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Time-crystal phase emerging from a qubit network under unitary random operations
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In this paper, we report findings of nonstationary behavior observed in a fully connected qubit network,
utilizing a random unitary evolution model in open quantum system theory. The environmental effect is reflected
in the partial swap interaction between pairs of qubits with a certain probability. Our study begins with a simple
Ising-type Hamiltonian and through many iterations of random unitary evolution, a nonstationary oscillatory
state may arise, which encodes certain memory of the initial state. The nontrivial periodic motion of some local
observables is indicative of a continuous time crystal phase. We also explore the extension of our study to other
types of Hamiltonians and demonstrate that this nonstationary behavior is widespread in our model due to the
generalized dynamical symmetry. Remarkably, both theoretical and numerical analysis support the robustness of
the constructed time crystal phase to most types of noise. Our research provides a perspective for constructing
the time-crystal phase in an open system model.
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I. INTRODUCTION

Understanding the relaxation of the system to the station-
ary state is a fundamental issue in both classical and quantum
statistical mechanics. The former can be accounted for by
chaotic dynamics and ergodicity, whereas the latter is more
subtle. In accordance with the eigenstate thermalization hy-
pothesis (ETH), relaxation to a stationary state in quantum
systems occurs due to the eigenstate dephasing [1,2]. When
there are conserved quantities present, observables relax to
stationary values that can be predicted using a generalized
Gibbs ensemble distribution [3–5]. In parallel with the relax-
ation to the stationarity at the final, the nonstationary behavior
is likewise ubiquitous in nature, ranging from climate evolu-
tion to ecosystem and financial systems, etc. These systems
are constantly changing because of external incentives. In
recent years, nonstationary behavior in quantum many-body
systems has become more prevalent. For example, many-body
scarred systems violate strong ETH but still obey weak ETH,
exhibiting novel revival dynamics due to the extensive number
of nonthermal eigenstates in their spectrum [6]. Another sig-
nificant family of systems that exhibit nonstationary motion is
the time crystal, which we are particularly interested in.

In analogy with the common crystal originating from
space-translation symmetry broken spontaneously, in 2012,
Wilczek conceive that time-translational symmetry can also
be spontaneously broken, leading to the time crystal [7]. The
idea was quickly met with some push back [8,9], culminating
in the no-go theorem eliminating the possibility of the con-
tinuous time crystal (CTC) in the Hamiltonian system with
short-range interaction [10]. It was soon realized that discrete
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time crystals (DTC) can exist extensively in the nonequilib-
rium periodically driven systems, which attract attention both
theoretically [11–15] and experimentally [16,17]. Here the
system in this case features observables whose expectations
break the discrete time-translational symmetry imposed by the
external drive.

Essentially, an ideal isolated system does actually not
exist, the interaction between the system and the external
environment may break down the time-crystal phase
eventually. For example, the discrete-time crystal appearing
in a disordered one-dimensional Ising spin chain cannot
endure the coupling to an environment [18]. This is also
consistent with down-to-earth observations in the experiments
[16,17]. The stationarity is the sole ultimate of the system
seemingly if it couples with the environment. Nevertheless, it
has long been recognized that an open system may contain a
decoherence-free subspace in which the states exist unaffected
by their surroundings [19,20]. If the system begins with a
state overlapping with the decoherence-free subspace, the
system will behave nonstationarily in late time. Appropriately
engineered dissipation, also dubbed as quantum-reservoir en-
gineering, can prepare many-body states and nonequilibrium
quantum phases, and even perform quantum computation
[21–23]. Hence this offers the opportunity to customize the
nonstationary state of our interest, i.e., the time-crystal phase.
There are studies focusing on the DTC in the open system
in [24–26] or beyond [27–30] the mean-field framework, and
the experimental observations [31–33]. Studies show that
various ways can lead to CTC in the open system. With the
generalization of the roton softening mechanism of spatial
crystalline, a dissipative Dicke model can exhibit both CTC
and DTC phases [34]. A strong continuous measurement on
the central spin can induce CTC in a spin star model [35].
Time crystalline behavior, more concretely, boundary time
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crystal (BTC) can appear on the boundary of the system
under the action of the collective Lindblad operators in the
thermodynamic limit, whereas for the rest of the system,
the bulk remains time-translationally invariant [36,37]. Also,
the CTC may emerge if the system has strong dynamical
symmetry [38–40]. The CTC has also been observed
experimentally in a dissipative atom-cavity system [41].

In this paper, we investigate the nonstationary behavior of
a fully connected qubit network model. While much research
has been done on spin chains and lattices with short-range
interactions, long-range interactions are important in certain
physical systems such as spin glasses [42]. Such networks
are also of topical interest in quantum information science in
the form of quantum communication or quantum computation
networks [43], and their classical counterpart already plays a
central role in various branches of classical physics and have
been explored extensively in recent decades [44]. The network
is disturbed by the environment. We model the disturbance of
the network by the environment as PSW between arbitrary two
sites with a certain probability. The system is first studied with
a simple Ising Hamiltonian, and nonstationary oscillations of
the local observables are found to appear in all-size networks.
The clean CTC phase emerges if the system is prepared in cer-
tain initial states. This study is then extended to networks with
general Hamiltonians, and a similar conclusion is reached.
Therefore, our conclusion is generic. We also discuss the
robustness of the constructed time-crystal phase. Our study
shows the constructed time-crystal phase is robust to most
types of noise.

