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In contrast to the determinant, no algorithm is known for the exact determination of the permanent of a square
matrix that runs in time polynomial in its dimension. Consequently, noninteracting fermions are classically
efficiently simulatable while noninteracting bosons are not, underpinning quantum supremacy arguments for
sampling the output distribution of photon interferometer arrays. This work introduces a graph-theoretic frame-
work that bridges both the determinant and permanent. The only nonzero eigenvalues of a sparse non-Hermitian
operator M̆ for n spin-1/2 particles are the nth roots of the permanent or determinant of an n × n matrix M,
interpreting basis states as bosonic or fermionic occupation states, respectively. This operator can be used to
design a simple and straightforward method for the classical determination of the permanent that matches the
efficiency of the best-known algorithm. Gauss-Jordan elimination for the determinant of M is then equivalent
to the successive removal of the generalized zero eigenspace of the fermionic M̆, equivalent to the deletion of
some nodes and reweighting of the remaining edges in the graph such that only n nodes survive after the last
step. In the bosonic case, the successive removal of generalized zero eigenspaces for M̆ is also equivalent to node
deletion, but new edges are added during this process, which gives rise to the higher complexity of computing
the permanent. Our analysis may point the way to new strategies for classical and quantum evaluation of the
permanent.
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I. INTRODUCTION

The permanent of a square matrix M of dimension n is
the symmetric analog of the usual determinant, but where
the signatures of the permutations (the signs appearing in the
expansion of the function) are ignored. This quantity appears
in a wide variety of applications in pure mathematics and in
physics, among other disciplines. For example, the permanent
enumerates the number of perfect matchings of a bipartite
graph, which has applications in combinatorics [1], chemistry
[2], and physics [3]. The permanent arises in the identifi-
cation of multiple targets [4], with applications to defense.
In the context of quantum computation and information, the
permanent is central to calculating matrix elements in linear
optics for many-photon systems [5–7], and for determining
the entanglement of various permutation-invariant quantum
states [8].

Despite the fact that both the permanent and the deter-
minant yield the same exponential number of terms, n! ∼√

2πn(n/e)n for large n, the determinant is efficiently com-
putable classically, i.e., scales as a polynomial in n. The
well-known Gaussian elimination approach scales as O(n3),
and the fastest current algorithm scales as O(n2.373) [9]. In
contrast, determining the permanent of a general matrix is
#P-hard, and that of a (0,1) matrix is #P-complete [10–12].
The discovery of a classically efficient algorithm for the per-
manent would have profound consequences for the theory of

computation, including P = PP [13], an even stronger state-
ment than the famous P = NP conjecture. The runtime of
the fastest known algorithm, namely, Ryser’s algorithm,
scales as O(n2n) [14,15]. That said, the permanent Pn of
matrices with non-negative entries or with vanishing mean
can be approximated in polynomial time poly(n, 1/ε) us-
ing randomized algorithms [16,17], up to additive error
εPn, for arbitrary ε > 0; likewise for positive semidefinite
matrices [18–20].

The #P-hardness of computing the permanent was re-
cast in the framework of linear optics [6], which motivated
the realization that quantum devices will always outperform
classical algorithms in sampling the output distribution of
photons emerging from an optical interferometer apparatus,
the so-called boson sampling problem [7]. Numerous boson
sampling experiments have been conducted since then; Refs.
[21–23] provide some recent examples. In contrast, the ease
of calculating the determinant implies that noninteracting
fermions are efficiently simulatable on a classical computer
[24–28].

It was recently shown that the permanent of the matrix M
can be computed as the determinant of a family of matrices
M̆ of minimum dimension 2n − 1 [29–31]. These matrices
define the adjacency of a directed n-dimensional hypercube
graph, whose edge weights correspond to elements of the
matrix of interest, and with the first and last vertices sharing
the same label to form a cycle. It was subsequently noted
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that these graphs encode an algebraic branching program
[32]: the product of edge weights on each of the n! possi-
ble branches corresponds to a term in the expansion of the
permanent.

