλ η(t − s)

×G1(t, λ)G2(s, τ ) r(τ − λ), (70)

D̂1r(t ) =
∫ ∞

0
dλ G′

1(t, λ) r(t − λ), (71)

D̂3r(t ) = G̃2den(t )
∫ t

0
ds

∫ ∞

0
dτ

∫ ∞

0
dλ η(t − s)

×G′
1(t, λ)G2(s, τ ) r(τ − λ). (72)

Direct comparison with Eqs. (34) and (35) shows that C(t )
and D(t ) can be expressed as

C(t ) = h̄

M
C1(t ) − 2h̄

M2
C3(t ), (73)

C1(t ) = Ĉ1ν(t ), (74)

C3(t ) = Ĉ3ν(t )

G̃2den(t )
, (75)

D(t ) = h̄D1(t ) − 2h̄

M
D3(t ), (76)

D1(t ) = D̂1ν(t ), (77)

D3(t ) = D̂3ν(t )

G̃2den(t )
. (78)

The denominators in Eqs. (75) and (78) can be found in
(61). Acting with the above-defined operators to a single
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exponential function exp(−αt ), where α is an arbitrary con-
stant, direct calculation leads to

Ĉ1e−αt = C1,0(α) +
3∑

k=1

C1,k (α)e−αt+zkt , (79)

D̂1e−αt = D1,0(α) +
3∑

k=1

D1,k (α)e−αt+zkt , (80)

where the coefficients C1,0,C1,k, D1,0, D1,k do not depend
on t . Explicit forms for these coefficients can be found in
Appendix C.

By writing cos(ωs) = (eiωs + e−iωs)/2 in (42) the s depen-
dence occurs in the exponents, thus we can use directly the
useful formulas in (74) and (79) with α = ∓iω:

C1(t ) =
∫ ∞

0
dω

I (ω)

2
(Ĉ1eiωt + Ĉ1e−iωt )

=
∫ ∞

0
dω

I (ω)

2
(C1,0(−iω) + C1,0(iω))

+
3∑

k=1

ezkt
∫ ∞

0
dω

I (ω)

2
(C1,k (−iω)eiωt

+C1,k (iω)e−iωt ). (81)

In a similar way one gets

D1(t ) =
∫ ∞

0
dω

I (ω)

2
(D1,0(−iω) + D1,0(iω))

+
3∑

k=1

ezkt
∫ ∞

0
dω

I (ω)

2
(D1,k (−iω)eiωt

+ D1,k (iω)e−iωt ). (82)

The integration over ω is either elementary or can be ex-
pressed in terms of I1(r, t ) or I2(r, t ), which are introduced
in Appendix D, where the parameter r takes values of �c, z1,
z2, and z3.

The same idea works for those parts of the coefficients C(t )
and D(t ) which are related to the triple integrals in (34) and
(35). The actions on an exponential function of operators Ĉ3

and D̂3 require much more work. They can be summarized as
follows. Now, instead of (79) and (80) we have

Ĉ3e−αt =
6∑

i=1

C3,i(α)eεit +
13∑

i=7

C3,i(α)eεit−αt , (83)

D̂3e−αt =
6∑

i=1

D3,i(α)eεit +
13∑

i=7

D3,i(α)eεit−αt , (84)

where the exponents εi are enumerated in the following table:

i εi i εi

1 2z1 + z2 + z3 7 2z1 + z2

2 z1 + 2z2 + z3 8 2z2 + z3

3 z1 + z2 + 2z3 9 2z3 + z1

4 z1 + z2 10 2z1 + z3

5 z2 + z3 11 2z2 + z1

6 z3 + z1 12 2z3 + z2

13 z1 + z2 + z3

Formulas for the coefficients appearing in the right-hand
sides of Eqs. (83), (84) are shown in Appendix C. In a
similar way as we got (81) and (82), C3(t ) and D3(t ) can be
calculated via

C3(t ) = 1

G̃2den(t )

∫ ∞

0
dω

I (ω)

2
(Ĉ3eiωt + Ĉ3e−iωt )

= 1

G̃2den(t )

[
6∑

i=1

eεit
∫ ∞

0
dω

I (ω)

2
(C3,i(−iω) + C3,i(iω)) +

13∑
i=7

eεit
∫ ∞

0
dω

I (ω)

2
(C3,i(−iω)eiωt + C3,i(iω)e−iωt )

]
, (85)

D3(t ) = 1

G̃2den(t )

∫ ∞

0
dω

I (ω)

2
(D̂3eiωt + D̂3e−iωt )

= 1

G̃2den(t )

[
6∑

i=1

eεit
∫ ∞

0
dω

I (ω)

2
(D3,i(−iω) + D3,i(iω)) +

13∑
i=7

eεit
∫ ∞

0
dω

I (ω)

2
(D3,i(−iω)eiωt + D3,i(iω)e−iωt )

]
. (86)

Once again we have the opportunity to express all the
necessary ω integrals in terms of I1(r, t ) or I2(r, t ) with
r = �c, z1, z2, z3.