We organize the remainder of the paper as follows. In
Sec. II, we introduce our model and the methodology em-
ployed. In Sec. III, we outline the key findings of this study.
Finally, we draw a conclusion in Sec. IV.

II. MODEL AND METHODS

First, we describe the model that interests us, and then we
introduce the methods we use to study it. Following Ref. [38],
the CTC phase of an open system should be defined as a
many-body quantum system coupled to a noise-inducing en-
vironment that self-organizes in a time-periodic pattern with
a period in some observable at the late time for generic initial
conditions. For a local observable Ô, O(t ) = Tr(ρ(t )Ô) =
O(t + T ) at the late time, where the continuous-time trans-
lation symmetry is spontaneously broken.

To qualify as a time crystal, the model must be robust
against many-body interactions. We consider an all-to-all in-
teracting qubit network system. Its state lives 2N − d Hilbert
space H , where N is the number of qubits composed of
the network. The linear operators acting on Hilbert space
H define another Hilbert space– the operator Hilbert space
OP(H )– equipped with a Hilbert-Schmidt inner product
(A, B) = Tr(A†B) for all A, B ∈ OP(H ). The general form
of the Hamiltonian for the fully connected qubit network can
be expressed as follows:

H =
∑
〈m,n〉

Jxσ
m
x σn

x+ Jyσ
m
y σn

y + Jzσ
m
z σn

z +
∑

m

hσm
z +

∑
n

tσn
x,

(1)

A B

C D

FIG. 1. A sketch of the four-qubit fully connected network.

where σm
x (σm

y , σm
z ) are the Pauli matrices along the x (y, z)

direction for the mrmth qubit. We only consider two-body
interaction here. The schematic diagram is shown in Fig. 1.
It is worth noting that a similar all-to-all interacting qubits
Hamiltonian has been used to study boundary time crystals
[37] and quantum phase transitions [45].

We aim to investigate time crystals in an open system,
as we mentioned. This is because it is widely acknowledged
that no system can truly be considered closed [46], and the
environment plays a crucial role in the behavior of most of
the systems. To mimic environmental effects, we can use
various methods, such as the heat reservoir model [47,48],
collision model [49–51], and the random unitary evolution
model [52–55], which is directly relevant to this paper. As-
suming that the initial state of the entire system (system plus
environment) is a product state, the random unitary quantum
operations can describe the evolution of the system. These op-
erations belong to the class of trace-preserving unital quantum
channels and can be expressed as [52–55].

�(ρ) =
∑
m �=n

pmnÛmnρÛ
†
mn + p0Û0ρÛ

†
0, (2)

where Ûmn = ei(H+Hmn )�t and Û0 = eiH�t are a set of unitary
operators acting on the operator Hilbert space OP(H ) of
the qubit network. The probabilities of the realizations are
denoted by pmn > 0 and p0 > 0, subject to the constraint that∑

m �=n pmn + p0 = 1. Here, Hmn describes the interaction or
collision between the qubits m and n, with the specific form
of Hmn to be determined later. The parameter p0 represents
the probability of the system undergoing free evolution, while
pmn describes the probability of a collision occurring between
the qubit pair m and n during a time interval �t , in addition to
free evolution. The uncertainty in these probabilities may arise
from an unknown error mechanism or a lack of knowledge
about subsequent collisions between two sites. For simplicity,
we assume a uniform time interval �t = 1 in the following
analysis. After this simplification, the state of the system
following n-step evolution is

ρ(n) = �n(ρ(0)). (3)

In the following discussion, our focus is on the asymptotic
quantum states ρ(n + 1) obtained from an initial state ρ(0)
after a large number of iterations n.

The random unitary operation in Eq. (2) is generally not
diagonalizable, which poses challenges in solving the asymp-
totic dynamics. However, Jaroslav et al. demonstrated that
the operator Hilbert space op(H ) can be decomposed into a
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direct sum, namely OP(H ) = Atr(�) ⊕ Atr(�)⊥ [53]. Here,
Atr(�) refers to the attractor subspace and Atr(�)⊥ denotes
the orthogonal complement subspace of the attractor subspace
[53]. The eigenstates corresponding to the eigenvalues of the
random unitary operation in Eq. (2) with magnitude |ν| = 1
reside in the attractor subspace, while the remaining eigen-
states corresponding to the eigenvalues |ν| < 1 are located
in the orthogonal complement subspace. By transforming the
random unitary operation into its Jordan canonical form, one
can verify that the components of the orthogonal complement
subspace in the density matrix vanish after a sufficiently large
number of iterations �. This implies that the asymptotic dy-
namics of the system, governed by the iterations, are solely
determined by the attractor subspace. Moreover, all eigenvec-
tors �s within the attractor subspace are mutually orthogonal
and form a complete basis for the subspace. Therefore, the
asymptotic dynamics of the system can be described as

ρ(n) = �n(ρ(0))

=
∑
|ν|=1

dν∑
α

νnλν,α�ν,α, (4)

where λν,α = (�ν,α, ρ(0)) stores the information about the
initial state, and dν represents the number of eigenvalue ν

in the subspace. Our objective is to determine the attractor
subspace, and a useful perspective for this is through the von
Neumann entropy S(ρ), which never decreases under random
unitary operations, reads