The present work builds on the above construction by iden-
tifying a key feature: the structure of the matrix M̆ coincides
with the dynamics of n spin-1/2 particles governed by a
non-Hermitian operator. If the permanent of M is nonzero,
then the only nonzero eigenvalues of M̆ are the nth roots of
the permanent; alternatively, M̆n diagonalizes into n blocks
labeled by the total spin, each of which has the permanent as
the only nonzero eigenvalue. Thus, the n-fold product of M̆
on a fiducial state such as |0⊗n〉 immediately yields Pn|0⊗n〉.
The n-sparsity of M̆ ensures that this can be effected on a
classical computer with n2n arithmetic operations, matching
the performance of Ryser’s algorithm.

Interpreting the basis states as bosonic occupation states
yields the standard expression for the permanent in terms of
products of (hard-core) bosonic operators. Interpreting these
instead with fermionic occupation states immediately yields
the determinant, with signed edge weights in the graph. If
M is a full-rank matrix, then Gaussian elimination for the
calculation of the determinant corresponds to successively
projecting out the generalized zero eigenvectors of M̆, so
that after n iterations the initial rank-deficient matrix of di-
mension 2n − 1 is reduced to an n-dimensional full-rank
matrix. From the perspective of the algebraic branching pro-
gram, each iteration deletes vertices and the edges incident
to them, and reweights the remaining edges, until only one
path remains in the cycle. This approach uncovers another
close connection between fermions and the determinant on
the one hand, and between bosons and the permanent on the
other.

This paper is organized as follows. The permanent and
determinant are reviewed in Sec. II, and an example is
provided for the representation of the permanent as an al-
gebraic branching program. Section III introduces the spin
model that maps the problem of computing the permanent
of an n × n matrix M to the problem of computing the
eigenvalues of a 2n × 2n matrix M̆, and provides a clas-
sical algorithm for computing the permanent that matches
the best current methods. The spin model is expressed in
terms of noninteracting fermions and hard-core bosons in
Sec. IV. In Sec. V, we discuss the connection between
Gaussian elimination, generalized zero eigenspaces of M̆,
and its visualization on the associated graph. The prospects
for the development of a quantum algorithm for comput-
ing the permanent based on our approach are discussed in
Sec. VI.

II. REVIEW

A. Permanent and determinant

Consider the n × n matrix M, defined as

M =

⎛
⎜⎜⎝

w0,0 w0,1 · · · w0,n−1

w1,0 w1,1 · · · w1,n−1
...

...
. . .

...

wn−1,0 wn−1,1 · · · wn−1,n−1

⎞
⎟⎟⎠. (1)

The determinant and permanent of M are respectively
defined as

Dn = |M| = det(M ) ≡
∑
σ∈Sn

(
sgn(σ )

n−1∏
i=0

wi,σi

)
,

Pn = |M|P = perm(M ) ≡
∑
σ∈Sn

(
n−1∏
i=0

wi,σi

)
,

where Sn is the symmetric group on the list {0, 1, 2, . . . ,

n − 1}, σ is a function that reorders this list (effects a per-
mutation of the elements), σi is the ith entry of the list
after permutation, and sgn(σ ) = (−1)N (σ ) is the signature of
the permutation, where N (σ ) is the number of inversions
needed. While the expansion of the determinant and perma-
nent includes the same n! terms, the signs appearing in the
determinant allow for its efficient evaluation.

While exceedingly simple, the n = 3 case is illustrative
and will be revisited throughout this work. The determinant
is explicitly written

|M| = w0,0(w1,1w2,2 − w1,2w2,1)

−w0,1(w1,0w2,2 − w1,2w2,0)

+w0,2(w1,0w2,1 − w1,1w2,0). (2)

The Gaussian elimination algorithm uses pivoting to reduce
the matrix to row echelon form (i.e., an upper triangular ma-
trix), so that the determinant is the product of the diagonal
elements. For reasons that will become clear in Sec. IV, con-
sider instead a reduction to a lower triangular matrix. The first
reduction yields

|M| =

∣∣∣∣∣∣∣
w′

0,0 w′
0,1 0

w′
1,0 w′

1,1 0

w2,0 w2,1 w2,2

∣∣∣∣∣∣∣, (3)

where

w′
0,0 = w0,0 − w0,2w1,0

w1,2
; w′

0,1 = w0,1 − w0,2w1,1

w1,2
, (4)

w′
1,0 = w1,0 − w1,2w2,0

w2,2
; w′

1,1 = w1,1 − w1,2w2,1

w2,2
. (5)