Let us introduce the following vectors (T denotes the trans-
pose):

v1(t ) = (ez1t , ez2t , ez3t )T , (87)

v2(t ) = (eε1t , . . . , eε6t )T , (88)

v3(t ) = (eε7t , . . . , eε13t )T , (89)

v4 = (
ln

(
�2

c

)
, ln

(
z2

1

)
, ln

(
z2

2

)
, ln

(
z2

3

))T
, (90)

v5(t ) = (I1(�c, t ), I1(z1, t ), I1(z2, t ), I1(z3, t ),

× I2(�c, t ), I2(z1, t ), I2(z2, t ), I2(z3, t ))T . (91)

The full time dependence of the coefficients can be summa-
rized as

C1(t ) = C1(∞) + vT
1 (t ) · MC1 · v5(t ), (92)

D1(t ) = D1(∞) + vT
1 (t ) · MD1 · v5(t ), (93)
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C3(t ) = vT
2 (t ) · MC31 · v4 + vT

3 (t ) · MC32 · v5(t )

G̃2den(t )
, (94)

D3(t ) = vT
2 (t ) · MD31 · v4 + vT

3 (t ) · MD32 · v5(t )

G̃2den(t )
, (95)

where scalars C1(∞) and D1(∞) and the matrices MC1, MD1,
MC31, MC32, MD31, MD32 are independent of time.

C. Short-time expansions of the coefficients

In this section, we are interested in the behavior of the time-
dependent coefficients around t = 0, when the interaction

between the central harmonic oscillator and the bath is
switched on. A lengthy but still straightforward calculation
leads to the expressions

As(t ) � −2Mγ�c(�ct ) + Mγ�c(�ct )2 + O(t3) (96)

and

Bs(t ) � γ (�ct )2 + O(t3). (97)

In C(t ) and D(t ) the leading order corrections, which come
only from the single integrals in (34) and (35), up to O(t3lnt )
are

Cs(t ) � h̄

2π
γ (�ct )2[1 − 2γEM − 2 ln(�ct )] + O(t3ln(t )), (98)

Ds(t ) � 2h̄

π
Mγ�c(�ct )[1 − γEM − ln(�ct )] + O(t3ln(t )), (99)

where γEM is the Euler-Mascheroni constant, which is approximately 0.577. Surprisingly, the same short time expressions were
found in Appendix C of [25]. Thus, the short time behavior of the coefficients at T = 0 is not influenced by the weak coupling
limit approximation.

D. Asymptotic values

In the parameter region 0 < γ < γcr = �2/(2�c) one can have either one real and two complex or three real negative roots
of Eq. (47) (both possibilities occur actually). The root with the smallest real part is always real and is close to (−�c) (see
Fig. 1). Let us denote this root by z1. If the parameters are chosen such that the coefficients converge, i.e., 0 < γ < γcr, one can
determine the asymptotic values:

A(∞) = −2Mγ�2
c

(�c + z2 + z3)

(�c + z2)(�c + z3)
, (100)

B(∞) = 2γ�2
c

(�c + z2)(�c + z3)
, (101)

C(∞) = h̄γ�2
c

π

(
z1 ln

(
z2

1/�
2
c

)
(�c − z1)(z1 − z2)(z1 − z3)

+ Cycl.

)
+ 2h̄γ 2�4

c

π

(
(z2 − z3)

[
z2

1(z2 + z3) + �c
(
z2

1 + z2z3
)]

ln
(
z2

1/�
2
c

)
(
�2

c − z2
1

)
(z1 + z2)(z1 + z3)

+ z2(z3 − z1) ln
(
z2

2/�
2
c

)
(�c − z2)(z1 + z2)

+ z3(z1 − z2) ln
(
z2

3/�
2
c

)
(�c − z3)(z1 + z3)

)/
((z1 − z2)(z2 − z3)(z3 − z1)(�c + z2)(�c + z3)), (102)

D(∞) = h̄Mγ�2
c

π

(
z2

1 ln
(
z2

1/�
2
c

)
(�c − z1)(z1 − z2)(z1 − z3)

+ Cycl.