S(�(ρ)) = S

⎛
⎝∑

m �=n

pmnÛmnρÛ
†
mn + p0Û0ρÛ0

†

⎞
⎠

�
∑
m �=n

pmnS(ÛmnρÛ
†
mn) + p0S(Û0ρÛ0

†
)

= S(ρ). (5)

The fact that the von Neumann entropy is concave and
that its value is unchanged by unitary transformations [56]
suggests that, for finite-dimensional quantum systems, the en-
tropy tends to be constant in the limit of many iterations. This,
along with the monotonicity and boundedness of the entropy,
implies that the basis in the attractor space must satisfy the
relation simultaneously

Ûmn�ν,αÛ
†
mn = Û0�ν,αÛ0

† = ν�ν,α, (6)

for ∀m �= n. Theorem 4.1 in Ref. [53] gives a more math-
ematically rigorous proof. Using Eq. (6), we can derive all
the eigenvalues in the attractor subspace. Another important
insight from Eq. (6) is that the asymptotic dynamics are not
strongly dependent on the specific probability distribution pmn

and p0. Indeed, numerical results suggest that the probability
distribution mainly affects the convergence rate towards the
asymptotic dynamics [55]. In this paper, we assume p0 = 0.2
and a uniform pmn. We will perform concrete calculations to
find all eigenvectors of the attractor subspace with a simple
Hamiltonian in the next section. However, solving Eq. (6) for
a general many-body Hamiltonian is still a challenging task.

III. RESULTS

We have not yet provided the concrete form of the random
interaction, H i j, until now. In the following, we specify it as:

Hmn = κmnSWmn

= κmn

2

(
Im ⊗ In + σm

x ⊗ σn
x + σm

y ⊗ σn
y + σm

z ⊗ σn
z

)
,

(7)

with SWmn = 1
2 (Im ⊗ In + σm

x ⊗ σn
x + σm

y ⊗ σn
y + σm

z ⊗ σn
z )

termed as the swap interaction for the qubits m and n. Its
corresponding evolution operator reads

eiHmn = cos(κmn)Imn + sin(κmn)SW mn. (8)

This is exactly the partial swap (PSW) operation, which had
been used to study the formation of the equilibrium in the
dilute quantum gas [55], the non-Markovity in the collision
model [51], quantum thermodynamic engines [57]. To sim-
plify matters, we set all κmn = 1 to avoid PSW degenerating
to the trivial case. Thanks to the full connectivity of the qubit
network, it is verified that [Hmn, H] = 0. We prove it in Ap-
pendix. Then Eq. (6) decouples into

Û0�ν,αÛ
†
0 = ν�ν,α, PSW mn�ν,αPSW mn = �ν,α, ∀m �= n

(9)

The Eq. (9) shows that the free evolution and the abrupt
qubit-qubit PSW interaction dominate each attractor eigen-
state. By using the second equation, we can derive the
eigenvectors, and subsequently obtain the eigenvalue using
the first equation. In the following, we will first start with a
simple Hamiltonian to demonstrate the generic nonstationary
periodic behavior in some observables and then extend it to
more complex Hamiltonians.

To identify the time-crystal phase, we monitor the expecta-
tion value of local observables 〈σm

x 〉. Additionally, we can use
the Loschmidt echo LE = Tr(ρ(0)†ρ(n)) as another probe.
This has been utilized to differentiate the time-crystal phase
[39], as well as in other fields [58–60].

A. A simple Hamiltonian

We will first consider a simplified Hamiltonian of Eq. (1)
here. Specifically, we consider a quantum Ising-type Hamilto-
nian defined as follows:

H Ising = Jz

∑
〈m,n〉

σm
z σn

z + h
∑

m

σm
z . (10)

This Hamiltonian possesses a larger number of conserved
quantities due to [H Ising, σ

m
z ] = 0. However, these local

conserved charges will be destroyed by random unitary oper-
ations. Nonetheless, the total magnetization

∑
m σm

z remains
conserved. Similar one-dimensional qubit chain models have
been employed to explore various physical phenomena, such
as the many-body localization transition [61], quantum phase
transition [62], and quantum computing [63].

We examine the stroboscopic time evolution of the system
by Eq. (2) directly. Initially, the system is in a random state
(because we do not know what the initial state of the system
is with better behavior). After numerous attempts from
various initial states, we have made intriguing discoveries, as
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FIG. 2. The stroboscopic time evolution of transverse spin of the first three qubits in (a) three-qubit network, (b) six-qubit network,
(c) nine-qubit network. The discrete Fourier transform (DFT) of the transverse spin of the first qubit in each network size is presented in
[(d)–(f)], while the Loschmidt echo is presented in [(g)–(i)]. The networks are initialized in a random state and the values of h = 0.1 and
k = 0.4 are used.

illustrated in Fig. 2. In all instances, we uncovered that local
observables for various sites converge quickly and oscillate in
sync, regardless of network size [as shown in Figs. 2(a)–2(c)].
This indicates that our system will not reach equilibrium as
long as the PSW interaction exists within the network. The
oscillation pattern in the three-qubit network is quite periodic,
indicating a significant CTC phase [Fig. 2(a)]. In the larger
qubit network, oscillation is somewhat random but will never
be stationary [Figs. 2(b) and 2(c)]. The fast Fourier transform
reveals that the three-qubit network has fewer frequency peaks
in its oscillation, whereas the larger-scale qubit network has
more frequency peaks [Figs. 2(d)–2(f)]. The oscillation
nature of the entire system is measured by the Loschmidt
echo. We observed relatively consistent periodic motion in
the small-size network after a certain number of iterations,
but oscillations almost vanished in the larger network
[Figs. 2(g)–2(i)].