The second and last reduction yields

|M| =

∣∣∣∣∣∣∣
w′′

0,0 0 0

w′
1,0 w′

1,1 0

w2,0 w2,1 w2,2

∣∣∣∣∣∣∣, (6)

where

w′′
0,0 = w′

0,0 − w′
0,1w

′
1,0

w′
1,1

. (7)

The determinant is then

|M| = w′′
0,0w

′
1,1w2,2 = (w′

0,0w
′
1,1 − w′

0,1w
′
1,0)w2,2

=
(

w0,0 − w0,2w1,0

w1,2

)(
w1,1 − w1,2w2,1

w2,2

)

−
(

w0,1 − w0,2w1,1

w1,2

)(
w1,0 − w1,2w2,0

w2,2

)
w2,2. (8)
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FIG. 1. Illustration of the algebraic branching program for the
evaluation of the permanent |M|P for n = 3.

While there are eight terms in the expansion, the
signs of the two cross terms (−w0,2w1,0

w1,2
)(w1,1)w2,2 and

−(−w0,2w1,1

w1,2
)(w1,0)w2,2 cancel, leaving six unique terms in the

expansion.
The sign structure of the determinant guarantees that these

cancellations occur for all values of n, which ensures that
Gaussian elimination is classically efficient. For the evalua-
tion of the permanent, one cannot follow the same procedure
as above by simply eliminating all signs, because the cross
terms arising from expanding the final product [for example
in Eq. (8)] will now add instead of canceling. Our analysis in
Sec. V B provides insight into why this is the case.

B. Permanent as an algebraic branching program

Building on the work of Grenet and others [29–31],
Hüttenhain and Ikenmeyer [32] noted that the matrix per-
manent for n = 3 can be expressed as a binary algebraic
branching program. The n! terms correspond to branches, or
routes, traversing between antipodes of the n-dimensional hy-
percube, such that the product of edge weights for each branch
corresponds to a term in the expansion of the permanent.
Figure 1 illustrates the idea for the n = 3 case, where the
three main branches from the top to bottom vertices (labeled
in red) are explicitly shown. The edge weights are chosen so
that their products for each branch correspond to a term in
the permanent, cf. Eq. (2) with signs removed. The branching
program is the analog of the expansion of the determinant by
matrix minors.

III. SPIN MODEL

A. Definition and structure

The binary algebraic branching program for the 3 × 3 per-
manent [32] suggests a general construction for arbitrary n.
Suppose one has a system of spin-1/2 particles, located on
sites j = 0, 1, . . . , n − 1. Each particle can access states |0〉
and |1〉, corresponding to spin down and spin up, respectively.
The spin model that is the central focus of the current work is
defined by the operator

M̃ =
∑

i

n−1∑
j=0

wh(i), jσ
+
j |i〉〈i| +

∏
j

σ−
j , (9)

FIG. 2. Depictions of the spin model M̃ (a) and its alternative
description M̆ (b), for n = 3.

where σ+
i = |1〉〈0|i and σ−

i = |0〉〈1|i are site-dependent rais-
ing and lowering operators. The first sum is over all n-bit
strings i so that a complete and orthonormal basis of n-spin
states with dimension 2n is represented by the unit vectors
|i〉 = |{0, 1}〉⊗n. The Hamming weight of the bit string is
denoted by h(i), coinciding with the total n-particle spin.
Evidently the last term in Eq. (9) is equivalent to |0〉〈1|.