)
+ 2h̄Mγ 2�4

c

π

(
z2

1(z2 − z3)
[
z2

1 + z2z3 + �c(z2 + z3)
]

ln
(
z2

1/�
2
c

)
(
�2

c − z2
1

)
(z1 + z2)(z1 + z3)

+ z2
2(z3 − z1) ln

(
z2

2/�
2
c

)
(�c − z2)(z1 + z2)

+ z2
3(z1 − z2) ln

(
z2

3/�
2
c

)
(�c − z3)(z1 + z3)

)/
((z1 − z2)(z2 − z3)(z3 − z1)(�c + z2)(�c + z3)). (103)

A direct calculation yields �2
obs = �2 + A(∞)/M < 0, if γ > γcrit. The corresponding weak coefficients are

Aw(∞) = −2Mγ�2
c

�c

�2
c + �2

, (104)

Bw(∞) = 2γ�2
c

�2
c + �2

, (105)

Cw(∞) = −2h̄γ�2
c

π

ln (�c/�)

�2
c + �2

, (106)

Dw(∞) = h̄Mγ�2
c�

�2
c + �2

. (107)
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FIG. 2. Behaviors of A(t ) (left) and B(t ) (right). Thin lines show the asymptotic values (100) and (101), respectively. We set �c = 40�

and γ = �/128. In the insets, we plot the relative differences of δA(t ) = 2(A − Aw )/(A + Aw ) (left) and δB(t ) = 2(B − Bw )/(B + Bw ) (right).
On both axes, we use dimensionless units.

We note that Aw(∞), Bw(∞) can be obtained from (100)
and (101), and Cw(∞), Dw(∞) from the first terms of
(102) and (103), which originate from the single integrals
in (34) and (35), where one has to evaluate carefully the
roots z1, z2, z3 and the expressions for small values of γ . The
approximate roots are z1 ≈ −�c + [exp (iξ ) + exp (−iξ )]ε,
z2 ≈ i� − exp (iξ )ε, z3 ≈ −i� − exp (−iξ )ε, where ε =
γ�2

c/(�
√

�2 + �2
c ) and exp(iξ ) = (� + i�c)/

√
�2 + �2

c .
These approximate roots fulfill Vieta’s formulas (49)–(51) up
to O(γ ) precision. Careful evaluations are necessary in the
arguments of the logarithms in the complex plane, because z2

2
and z2

3 are very close to the real axis with negative real parts.

E. Numerical results

For our first numerical examples, we choose reasonable
values for the cutoff frequency, �c = 40�, and for the cou-
pling constant, γ = �/128 ensuring �c � � and γ < γcr =
�/80; see Eq. (48). The first step is to solve Eq. (47) and
use z1, z2, z3 in the corresponding formulas. In Fig. 2 we show
coefficients A(t ) and B(t ), as given by Eqs. (67) and (68) using
dimensionless units. Surprisingly, the coefficients in the weak
coupling approximation Aw(t ) and Bw(t ) are close to A(t ) and
B(t ). This can be seen in the insets of Fig. 2 where we show
their relative differences.

Inequalities (16) restrict the allowed values of γ . �2
obs(∞)

decreases as a function of γ and vanishes at γcr. For γ > γcr

the quantity �2
obs(∞) is negative, which restricts γ to the

region

γ < γcr. (108)

However, A(t ) is always independent of temperature, thus
even at finite temperature γ < γcr should hold in the origi-
nal model. This consistency condition has some interesting
aspects. When the cutoff frequency �c tends to infinity then
γcr ≈ 0 and I (ω) in Eq. (44) is approximately 2Mγω/π ,
i.e., the purely Ohmic environment. Even though the purely
Ohmic environment is known to be unphysical, here in our
analysis we have been able to capture a condition whose

violation leads to the problem of introducing a counterterm
in the bare frequency � such that �2

obs(∞) stays positive for
all times; see Ref. [23].

In Fig. 3 we show the coefficients C(t ) and D(t ) for the
same parameters used in Fig. 2. It is important to note that
the so-called initial jolt discussed by Ref. [5,38] appears, as
expected. However, this peak is developed only for a short
timescale of the bare frequency �. Furthermore, according to
the depicted curves, the exact result and the result of the weak
coupling limit differ considerably over a long time. These big
differences can be also seen from the different asymptotic
values C(∞) and Cw(∞) [or D(∞) and Dw(∞)] and can be
attributed to the triple integrals of Eqs. (34) and (35). These
integrals are not taken into account in the weak coupling limit.
The situation for very short times is different: C(t ) and Cw(t )
[or D(∞) and Dw(∞)] differs only a little. From the insets in
Fig. 3 it is clear that (98) and (99) are the leading behavior
for very short times. We note that up to the orders considered
the triple integrals do not give any contribution for very short
times.