Upon the above observations, several interesting questions
arise. Why do local observables oscillate synchronously rather
than thermalize? Figures 2(d)–2(f) suggest that the emergence
of a time-crystal phase is linked to the appearance of fewer
dominant frequencies in oscillations. Therefore, could we cre-
ate a clean time-crystal phase in a general-size network by

selecting a specific initial state? To address these questions,
we must study Eq. (9) first.

To solve Eq. (9), we first express it in the computational
basis |i1i2i3 . . . iN−1iN 〉, where im ∈ 0, 1 and σm

z |0〉 = |0〉,
σm

z |1〉 = −|1〉. Since only two indexes are involved in PSW
operation, we can simplify the equation by expressing it in a
pair of local indices |imin〉 and omitting the others. Therefore,
the second equation in Eq. (9) can be reformulated as

�
(im,in )
( jm, jn ) = �

(in,im )
( jn, jm ) (11)

in the local index. This implies that all matrix elements must
be equal by a permutation in the local indices, forming an
equivalent class that identifies an eigenbasis of the second

equation in Eq. (9). Since the order of (
im
jm

) in the full-index

representation is unconsidered, only the number of the local
indexes is important. Thus, a class can be specified by the

array 
β = (β0
0 , β1

0 , β0
1 , β1

1 ), where β
j
i is the number of the (

i
j
)

in the full-index representation. The number of classes, which
corresponds to the number of eigenbases of the second equa-
tion in Eq. (9), is CN

N+3. The matrix elements in the eigenbasis
are identical if they are in the corresponding equivalent class;
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otherwise, they are zeros. The eigenbasis can be expressed as

�
β = C
∑
π∈SN

|π(i)〉〈π( j)|, (12)

where the summation is over the symmetric group SN ,
consisting of all permutations π that acting on the full index
i = (i1, i2 . . . iN ) [55]. And the normalization coefficient is
C = 1√

N!β0
0 !β1

0 !β0
1 !β1

1 !
.

We have obtained the complete set of eigenbasis. The next
step is to determine the eigenvalue in the first equation in
Eq. (9). The Hamiltonian H Ising is diagonal in the computa-
tional basis, and we can easily calculate its energy spectrum
and eigenvectors. The eigenvectors of H Ising can also be clas-
sified based on the permutation symmetry of the Hamiltonian.
The order of eigenvectors does not matter, and the classes are
determined by the total magnetization 〈∑m σm

z 〉, which we
call the magnetization class. In general, the eigenenergy ε(i)
in different classes is distinct. Now the first equation in Eq. (9)

can be solved. Substitute Eq. (12) into the first equation in
Eq. (9)

CeiHIsing
∑
π∈SN

|π(i)〉〈π( j)|e−iHIsing

= Cei[ε(i)−ε( j)]
∑
π∈SN

|π(i)〉〈π( j)|. (13)

Therefore, we derive the eigenvectors and corresponding
eigenvalues in the attractor subspace. From the Eq. (13),
only the upper index and the lower index of the eigenvectors
�
β belonging to the same class, then the eigenvalue ν = 1,
indicating that there are a large number of eigenvectors corre-
sponding to the eigenvalues |ν| = 1 with a limit cycle nature.
To address the first question, we need to study the partial trace
of the density matrix after many times iterations. Referring
to the Eq. (4), we only need to study the partial trace of the
eigenvectors �
β . To get the reduced density matrix of the
(N − 1)-qubit subsystem, we trace out the degree of freedom
of one particular qubit. That is

Trm(ei[ε(i)−ε( j)]�ν,α ) =Cei[ε(i)−ε( j)]Trm

⎛
⎝∑

π∈SN

|π(i)〉〈π( j)|
⎞
⎠

=Cei[ε(i)−ε( j)]Trm

⎛
⎝ ∑

im=0,1

|im〉〈im| ⊗ β
im
im

∑
π∈SN−1

|π(i[m] )〉〈π( j[m] )|

+
∑

im=0,1

|im〉〈im| ⊗ β
im
im

∑
π∈SN−1

|π(i[m] )〉〈π( j[m] )|
⎞
⎠

=Cei[ε(i)−ε( j)]
∑

im=0,1

β
im
im

∑
π∈SN−1

|π(i[m] )〉〈π( j[m] )|

= ei[ε(i)−ε( j)]

√
N

∑
im=0,1

√
β

im
im

�
β[m], (14)

where im = 1 − im, i[m] denotes for the array
(i1, i2, i3 . . . im−1, im+1, . . . iN ), and 
β[m] denotes for the
array 
β with the elements β

im
im

being changed to be β
im
im

− 1.
One can go on performing partial trace step by step according
to Eq. (14). We see that the partial trace vanishes if and
only if all β

im
im

= 0. In the one-qubit subsystem, there exist
certain eigenvectors with nonunit eigenvalues ei[ε(i)−ε( j)], such
as 1

2
√

3
�(2,1,0,0), 1

2
√

3
�(0,1,0,2), and 1√

6
�(1,1,0,1), along with

their corresponding Hermitian conjugates in the three-qubit
network. By considering only the part with a positive phase
in Eq. (14), we obtain three possible frequencies for the local
observables of the one-qubit subsystem, which agrees with
our observations in Fig. 2(d) and other realizations. For the
six-qubit network and the nine-qubit network, there are six
and nine possible frequencies for the local observables of
the one-qubit subsystem, respectively. Furthermore, Eq. (14)
implies that subsystems of the same size exhibit identical
dynamics at late times. Thus, we have fully addressed the first
question.