The operator M̃ defined by Eq. (9) corresponds to the
adjacency matrix for a weighted directed graph that effects
transitions from the |0〉 state to the |1〉 state via all possible
single-spin raising operations, and then back to |0〉 again to
complete one cycle. The transition amplitudes are indexed by
two integers: the total Hamming weight of the initial state and
the target site. With σ+|1〉 = 0, the second index can never be
repeated as the value of the first index increases; thus, the first
term in M̃ encodes all possible transitions from |0〉 to |1〉 with-
out repetitions. Figure 2(a) depicts M̃ for n = 3, and includes
the vertex and state labelings for clarity. The orientation is
chosen so that each horizontal layer of the hypercube con-
tains vertices labeled by bit strings with the same Hamming
weight h.

As discussed in detail in what follows, it is convenient to
define an alternate encoding of the cyclic behavior of M̃ by
eliminating the transition |0〉〈1|, and instead directly transition
from states with Hamming weight n − 1 to the state |0〉. The
associated operator is

M̆ =
∑

i

′ n−1∑
j=0

wh(i), jσ
+
j |i〉〈i| +

n−1∑
j=0

wn−1, j |0〉〈1|σ+
j , (10)

where the prime on the first term denotes that the sum is over
all bit strings but not including those with Hamming weight
h(i) = n − 1. In this case, the basis state |1〉 is never occupied,
and the Hilbert space dimension is reduced to 2n − 1. This
alternate operator is depicted in Fig. 2(b).

Consider next the (n + 1)th (nth) power of M̃ (M̆), which
will be of central importance in what follows. The derivation
is provided in Appendix, and the result for M̃n+1 is given in
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Eq. (A5):

M̃n+1 =
∑

j0,..., jn−1

[(w0, j0σ
+
j0

) · · · (wn−1, jn−1σ
+
jn−1

)|0〉〈1|

+(w0, j0σ
+
j0

) · · · (wn−2, jn−2σ
+
jn−2

)|0〉〈1|
×(wn−1, jn−1σ

+
jn−1

) + · · · + |0〉〈1|(w0, j0σ
+
j0

)

· · · (wn−1, jn−1σ
+
jn−1

)]. (11)

The expression for (M̆ )n is identical save for the leading term
in Eq. (11).

The above expression can be seen to be of block diagonal
form as follows. Each term in the expansion above is defined
by the operators

∏m−1
r=0 σ+

jr
|0〉〈1| ∏n−1

s=m σ+
js

, and is labeled by
the index m = 0, 1, . . . , n. For m = 0, the operator is only
|0〉〈0|, i.e., a block of dimension 1 defined by a single basis
state with zero Hamming weight. The m = 1 case includes all
operators of the form

σ+
j0
|0〉〈1|

n−1∏
s=1

σ+
js

= σ+
j0
|0〉〈1|

n−1∏
s=0

σ+
js
σ−

j0
= σ+

j0
|0〉〈0|σ−

k0
,

(12)

which corresponds to a block spanned by the n basis vectors
defined by σ+

j |0〉, which are labeled by all bit strings with
unit Hamming weight. Evidently, each block is indexed by the
Hamming weight (or total spin) m, and has dimension given
by the binomial factor ( n

m ). It is convenient to express M̃n+1

as the direct sum

M̃n+1 = M̃0 ⊕ M̃1 ⊕ · · · ⊕ M̃n =
n⊕

m=0

M̃m, (13)

where M̃m corresponds to the block matrix labeled by m and
is defined as

M̃m = M̃m|0〉〈0|M̃n−m+1, (14)

which has the form

M̃m =
∑

j0,..., jn−1

(w0, j0σ
+
j0

)(w1, j1σ
+
j1

)

· · · (wm−1, jm−1σ
+
jm−1

)|0〉〈1|(wn−1, jn−1σ
+
jn−1

)

×(wn−2, jn−2σ
+
jn−2

) · · · (wm, jmσ+
jm

), (15)

as proven in Eq. (A12) in Appendix. Likewise,

M̆m = M̆m|0〉〈0|M̆n−m. (16)

B. Eigensystem

Now turn to the eigenvalues and eigenvectors of the
spin model, defined by Eq. (9) or its alternative expression
Eq. (10). A key observation is that |0〉 is an eigenvector of
M̃n+1 or M̆n. Consider the action of M̃n+1 on the state |0〉,
which only involves the m = 0 block:

M̃n+1|0〉 =
∑

j0,..., jn−1

|0〉〈1|(w0, j0w1, j1 . . . wn−1, jn−1 )

×σ+
j0
σ+

j1
. . . σ+

jn−1
|0〉. (17)

The action of σ+
j0
σ+

j1
. . . σ+

jn−1
defines all possible n spin-flip

paths from the |0〉 state to |1〉, and each is weighted by the
factor w0, j0w1, j1 . . . wn−1, jn−1 . This is precisely the algebraic
branching program discussed in Sec. II B; thus

M̃n+1|0〉 = M̃0|0〉 = Pn|0〉; (18)

the eigenvalue is the permanent of M. Likewise,
M̆n|0〉 = Pn|0〉.

The permanent is also an eigenvalue of every other block
of M̃n+1. Defining the block-m state

|ψm〉 = M̃m|0〉, (19)

one obtains

M̃m|ψm〉 = M̃m|0〉〈0|M̃n−m+1M̃m|0〉
= M̃m|0〉〈0|M̃n+1|0〉 = PnM̃m|0〉
= Pn|ψm〉. (20)

The operator M̃n+1 therefore has n + 1 degenerate eigenvalues
corresponding to the permanent, with associated eigenvectors
|ψm〉 = M̃m|0〉. Likewise, the operator M̆n has n degenerate
eigenvalues Pn and associated eigenvectors M̆m|0〉.

For the rest of the discussion in this section, we as-
sume that Pn �= 0. Because M̃ is a cycle, if λ is an
eigenvalue of M̃n+1, then the eigenvalues λ j of M̃ must
include all (n + 1)th roots of λ (see, for example, Ref.
[33]). For the present case λ = Pn, one obtains λ j =
P1/(n+1)

n e−i2π j/(n+1), j = 0, 1, . . . , n; likewise, the eigenval-
ues of M̆ are (Pne−i2π j )1/n, j = 0, 1, . . . , n − 1. Given that
M̆ has degeneracy n and therefore only requires n powers to
return the state |0〉 to itself, it is slightly more convenient to
work with M̆ in what follows.

The eigenvectors of M̆ with eigenvalues corresponding to
the nth roots of Pn can be written as

|φn(k)〉 = e−i2πk/n
n−1∑
j=0

ei2π jk/n

(
M̆

P1/n
n

) j

|0⊗n〉, (21)

where k, j = 0, 1, . . . .n − 1. The corresponding eigenvalues
can be found directly:

M̆|φn(k)〉 = e−i2πk/n
n−1∑
j=0

ei2π jk/nP1/n
n

(
M̆

P1/n
n

) j+1

|0⊗n〉

= e−i4πk/nP1/n
n

n−1∑
j=0

ei2π ( j+1)k/n

(
M̆

P1/n
n

) j+1

|0⊗n〉

= e−i4πk/nP1/n
n∑

j=1

ei2π jk/n

(
M̆

P1/n
n

) j

|0⊗n〉

= e−i4πk/nP1/n
n

n−1∑
j=0

ei2π jk/n

(
M̆

P1/n
n

) j

|0⊗n〉

+|0⊗n〉 − |0⊗n〉
= e−i2πk/nP1/n

n |φn(k)〉. (22)

The eigenvalues are therefore

λk (M̆ ) = e−i2πk/nP1/n
n = (e−i2πkPn)1/n. (23)
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The derivation proceeds analogously for M̃, and one obtains

λk (M̃ ) = (e−i2πkPn)1/(n+1). (24)

The simplest case corresponds to k = 0:

|φn(0)〉 =
n−1∑
j=0

(
M̆

P1/n
n

) j

|0⊗n〉, (25)

with eigenvalue λ0 = P1/n
n . Consequently, ±λ0 would be the

only real eigenvalues if the elements of M were real and
positive. Remarkably, Eqs. (23) and (24) constitute the only
nonzero eigenvalues of M̆ and M̃, respectively.