For fixed �c and γ < γcr the coefficients A(t ), B(t ), C(t ),
and D(t ) tend to constants; see Sec. IV D. Thus, the master
equation is asymptotically Markovian, which was discussed
in Sec. II. Inequality (22) (i.e., Q � 1) necessarily holds for a
physical system. Replacements A(∞) → Aw(∞), etc., define
the quantity Qw for the weak coupling limit. In Fig. 4 we show
both Q and Qw as a function of γ , and find that Q and Qw

are bigger than 1 in the region 0 � γ < γcr. This figure also
shows that the weak coupling limit does not necessarily mean
that Q are closely approximated by Qw for small values of γ .
On the other hand, 2γ is approximately equal to the damping
constant B(∞) of the central oscillator as t → ∞ and �c �
�. Thus, in general, weak damping and the weak coupling
limit are not related to each other.

V. COMPARISON OF THREE MODELS

In this section, we compare the following models. The
first model is given by the Hamiltonian in (1) analyzed in
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FIG. 3. Behaviors of C(t ) (left) and D(t ) (right). Thin horizontal lines show the asymptotic values (102) and (103) and the asymptotics of
the weak coupling limit (106) and (107), respectively. We set �c = 40� and γ = �/128. In the insets, we show the short-time behavior of
C(t ) with the expansion Cs(t ) given by Eq. (98) (left inset) and D(t ) with the expansion Ds(t ) given by (99) (right inset), respectively. On both
axes, we use dimensionless units.

the preceding sections. The second is called in the literature
the Caldeira-Leggett model [3] and [4]. It differs from the
Hamiltonian of the first model (1) in the coupling:

ĤCL = p̂2

2M
+ 1

2
M�2q̂2

+
∑

n

[
p̂2

n

2mn
+ 1

2
mnω

2
n

(
q̂n + Cn

mnω2
n

q̂

)2
]

= Ĥorig + 1

2
q̂2

∑
n

C2
n

mnω2
n

. (109)

In the original Caldeira-Leggett model (−Cn) stands for Cn;
however, the coefficients of the reduced master equation are
insensitive to this sign change.

 0
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 4.5

γcr/Ω 0  0.002  0.004  0.006  0.008  0.01

Q
, Q

w

γ/Ω

Q
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FIG. 4. Q and Qw calculated from the stationary values of coef-
ficients of the non-Markovian master equation as a function of γ .
The continuous line shows Q; the dashed line is for Qw . We set
�c = 40�. On the axes, we use dimensionless quantities.

The sum can be expressed by the spectral density and reads

∑
n

C2
n

mnω2
n

= 2
∫ ∞

0
dω

I (ω)

ω
= 2γ�c. (110)

The new term effectively shifts the bare frequency of
the central harmonic oscillator as �2 → �2 + 2γ�c. All
the properties of the second model can be derived from the
corresponding results of the first model by applying this re-
placement everywhere.

A third group of models consists of those which are not of
the first or second type. See the diagram in Fig. 5. Some ex-
amples are in Refs. [2,25], where a counterterm is used in the
weak approximation with the following strategy: the replace-
ment �2 → �2 + 2γ�c is used in the kernels η(s) and ν(s),
but not in the expressions cos(�s) and sin(�s) in Eqs. (36),
(37), (38), and (39). This means that the resulting model is not
directly connected to the original microscopic model, because

FIG. 5. Schematic diagram which shows the differences between
the three models.
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FIG. 6. Real parts of the three roots of Eq. (111) as a function of
the coupling parameter γ at fixed �c = 40�. On the axes, we use
dimensionless quantities. The vertical line indicates the new critical
coupling γcr.

the shift was not considered everywhere where � occurred in
the first model.

In the case of the second model, the shift affects also the
structure of the three roots. Instead of Eq. (47) one has to solve

z3 + �cz2 + (�2 + 2γ�c)z + �2�c = 0. (111)

For the same values of the parameters �,�c, γ the tree roots
differs considerably; compare Fig. 6 with Fig. 1. Now, the
real parts of the three roots of Eq. (111) are always negative.
However, a strange phenomenon appears at a new critical
coupling (indicated by γcr in Fig. 6), where out the three real
roots two become conjugated complex by increasing γ . This
is exactly the opposite phenomenon that we observed for the
first model. Due to the shift 2γ�c the quantity �2

obs(t ) should
be defined according to

�2
obs(t ) = �2 + 2�cγ + A(t )

M
. (112)

Above γcr the observed physical frequency square of this
model diverges periodically as a function of time. This is
shown in Fig. 7. This problem arises independently of the
temperature. Thus, this model is also nonphysical for fixed
�c as soon as γ > γcr at any temperature.