Now we continue to address the second question. To get
a clean periodic behavior, we conclude two points from the
above analysis. First, the choice of the initial state ρ(0) is
such that λν,α �= 0 with ν �= 1, i.e., the initial state has some
overlap with the attractor subspace. Second, if there are too
many incommensurable phase factors in Eq. (13), they will
generically dephase as shown in Fig. 2(c). Here we consider
an experimentally accessible initial state. Without loss of
generality, the initial pure product state is set as only one
qubit at |+〉 = 1√

2
(|0〉 + |1〉), the others being at |0〉. We then

examine the evolution of the system, and observe a clean
periodic oscillation at late times for all network sizes, as
shown in Figs. 3(a)–3(c). This behavior is also reflected in
the Loschmidt echo in Figs. 3(g)–3(i) and in the dominant
frequency in the DFT of the transverse spin of the first qubit
in Figs. 3(d)–3(f). It is important to note that while we chose
a specific initial state, there are many other alternative states
that can produce similar results. Therefore, the emergence of
the time crystal phase is not due to fine tuning. We conclude
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FIG. 3. The stroboscopic time evolution of transverse spin of the first three qubits in (a) three-qubit network, (b) six-qubit network,
(c) nine-qubit network. The DFT of the transverse spin of the first qubit is shown in (d), (e), and (f) for the three network sizes. The Loschmidt
echo for the six network sizes is shown in (g), (h), and (i). The networks are initialized in a pure product state, and the values of h = 0.1 and
k = 0.4 are used.

this section by discussing the time crystal in the thermo-
dynamics limit. In order to understand the behavior of the
time-crystal phase in the thermodynamic limit, we examine
Eq. (14) and note that all the subsystems of equal size exhibit
identical asymptotic behavior, due to the permutation invari-
ance. Considering a local operator Oi and its corresponding
collective operator

∑N
i Oi, the nonstationary evolution of the

expected value of Oi in the clean time crystal phase can be
expressed as 〈Oi(n)〉 = 1

N

∑N
i νnTr(ρ(0)�ν )Tr(�νOi ). From

this expression, we observe that the amplitude of the periodic
oscillations of the time-crystal phase scales inversely with the
size of the system, i.e., it is proportional to 1

N . To maintain
the time-crystal phase in the thermodynamic limit, it is nec-
essary to ensure that Tr(ρ(0)�ν )Tr(�ν

∑N
i Oi ) is comparable

with N . This can be achieved by choosing an appropriate
initial state for the system. For example, if we prepare the
initial state in 1√

N

∑
i |00 . . . +i . . . 00〉 (where +i denotes that

the qubit on the ith site is in the state |+〉), the observable
〈σx〉 will exhibit oscillations with the apparent amplitude
and the monochromatic frequency, regardless of the system
size.

B. Other Hamiltonians

In the preceding section, we studied the stroboscopic
time evolution of the fully connected qubit network with
a simple Ising-type Hamiltonian subjected to random uni-
tary operations, which allowed us to realize the time-crystal
phase in such a system. This leads us to question whether
the time-crystal phase can be achieved with a more general
Hamiltonian. In the following, we investigate the Hamilto-
nians: transverse-field-Ising (TFI) type, XX type, and XYZ
type, as shown below:

HT FI =
∑
〈m,n〉

Jzσ
m
z σn

z +
∑

i

tσn
x, (15)

HXX =
∑
〈m,n〉

Jxσ
m
x σn

x + Jyσ
m
y σn

y +
∑

i

hσn
z , (16)

HXY Z =
∑
〈m,n〉

Jxσ
m
x σn

x + Jyσ
m
y σn

y + Jzσ
m
z σn

z +
∑

i

hσm
z , (17)

respectively. For the sake of simplicity, we will only consider
the six-qubit network for the remainder of this paper, but our
findings will apply to qubit networks of any size.
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FIG. 4. The stroboscopic time evolution of the transverse spin of three qubits in a three-qubit network with three different types of
interactions: (a) TFI type, with Jz = 0.4 and t = 0.1; (b) XX type, with Jx = Jy = 0.4 and h = 0.1; and (c) XYZ type, with Jx = 0.1, Jy = 0.2,
Jz = 0.3, and h = 0.1. The DFT of the transverse spin of the first qubit with respect to each type of network is presented in (d), (e), and (f),
respectively. The Loschmidt echo with respect to each type of network is shown in (g), (h), and (i), respectively. The network is initialized in
a random state.

Let us examine the stroboscopic time evolution of the
system by Eq. (2) directly as before. Surprisingly, we observe
similar phenomena to Fig. 2 in Fig. 4. All local observables for
different sites converge quickly and oscillate synchronously.
They never tend to be stationary in Figs. 4(a)–4(c). The
DFT spectrum shows that there are certain frequencies in the
TFI-type network, with two being significant in Fig. 4(a).
There are one and three dominant frequencies in the XX-type
and XYZ-type networks, respectively, in Figs. 4(b) and 4(c).
The Loschmidt echo will experience a quick drop followed
by some permanent minor fluctuations at late times in
Figs. 4(g)–4(i), implying a time-crystal phase. We find similar
behavior as in the simple Ising-type network case, even when
both begin from a random state. We ask the same questions
as in the previous section: Why aren’t the local observables
thermalized and oscillating synchronously? And is it possible
to find a clean time-crystal phase by choosing a particular
initial state?