The periodic nature of M̃ and M̆ gives rise to eigenvectors
that are expanded in a Fourier-like series, much like in a
translationally invariant system. In Eqs. (21) and (23), the
indices j and k label position and wave vector, respectively.
In the present case, the position is the index of the block,
corresponding to the Hamming weight or total spin, while
the wave vector serves essentially the same purpose as in
uniform systems: as a canonically conjugate quantum number.
Conceptually, one can consider successive applications of M̃
or M̆ as moving a walker from site |0〉 to site M̃|0〉 or M̆|0〉,
etc., one step (bit flip) at a time, with all states sharing a given
Hamming weight treated as equivalent, until it again reaches
its starting state (see also Fig. 2).

Given that the determination of the matrix permanent cor-
responds to an algebraic branching program from the state
|0〉 to itself, effecting the spin transitions in the opposite
direction (i.e., reversing the arrows in Fig. 2) corresponds to
taking the adjoint (complex conjugate transpose) of M̃ or M̆.
Equation (18) then becomes

(M̃†)n+1|0〉 = (M̆†)n|0〉 = P∗
n |0〉. (26)

One can then construct Hermitian operators

M̃R = M̃n+1 + (M̃†)n+1, (27)

M̃I = i[M̃n+1 − (M̃†)n+1], (28)

satisfying the eigenvalue equations

M̃R|0〉 = Re(Pn)|0〉, (29)

M̃I |0〉 = Im(Pn)|0〉. (30)

Similar expressions apply to M̆. While the operators (27) and
(28) are arguably more physical, their experimental realization
could remain challenging given the complexity of the descrip-
tion, Eq. (11). Also, unlike the case for M̃n+1 or M̆n alone, the
nonzero eigenvalues for the remaining blocks of (27) and (28)
are different from Re(Pn) and Im(Pn).

C. Classical algorithm for the permanent

While the result (18) is a statement about the eigenvalues,
it suggests a straightforward approach to the calculation of the
permanent without needing to determine the spectrum of M̃ or
M̆. Rather, one must only compute

M̃n|0〉 = Pn|1〉 or M̃n+1|0〉 = Pn|0〉; or M̆n|0〉 = Pn|0〉.
(31)

In other words, apply M̃ or M̆ successively to the state |0〉
until all the amplitude is again concentrated on the state |0〉,
and read out the result.

The algorithm for the permanent then corresponds to an
n-fold or (n − 1)-fold product of matrices with dimension
( n

i+1 ) × ( n
i ) (i = {0, 1, . . . , n − 1}). Each column of the ith

matrix contains exactly n − i nonzero elements, so that the
matrices are exponentially sparse. The total number of opera-
tions (multiplications and additions) is

n∑
i=1

(n

i

)
(2i) = n2n. (32)

In comparison, Ryser’s algorithm requires a total of n2n+1 −
(n + 1)2 ∼ 2n2n operations for large n [15]. The scaling of the
number of operations in the present case therefore matches
that of the fastest-known algorithm, with a straightforward
implementation, which could make it useful for practical ap-
plications.

IV. FERMIONIC AND BOSONIC REPRESENTATIONS

The spin model (9) can be naturally represented in terms of
Schwinger bosons, and fermions via the Jordan-Wigner trans-
formation. These are discussed in the next two subsections.

A. Bosons

Spin-1/2 particles can be mapped to Schwinger bosons as
follows:

σ+
j = σ x

j − iσ y
j = a†

j b j,

σ−
j = σ x

j + iσ y
j = b†

ja j,

σ z
j = a†

j a j − b†
jb j . (33)

Each spin operator therefore involves two “species” of bosons,
satisfying the relations

[ai, a†
j ] = δi j ; [ai, a j] = [a†

i , a†
j ] = 0 (34)

and likewise for b-species bosons, where [x, y] = xy − yx
is the commutator. These are supplemented with the unit-
occupancy condition

a†
j a j + b†

jb j = 1, (35)

which specifies that each site is occupied by exactly one boson
of either species. The Schwinger approach therefore maps
spins to hard-core two-species bosons at exactly unit filling.
The model (9) expressed in terms of Schwinger bosons is then