For the first model Eq. (108) restricts γ to a given pa-
rameter range. A useful feature of the second model is that,
contrary to the first model, γcr is increasing with �c allowing
a much broader consistency range for γ . The positivity of the
asymptotic state for the second model is studied in Fig. 8.
Parameters Q and Qw are calculated from (22) with the shift in
� and they differ considerably. Formally, Qw can be continued
beyond γcr, as no singularity occurs at this point in Qw, but Q
stops there. We stress again that beyond the critical coupling
γcr the model looses its validity due to the problem shown in
inset of Fig. 7. Below that the asymptotic state of the second
model is positive both in the exact and the weak coupling
limit.

For the presence of γcrit in the considered model one can ar-
gue that for two oscillators, i.e., n = 1 in Eq. (1), the coupling

 0
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2

FIG. 7. The observed frequency �obs(t ) given by (112) as a func-
tion of t for �c = 40� and γ = 5� < γcr = 5.01253 �. The inset
shows the squared �2

obs as a function of t , but for �c = 40� and
γ = 5.2� > γcr. On the axes we use dimensionless quantities.

constant C1 cannot be arbitrarily big. Above a well-defined
value for |C1| the system is not fully oscillating: exponentially
increasing and decreasing solutions appear among the partic-
ular solutions and this is true for the classical version of (1)
with n = 1, too. In this region of parameters, the system is
unstable. This behavior is also expected for many bath oscilla-
tors: eventually the system is unstable when the couplings Cn

are increased beyond a certain value. This argument does not
work for the second model. Here the singularities in �2

obs(t )
are due to the denominator of A(t ) in Eq. (67), which becomes
zero from time to time. This, for example, cannot be explained
by simple classical arguments.

The validity of the third model in the parameter space was
studied in detail by us [25]. At T = 0 it was found that the
allowed parameter range of γ shrinks to the single point of
γ = 0. Here we have found that the first and second models

 0

 5

 10

 15

 20

γcr/Ω 0  2  4  6  8  10

Q
, Q

w

γ/Ω

Q
Qw

FIG. 8. Q and Qw for the second model as a function of γ . The
continuous line shows Q; the dashed line is for Qw . Parameter �c =
40�. On the axes we use dimensionless quantities.
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have a finite range in γ even at T = 0. Surprisingly, the short-
time behaviors of the first and the third models are the same;
see Sec. IV C.

VI. CONCLUSIONS

In the context of the quantum Brownian motion, we have
studied the exact master equation of Hu, Paz, and Zhang for
determining consistent ranges of the parameters of the model.
By consistency we mean a time evolution which maps density
operators to density operators and the central system preserves
its characteristics, i.e., a trapped particle remains trapped. The
alternative approach of Halliwell and Yu [6] for determining
the coefficients of the HPZ master equation offers succinct
and tractable formulas. Therefore, we started our paper with a
brief review of their results. We specified our analysis to a cen-
tral harmonic oscillator and heat bath with a Lorentz-Drude
type Ohmic spectral density [1,2,25] and T = 0. Previous
studies focused either on numerical evaluations of these co-
efficients [5] or analytical forms for simpler but unphysical
spectral densities [24]. The derivation of either an exact or
approximated master equation was central to these studies [2],
but here we lay emphasis on the consistency of the evolution
itself.

Based on this mindset, we have demonstrated that there ex-
ists a critical coupling constant γcrit, above which the evolution
of the system is nonphysical. These critical values persist for
any finite temperature. The reason is that the observed squared
frequencies �2

obs(t ) (or its stationary value) are affected by
the coefficient A(t ) only. The form of A(t ) depends on the
temperature-independent kernel η(s) directly or indirectly via
the functions u1(s) and u2(s). Consequently, the nonphysical
behavior in �2

obs(t ) persists at any temperature. Temperature-
dependent effects can cause further nonphysical behaviors
in any other physical quantities, but those effects can only
narrow the allowed parameter regions. It turns out that not
only the considered model in (1) but the slightly changed
Hamiltonian in (109), i.e., the original Caldeira-Leggett
model, have this critical value, too.