To address these questions, we attempt to solve Eq. (9)
as a starting point. The same eigenvectors can be derived
in the second equation. However, the first eigenequation is
challenging to solve. An insight from Eq. (9) is that the first

equation with the general Hamiltonian will filter out many
eigenvectors in the second equation. Therefore, there aren’t as
many eigenfrequencies as in the previous case. We attempt to
address the questions by bypassing solving Eq. (9) directly.
We turn back to investigate the eigenvalues and the eigen-
vectors of the CPTP map Eq. (2). The eigenvectors related
to eigenvalues with the module less than one reside in the
orthogonal complement subspace of the attractor subspace
Atr(�)⊥ and cut no ice with the asymptotic dynamics. In
the attractor subspace, the eigenvectors with the eigenvalues
one stand for the stationary states, and other eigenvectors
corresponding to eigenvalues on the unit circle in the complex
plane represent the limit cycle dynamics and do not decay.
The following theorem yields a straightforward procedure to
explicitly establish such asymptotic nonstationary states from
the stationary state as well as a set of precise criteria that
guarantee their existence in the case of a general quantum
channel.

Theorem. Consider a completely positive trace-preserving
(CTPT) map as Eq. (2) and let ρst be one of its stationary
states, if the following conditions are satisfied, (i) there
exists a system operator A such that [H, A] = ωA, and (ii)
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[SW mn, A]ρst = 0 for ∀m �= n, then the operator Aρst evolves
according to [64]

�(Aρst ) = eiω�t Aρst , (18)

with ω ∈ R. The proof can refer to Refs. [38,64]. Physically,
the operator is mentioned as a generalized dynamical sym-
metry by conditions (i) and (ii) [38,39,64–67]. A dynamical
symmetry of the system’s autonomous evolution is defined
in particular by condition (i) and condition (ii) requires that
this symmetry is insensitive to the random unitary operations.
With this in mind, we can now address the first question posed
at the beginning of this section. The theorem tells us that,
assuming the existence of a generalized dynamical symmetry
(which we will explain how to find later), the expectation
values of the local observables after many iterations are given
by

〈O(n)〉 =
∑

i

riTr
(
Oρi

st

) +
∑

i j

eiωn�t Ri jTr
(
OAjρ

i
st

)
, (19)

with ri = Tr(ρ(0)ρi
st ) and Ri j = Tr(ρ(0)A jρ

i
st ). Once

Tr(OAjρ
i
st ) �= 0 and Ri j = Tr(ρ(0)A jρ

i
st ) for some i and

j, then 〈O(n)〉 shows an oscillation nature. As a solution of
Eq. (9), it must inherit the property of partial trace Eq. (14).
Therefore, subsystems of the same size exhibit the same
dynamics at late times. This also explains why all the qubits
oscillate synchronously. We have now fully answered the first
question.

The above theorem explains how to construct nonstation-
ary states from stationary states, allowing us to find all the
eigenvectors of the attractor subspace based on the stationary
states and the generalized dynamical symmetry. However, this
is not straightforward. Due to the map Eq. (2) being unital, the
maximum mixed state is apparently a stationary state. To find
other stationary states, a low-efficiency strategy is to initialize
a random state and let it evolve, judging the final state as
stationary if all local observables converge to constants at
a late time. Generally, unstable oscillatory behavior is more
likely to be observed. In the following, we only consider the
maximum mixed-state scenario.

We now move to seek generalized dynamical symmetries.
Finding generalized dynamical symmetry is quite demanding
in the presence of a generic environment and there is even
no such symmetry at all. Nevertheless, the generalized
dynamical symmetry always exists in our setting. We prove
this statement from the beginning of [H, Hmn] = 0 for
∀m �= n. The following steps can be taken: (i) Diagonalize
one of Hmn, rank its eigenvalues (which are only 1 or −1)
and the corresponding eigenvectors. (ii) Transform the
system Hamiltonian H with a unitary transformation
constructed from the ordered eigenvectors of Hmn. The system
Hamiltonian H is now on the basis of the eigenvectors of Hmn

and is block diagonalized. (iii) Diagonalize H , focusing on the
eigenvalues and corresponding eigenvectors in a particular
block, the block with the eigenvalue of Hmn being 1, for
example. All the eigenvectors of H in this block can be certain
linear superpositions of the eigenvectors with eigenvalues
1 of Hmn. (iv) Perform the same procedure on all Hmn and
collect all the common eigenvalues in the block as a set.
Transform the eigenvectors with eigenvalues in the set back
to the computational basis. Any pair of eigenvectors construct

a generalized dynamical symmetry. Now we can address the
second question. Following the above steps, we can construct
different generalized dynamical symmetries for the various
Hamiltonian. For example, |E0〉〈E49| and its Hermitian
conjugate for the TFI-type Hamiltonian, |E62〉〈E63| and its
Hermitian conjugate for the XX-type Hamiltonian, |E61〉〈E62|
and its Hermitian conjugate for the XYZ-type Hamiltonian,
where |Ei〉 is the eigenvector of one of the three Hamiltonians
with eigenvalue Ei in order. To realize the clean time-crystal
phase, one can start with pure states 1/

√
2(|E0〉 + |E49〉),

1/
√

2(|E62〉 + |E63〉), 1/
√

2(|E61〉 + |E62〉) for the network
of the different type. The result shows in Fig. 5. The local
observables oscillate synchronously with a single frequency
in the six-qubit networks in Figs. 5(a)–5(c). Their frequencies
are related to the initial states in Figs. 5(d)–5(f). The LE does
the same oscillation motion pattern forever in Figs. 5(g)–5(i).
Therefore, we completely addressed the second question. It is
worth noting that the presence of such a dynamical symmetry
is widespread throughout our model. To achieve a clean
time-crystal phase, one could begin with readily feasible
experimental pure states that display overlaps with a variety
of eigenvectors. By doing so, the final time-crystal phase may
contain multiple frequencies.