M̃b =
∑

i

n−1∑
j=0

wh(i), ja
†
j b j |i〉〈i| +

∏
j

b†
ja j, (36)

where the bit in the string i is unity (zero) if occupied by a
boson of species a (b), and the zero state is

|0〉 =
n−1∏
j=0

b†
j |O〉. (37)

The graph associated with M̃b is indistinguishable from that
of M̃, i.e., Fig. 2 for n = 3.
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It is instructive to write the action of the nth power of M̃b on
the zero state:

M̃n
b |0〉 =

⎛
⎝n−1∑

j=0

wn−1, ja
†
j b j

⎞
⎠

⎛
⎝n−1∑

j=0

wn−2, ja
†
j b j

⎞
⎠

× · · · ×
⎛
⎝n−1∑

j=0

w0, ja
†
j b j

⎞
⎠ n−1∏

j=0

b†
j |O〉

=
⎛
⎝n−1∑

j=0

wn−1, ja
†
j

⎞
⎠

⎛
⎝n−1∑

j=0

wn−2, ja
†
j

⎞
⎠

× · · · ×
⎛
⎝n−1∑

j=0

w0, ja
†
j

⎞
⎠|O〉. (38)

In the second line above, all operators for the b-species
bosons can be omitted because each creation of an
a-species boson must be accompanied by the annihilation of a
b-species boson, and after n powers of M̃b all sites have been
accounted for. Furthermore, the hard-core condition acts in the
same way as a Pauli exclusion principle: if a b-species boson
occupies site j, then the b†

j operator returns zero. Expansion
of the terms in Eq. (38) then returns the permanent because
the b-species bosons all commute.

B. Fermions

The Jordan-Wigner transformation corresponds to map-
ping the spin operators to “spinless” fermions:

σ+
j = exp

⎛
⎝iπ

n−1∑
k= j+1

f †
k fk

⎞
⎠ f †

j ,

σ−
j = exp

⎛
⎝iπ

n−1∑
k= j+1

f †
k fk

⎞
⎠ f j,

σ z
j = 2 f †

j f j − 1, (39)

where the site-dependent fermionic creation ( f †
j ) and

annihilation ( f j) operators satisfy the anticommutation
relations

{ fi, f †
j } = δi j ; { fi, f j} = { f †

i , f †
j } = 0, (40)

and {x, y} = xy + yx. The first of these automatically ensures
the Pauli condition forbidding double occupancy of sites; thus,
basis states can again be indexed by bit strings i, but now
where 0 (1) signifies the absence (presence) of a fermion
at position j. Canonical ordering is assumed, where cre-
ation operators appear with indices in descending order; for
example,

|1010〉 = f †
2 f †

0 |O〉, (41)

where |O〉 denotes the particle vacuum.

FIG. 3. Depictions of the fermionic model M̆ f ,alt , Eq. (45) with
|111〉 → |000〉, for n = 3. Its original form is shown in (a), while
various stages of row reduction are shown in (b)–(d).

The phases appearing in Eq. (39) ensure that the fermions
anticommute on all sites; alternatively, they ensure the normal
or canonical ordering of basis states. For example,

f †
0 |1010〉 = f †

0 f †
2 f †

0 |O〉 = 0,

f †
1 |1010〉 = f †

1 f †
2 f †

0 |O〉 = − f †
2 f †

1 f †
0 |O〉 = −|1110〉,

f †
3 |1010〉 = f †

3 f †
2 f †

0 |O〉 = |1011〉. (42)

The Jordan-Wigner transformation (39) counts the number of
fermions to the right of (i.e., with index greater than) where
the spin is flipped or a fermion is created, and multiplies the
transition amplitude by −1 if this number is odd. In this way,
the negative signs arising from the fermionic anticommutation
are canceled and the transition amplitudes all remain positive.
The model (9) expressed in terms of fermions then becomes

M̃JW =
∑

i

n−1∑
j=0

wh(i), j si, j f †
j |i〉〈i| +

∏
j

f j, (43)

where the function si, j incorporates the Jordan-Wigner phases
for creation of a fermion at position j on a basis state with
occupation indexed by occupation state |i〉 defined by bit
string i.