We have also shown how to calculate explicitly the four
coefficients of the HPZ master equation for T = 0. This an-
alytical effort plays an important role in understanding the
mathematical subtleties induced by different spectral densi-
ties, the transition from the exact to the weak coupling limit
evolution, the short-time expansion of the coefficients, and
the timescale under which the dynamics turn from a non-
Markovian to a Markovian evolution. We have found that
the short-time evolution is not affected by the weak coupling
limit. However, C(t ), i.e., the cross-diffusion coefficient, and
D(t ), i.e., the momentum diffusion coefficient, differ consider-
ably over a long time from their weak-coupling counterparts.
The other two coefficients A(t ), i.e., the frequency shift,
and B(t ), i.e., the time-dependent relaxation of the central
system, are less influenced by the weak coupling approxi-
mation. We have also investigated two other versions of the
model, where counterterms are added to the Hamiltonian of
the central oscillator, and found that the weak coupling limit
of one of these models can be extended naively beyond the
allowed value of γcrit. Usually, the four coefficients are investi-
gated either numerically or established for easily tractable but

nonphysical spectral densities, but in these approaches is
hard to find the boundaries of the derived master equa-
tion. Here, the advantages of a complete analytical treatment
are evident, though we did not exploit its full potential. In
general, questions related to consistency checks of master
equations [25,39–43] should become more and more relevant
due to a large amount of increasing activity in the area of
non-Markovian evolution [44], where various approximations
are frequently used [45,46].
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APPENDIX A: THE STRUCTURE OF G1(s, τ ) AND G2(s, τ )
FOR ARBITRARY SPECTRAL DENSITY

Let us use the notations of Sec. IV A. By Eqs. (28) and
(43) the Laplace transform of any solution h(s) of the homo-
geneous equation (30) fulfills(

z2 + �2 + 2

M
η̃(z)

)
h̃(z) − h′(0) − zh(0) = 0, (A1)

where we have replaced the solution u(s) of Eq. (28) by
h(s) for the general case. This implies that the function h(s)
defined by

h(s) = L−1
z [h̃(z)](s) ≡ L−1

z

[
1

z2 + �2 + 2
M η̃(z)

]
(s) (A2)

has initial conditions

h(0) = 0, h′(0) = 1. (A3)

Taking the Laplace transform of Eq. (31),(
z2 + �2 + 2

M
η̃(z)

)
G̃i(z, τ ) − G′

i(0, τ ) − zGi(0, τ )

= e−τ z�(z), (A4)

G̃i(z, τ ) can be expressed as

G̃i(z, τ ) = e−τ z�(z) + G′
i(0, τ ) + zGi(0, τ )

z2 + �2 + 2
M η̃(z)

= h̃(z)[e−τ z�(z) + G′
i(0, τ ) + zGi(0, τ )]. (A5)
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In the second equality we have used h̃(z) defined by Eq. (A2).
Now, we use the translational property of the inverse Laplace
transform for the first term:

L−1
z [h̃(z)e−τ z�(τ )](s) = h(s − τ )�(τ )�(s − τ ). (A6)

The identities Ls[h(s)](z) = h̃(z) and Ls[h′(s)](z) = zh̃(z) +
h(0) with h(0) = 0 in Eq. (A3) and with the inverse Laplace
transform of the second and third terms in (A5) yield

L−1
z [h̃(z)[G′

i(0, τ ) + zGi(0, τ )]](s)

= h(s)G′
i(0, τ ) + h′(s)Gi(0, τ ). (A7)

Regrouping the terms, we have

Gi(s, τ ) = h(s − τ )�(τ )�(s − τ )

+ h(s)G′
i(0, τ ) + h′(s)Gi(0, τ ). (A8)

Taking derivative with respect to s, we obtain

G′
i(s, τ ) = h′(s − τ )�(τ )�(s − τ )

+ h′(s)G′
i(0, τ ) + h′′(s)Gi(0, τ ). (A9)

The omitted term h(s − τ )�(τ )δ(s − τ ) is zero due to (A3).
The boundary conditions in (32) together with (A8) result for
G1(s, τ )

G1(s, τ ) = G̃1(s, τ )�(τ )�(s − τ ), (A10)

with

G̃1(s, τ ) = h(s − τ ). (A11)

Fixing the boundary conditions (33) for G2(s, τ ) at s = t , we
require according to Eqs. (A8) and (A9) that the currently
unknown values G2(0, τ ) and G′