C. Robustness of the time-crystal phase

Although we used uniform probabilities pmn in our text,
nonuniform probabilities would still lead to the same results,
as we have previously mentioned. Furthermore, the power-
ful theorem guarantees that even if there are some random
fluctuations in the swap interaction strength κmn, the result
remains unchanged (excluding some parameters, which make
the interaction trivial). The resulting disorder robustness is
also guaranteed in time, which means that even if the proba-
bility distribution and the strength of the collisions may differ
in a single collision, as long as the initial state is properly
selected, we can still obtain the clean nonsteady oscillatory
behavior for limn→∞�n...�3�2�1(ρ) in the long time limit.

We also investigate the scenario where the condition
[Hmn, H] = 0 is weakly broken. To this end, we introduce
classical noise to the system, which results in a nonuniform
on-site Hamiltonian of the single qubit and the interqubit
coupling. This leads to the modification of the system Hamil-
tonian, which becomes H p = H + εH ′ + O(ε2). Here, ε is a
small parameter, and H ′ is a nonuniform Hamiltonian. As a
result, [Hmn, H p] �= 0. To analyze the effects of the introduced
noise, we take the continuum time limit and keep �t to the
first order. In this context, it is helpful to rewrite the system’s
evolution in the Liouvillian form:

dρ

dt
= L (ρ) = −i[H p, ρ] − i

∑
m �=n

pmn[Hmn, ρ] + O(�t2),

(20)

The first term represents the unitary evolution of the system,
while the second term describes the environmental effect. Un-
der the conditions (i) [H, A] = ωA and (ii) [SWmn, A]ρst = 0
for ∀m �= n, it can be verified that dAρst

dt = −iωAρst for the
unperturbed system. In the following, we focus on the density
matrix ρ corresponding to the purely imaginary eigenvalues of
Liouvillian. To investigate the robustness of the time-crystal
phase against noise, we split the Liouvillian L according to
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FIG. 5. The stroboscopic time evolution of the transverse spin of three qubits in a six-qubit network, under three different types of
interactions: (a) TFI type with Jz = 0.4 and t = 0.1, (b) XX type with Jx = Jy = 0.4 and h = 0.1, and (c) XYZ type with Jx = 0.1, Jy = 0.2,
Jz = 0.3, and h = 0.1. The DFT of the transverse spin of the first qubit with respect to each type of network is shown in (d), (e), and (f), while
the Loschmidt echo for each network is displayed in (g), (h), and (i). The network is initialized in a specific pure state.

the order of the ε,

L = L (0) + εL (1),

L (0) = −i[H, ·] − i
∑
m �=n

pmn[Hmn, ·]

,L (1) = −i[H ′, ·]. (21)

Accordingly, the superket, superbra, and associated eigen-
value can be expanded as

|ρ〉〉 = |ρ(0)〉〉 + ε|ρ(1)〉〉 + · · · ,

〈〈η| = 〈〈η(0)| + ε〈〈η(1)| + · · · ,

λ = λ(0) + ελ(1) + · · · . (22)

where λ(0) is purely imaginary. To proceed with our analy-
sis, we use the condition 〈〈η|ρ〉〉 = Tr(η†ρ) = 1. This yields
Tr(η(0)†ρ(0) ) = Tr(η(0)†ρ(1) + η(1)†ρ(0) ) = 1 to the first order.
We then expand 〈〈η|L |ρ〉〉 to the first order, which gives:

λ(1) = λ(0) + Tr(η(0)†L (1)ρ(0) ). (23)

We can determine that Tr(η(0)†L (1)ρ(0) ) is a real negative
number due to the Hermiticity of η and ρ. The behavior of the
time-crystal phase can be described as 〈O(t )〉 = Tr((η(0)† +
εη(1)†)O)e(λ(0)+ελ(1) )t . Thus, the life of the time-crystal phase is
proportional to O(ε−1) in the presence of noise.

We plot the spin dynamics of the XX-type qubit network
suffering from the random noise in Fig. 6. We take a rel-
atively larger perturbation value ε = 0.1 compared to the
energy scale of the system. Despite this, we found that the
amplitude of the periodic oscillation of the observable de-
creases very slowly in Fig. 6(a), as does the Loschmidt echo
in Fig. 6(c). The DFT spectrum shows that the system still
exhibits oscillations of a single frequency despite the presence
of noise in Fig. 6(b). Therefore, the constructed time-crystal
phase is long lived under the condition that [Hmn, Hp] �= 0 is
weakly broken. Taken together, these analyses provide strong
evidence that the constructed time-crystal phase is robust to
most types of noise. This robustness is a promising feature for
the potential experimental observations of our model.
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FIG. 6. The stroboscopic time evolution of the transverse spin of the first qubit in a six-qubit network in (a). The Hamiltonian is of XX
type with Ji

x = Ji
y = 0.4 + εN (0, 1) and h = 1 + εN (0, 1), where N (μ, σ2) is the Gaussian distribution with the mean μ = 0 and the

variance σ2 = 1. And ε = 0.1. The DFT of the transverse spin of the first qubit is shown in (b), while the Loschmidt echo is displayed in (c).
The network is initialized in a specific pure state 1/

√
2(|E62〉 + |E63〉).

IV. CONCLUSION

In summary, we have introduced a fully connected qubit
network under random unitary operations. The environmental
effect is described as the partial swap occurring on any pair
of qubits with probability. We first consider a simple Ising
Hamiltonian of the network. We observed nonstationary oscil-
lation motion for local observables at late times with random
initial states. Their later dynamics synchronize and the system
is not thermalized. This holds for all the scale networks. We
explain these phenomena with the attractor subspace theory
and then construct a clean time-crystal phase for the system.
We extend our study to the network with a general Hamilto-
nian. Three types of Hamiltonians are considered. Numerical
results show that nonstationary behavior is generic for the
general Hamiltonians. We can not find all the elements in
the attractor subspace due to the complexity of the general
Hamiltonians. However, we can construct the elements in the
attractor subspace from the stationary states with the help
of the generalized dynamical symmetry. And also, we can
uncover a clean time-crystal phase from certain initial states.
In order to assess the feasibility of experimental realizations,
it is important to investigate the robustness of the constructed
time-crystal phase to noise. Our study demonstrates that the
time-crystal phase constructed in our model is indeed robust
to most types of noise. Our study opens an opportunity to
realize the time-crystal phase in the open system. Lastly,
we point out the feasibility of our model in state-of-the-art
experimental capabilities. All the different elements for the
construction of the fully connected network are already in
place in the laboratory. The circuit quantum electrodynamics
(QED) provides a natural platform in which a large number
of qubits can be coupled together [68,69,70]. Many qubits can
be connected together naturally using the cQED architecture.
Superconducting qubits serve as the atoms in such systems,
and a harmonic oscillator circuit element is in the capacity of
a cavity with which they interact. A single cavity will mediate
coupling between all possible qubit pairs if it is connected
to all qubits at once. If the cavity is also far off resonance
with the qubits, its degrees of freedom can be integrated out
of the problem, giving us a system with pairwise interactions
between every qubit [69]. In Ref. [71], the authors success-
fully probed the out-of-equilibrium behavior of a spin model
in a programmable quantum simulator with 16 all-to-all con-
nected superconducting qubits. Moreover, numerous effective

schemes for implementing quantum gates on superconducting
qubits in QED have been proposed [72–74]. Therefore, it is
possible for our model to be implemented in the experiment.

APPENDIX: PROOF OF [Hmn, H] = 0

In order to prove [Hmn, H] = 0, where H and Hmn

are defined as H = ∑
〈m,n〉 Jxσ

m
x σn

x + Jyσ
m
y σn

y + Jzσ
m
z σn

z +∑
m, j hm

j σm
j and Hmn = κmn

2 (Im ⊗ In + σm
x ⊗ σn

x + σm
y ⊗ σn

y +
σm

z ⊗ σn
z ). To do this, we begin by deriving the expression for

[Hmn, σ
m
i σn

i ].
[
Hmn, σ

m
i σn

i

] =
∑

j=x,y,x

[
σm

j σ
n
j , σ

m
i σn

i

]

=
∑

j=x,y,x

(
σm

j σ
m
i

)⊗(
σn

jσ
n
i

)−(
σm

i σm
j

) ⊗ (
σn

i σ
n
i

)
.

(A1)

Combining the commutation relationship [σa, σb] =
2iεabcσc and anticommutation relationship {σa, σb} = 2δab,
we obtain σaσb = iεabcσc + δab. With the help of this rela-
tionship, we get[

Hmn, σ
m
i σn

i

] =
∑

j=x,y,x

(
σm

j σ
m
i

) ⊗ (
σn

jσ
n
i

)−(
σm

i σm
j

)⊗ (
σn

i σ
n
i

)

=
∑

j=x,y,x

(
iε jikσ

m
k + δ ji

) ⊗ (
iε jikσ

n
k + δ ji

)

− (
iεi jkσ

m
k + δi j

) ⊗ (
iεi jkσ

m
k + δi j

)

= 0. (A2)

Next, we examine [Hmn,
∑

m, j hm
j σm

j ]. To simplify the cal-
culation, we can consider an arbitrary pair of

∑
m, j hm

j σm
j , and

we derive[
Hmn, hm

i σm
i + hn

i σ
n
i

] =
∑

j=x,y,x

[
σm

j σ
n
j , hm

i σm
i + hn

i σ
n
i

]

=
∑

j=x,y,x

2ihm
i ε jikσ

m
k ⊗ σn

j

+ 2ihn
i εi jkσ

m
j ⊗ σn

k

= 2i
(
hn

i − hm
i

)
εi jkσ

m
j ⊗ σn

k, (A3)

This implies that [Hmn,
∑

m, j hm
j σm

j ] = 0 if and only if hn
i −

hm
i = 0, which is exactly our case. Hence we complete the

proof of [Hmn, H] = 0.
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