2(0, τ ) are fixed by using the
equations

0 = G2(t, τ ) = h(t − τ )�(τ )�(t − τ )

+ h(t )G′
2(0, τ ) + h′(t )G2(0, τ ), (A12)

0 = G′
2(t, τ ) = h′(t − τ )�(τ )�(t − τ )

+ h′(t )G′
2(0, τ ) + h′′(t )G2(0, τ ). (A13)

After solving G2(0, τ ) and G′
2(0, τ ), we insert them into

Eq. (A8) to have

G2(s, τ ) = G1(s, τ ) + G̃2(s, τ )�(τ )�(s − τ ), (A14)

with

G̃2(s, τ )

= −
h′(s)

∣∣∣∣h(t − τ ) h(t )
h′(t − τ ) h′(t )

∣∣∣∣ + h(s)

∣∣∣∣h′(t ) h(t − τ )
h′′(t ) h′(t − τ )

∣∣∣∣∣∣∣∣h′(t ) h(t )
h′′(t ) h′(t )

∣∣∣∣
.

(A15)

Here | · · · | denotes the determinant of the matrices. Apart
from the time windows the Heaviside functions G1(s, τ )
and G2(s, τ ) are expressed in terms of h(t ), which is
defined by the inverse Laplace transform in (A2); i.e.,

to calculate these Green’s functions for a given spec-
tral density η̃(z) the inverse Laplace transform has to be
performed.

APPENDIX B: CAREFUL EVALUATION OF TRIPLE
INTEGRALS

The infinite upper bounds in single and triple integrals in
Eq. (34) are moved down to some finite values due to the
Heaviside functions in Eqs. (57) and (59). Here we show the
careful evaluation of the triple integrals by using only positive
arguments of the kernel ν(s), where the necessary actual upper
bounds are presented explicitly. Different upper bounds can
be found in the literature (compare our formulas with [6] and
[8], and also with the bounds in Ref. [47]). The same upper
bounds must be used in triple integral for D(t ) with the trivial
changes G1 → G′

1. The triple integral J is

J =
∫ t

0
ds

∫ ∞

0
dλ

∫ ∞

0
dτ η(t − s)G1(t, λ)

× G2(s, τ )ν(τ − λ), (B1)

where the kernel ν is symmetric, i.e., ν(τ − λ) = ν(λ − τ ).
The structures of G1 and G2 are given in Eqs. (A10) and
(A14). The original integral J is obtained from these two
terms as

J = J1 + J2. (B2)

J1 contains the contribution of the first term in (A14) and J2

belongs to the second group. The necessary integrals using
only the smooth functions G̃1(s, τ ) and G̃2(s, τ ) are

J1 =
∫ t

0
ds

∫ s

0
dτ

∫ τ

0
dλ η(t − s)G̃1(t, λ)G̃1(s, τ )ν(τ − λ)

+
∫ t

0
ds

∫ s

0
dτ

∫ t

τ

dλ η(t − s)G̃1(t, λ)

× G̃1(s, τ )ν(λ − τ ), (B3)

and

J2 =
∫ t

0
ds

∫ t

0
dτ

∫ τ

0
dλ η(t − s)G̃1(t, λ)G̃2(s, τ )ν(τ − λ)

+
∫ t

0
ds

∫ t

0
dτ

∫ t

τ

dλ η(t − s)G̃1(t, λ)

× G̃2(s, τ )ν(λ − τ ). (B4)

Now, the bounds of the integrals ensure causality; we have no
contributions to the master equation’s coefficients from later
times than t .

APPENDIX C: SOME EXPLICIT INTERMEDIATE
COEFFICIENTS

Coefficients appearing in Eqs. (79) and (80) read

C1,1(α) = �c + z1

(α − z1)(z1 − z2)(z3 − z1)
, (C1)

D1,1(α) = (�c + z1)z1

(α − z1)(z1 − z2)(z3 − z1)
. (C2)
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The functions C1,2(α) and D1,2(α) are obtained from C1,1(α) and D1,1(α) by applying the simultaneous replacements (z1 →
z2, z2 → z3, z3 → z1). In a similar way, C1,3(α) and D1,3(α) are the results of the simultaneous replacements (z1 → z3, z2 →
z1, z3 → z2). The remaining coefficients C1,0(α) and D1,0(α) are given by

C1,0(α) = −(C1,1(α) + C1,2(α) + C1,3(α)), (C3)

D1,0(α) = −(D1,1(α) + D1,2(α) + D1,3(α)). (C4)

Coefficients appearing on the right-hand sides of Eqs. (83) and (84) are

C3,1(α) = −Mγ�2
c

(z1 − z2)(z1 − z3)(z2 − z3)2[α2 + (z1 + z2 + z3)α + (z1 + z2)(z1 + z3)](z1 + �c)

z1(z1 + z2)(z1 + z3)(z1 + α)(z2 + α)(z3 + α)
, (C5)

D3,1(α) = z1C3,1(α), (C6)

C3,4(α) = −Mγ�2
c

(z1 − z2)2(z1 − z3)(z2 − z3)[(�c − z3)α2 + (z1 + z2 + z3)(z3 − �c)α + (z1 + z3)(z2 + z3)�c]

z3(z1 + z3)(z2 + z3)(z1 − α)(z2 − α)(z3 − α)
, (C7)

D3,4(α) = −Mγ�2
c

(z1 − z2)2(z1 − z3)(z2 − z3)α[(z3 − �c)α + z1z2 + (z1 + z2 + z3)�c]

(z1 + z3)(z2 + z3)(z1 − α)(z2 − α)(z3 − α)
, (C8)

C3,7(α) = Mγ�2
c

(z1 − z2)(z2 − z3)(z1 + �c)

(z1 − α)(z3 + α)
, (C9)

D3,7(α) = z1C3,7(α), (C10)

C3,10(α) = Mγ�2
c

(z1 − z3)(z3 − z2)(z1 + �c)

(z1 − α)(z2 + α)
, (C11)

D3,10(α) = z1C3,10(α). (C12)

The coefficients C3,i and D3,i for i = 2, i = 5, i = 8, and i = 11 are obtained from the coefficients of i = 1, i = 4, i = 7, and
i = 10 by applying the simultaneous replacements (z1 → z2, z2 → z3, z3 → z1), respectively. Similarly, coefficients for i = 3,
i = 6, i = 9, and i = 12 are obtained from the coefficients of i = 1, i = 4, i = 7, and i = 10 by applying the simultaneous
replacements (z1 → z3, z2 → z1, z3 → z2). The most complex expressions are the closed forms of C3,13(α) and D3,13(α):

C3,13(α) = Mγ�2
c

[(
(z2 − z3)2

(
z2

1 + z2z3
)
(z1 + �c)

z1(z1 + z2)(z1 + z3)(z1 + α)
+ (z2 − z3)2

[
z2z3�c + z2

1(z2 + z3 + �c)
]

z1(z1 + z2)(z1 + z3)(z1 − α)

)
+ Cycl.

]
, (C13)

D3,13(α) = Mγ�2
c

[(
(z2 − z3)2

(
z2

1 + z2z3
)
(z1 + �c)

(z1 + z2)(z1 + z3)(z1 + α)
+ z1(z2 − z3)2

[
z2

1 + z2z3 + (z2 + z3)�c
]

(z1 + z2)(z1 + z3)(z1 − α)

)
+ Cycl.

]
. (C14)

APPENDIX D: USEFUL INTEGRALS

Let us suppose that r is a complex parameter and t is
positive. We need some expression for the integrals

I1(r, t ) =
∫ ∞

0
dω

ω cos(ωt )

r2 + ω2
, t > 0, r ∈ C (D1)

and

I2(r, t ) =
∫ ∞

0
dω

ω sin(ωt )

r2 + ω2
, t > 0, r ∈ C. (D2)

Both integrals are invariant under the change r → −r, thus
it is enough to consider the integrals in the region −π/2 <

arg r < π/2, which we consider throughout this Appendix.
By writing the fraction as a sum of partial fractions one can
shift the integration variables so that the integrals can be
written in terms of the functions

Chi (z) = −γEM + ln(z) +
∫ z

0

cosh(t ) − 1

t
dt, (D3)

called hyperbolic cosine integral, and

Shi (z) =
∫ z

0

sinh(t )

t
dt, (D4)

called hyperbolic sine integral. Useful formulas especially
their behaviors at infinity can be found, e.g., in Ref. [48]. The
integrals in question are expressed as

I1(r, t ) = −[cosh(rt )Chi (rt ) − sinh(rt )Shi (rt )], (D5)

I2(r, t ) = − 1
r [sinh(rt )Chi (rt ) − cosh(rt )Shi (rt )]. (D6)

In analytical calculations for big enough t one faces the prob-
lem that on the right-hand sides of Eqs. (D5) and (D6) one
has the difference of two very big quantities; however, the
difference is small in the right half plane for the complex r.
One can find useful asymptotic expansions for both integrals
using, e.g., Mathematica software [48].
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