An explicit example is shown for the n = 3 case in
Fig. 3(a). Consider the |100〉 → |110〉 and |010〉 → |110〉
transitions. For the former transition, a fermion is created
in site 1, to the right of a fermion already in site 0, so
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there is no additional Jordan-Wigner phase; likewise, the final
state |110〉 = f †

1 f †
0 |O〉 is already normal ordered. Thus, the

edge weight w1,1 remains unchanged. For the latter transition,
the fermion created in site 0 is to the left of a fermion al-
ready in site 1, which yields a negative contribution from the
Jordan-Wigner transformation, reflected in the signed edge
weight −w1,0 in Fig. 3(a). At the same time, the final state
|110〉 = f †

0 f †
1 |O〉 requires one fermionic anticommutation to

bring it back to normal ordering, which cancels the negative
sign and effectively restores the total edge weight to its orig-
inal value in the spin representation. Thus, within the context
of a binary branching process, the sum of the path weights of
Fig. 3(a) still constitute the permanent, despite the appearance
of signed edge weights.

To construct an algebraic branching program for true
fermions one either must maintain all edge weights and keep
track of the fermionic anticommutation relations defining the
occupation states, in which case the model is

M̃ f =
∑

i

n−1∑
j=0

wh(i), j f †
j |i〉〈i| +

∏
j

f j (44)

and |i〉 represent occupation states, or one must account for all
Jordan-Wigner phases to appropriately sign all edge weights
but treat the states |i〉 instead as ordinary bit strings, in which
case the model is instead

M̃ f ,alt =
∑

i

n−1∑
j=0

wh(i), j si, jσ
+
j |i〉〈i| +

∏
j

σ−
j , (45)

and now the σ± are interpreted as classical bit-flip oper-
ators. When expressing the fermionic model in terms of
creation and annihilation operators, Eq. (44) is preferable,
but Eq. (45) is more convenient in the graph adjacency ma-
trix representation. Now, Fig. 3(a) depicts a truly signed
binary branching process, and the sum of the path weights
constitute the determinant, rather than the permanent, of M
for n = 3. The w0,0w1,1w2,2 path serves as the reference,
where the second indices for the weights in this product
constitute the integer list {012}. All other paths are char-
acterized by an overall minus (plus) sign if the integer
list derived from the second index of the weights for that
path corresponds to an even (odd) number of inversions of
the reference list; for example, the odd permutations {021},
{102}, and {210} correspond to paths with negative total
weights −w0,0w1,2w2,1, −w0,1w1,0w2,2, and −w0,2w1,1w2,0,
respectively. Thus, one expects that the eigenvalues of the
operator (44) are the determinant, as will be discussed further
below.

Another noteworthy property of the fermionic graph is that
it is unbalanced: there is no vertex sign switching that can
remove all of the minus signs [34]; alternatively expressed,
there is no diagonal matrix whose entries are {1,−1} that
can map Eq. (44) to a form without any si, j factors. (This is
another way of stating that the determinant derived in this way
cannot be mapped to the permanent by a local unitary, though
this is already obvious as unitary transformations preserve
the eigenvalues.) There remains the intriguing possibility that
there is a nonunitary operator that can effect the map, but this
is not explored in the present work.

Similarly, it is not possible to map existing weights to their
negatives in order to map the determinant to the permanent.
For the n = 3 case, one could reassign w1,2 → −w̄1,2 and
w2,1 → −w̄2,1 to remove the negative signs on all edges with
these labels in Fig. 3(a), but this still leaves signs on edges
labeled by w1,1 which cannot be removed.

As in the bosonic case, it is worthwhile to express the
action of the nth power of M̃ f ,alt on the vacuum state:

M̃n
f |0〉 =

⎛
⎝n−1∑

j=0

wn−1, j f †
j

⎞
⎠

⎛
⎝n−1∑

j=0

wn−2, j f †
j

⎞
⎠

× · · · ×
⎛
⎝n−1∑

j=0

w0, j f †
j

⎞
⎠|O〉. (46)

This simple and apparently separable representation for the
output state, as products of similar terms, is possible because
of the Pauli principle and the anticommutation relations: any
attempted creation of a fermion in an already occupied site
is zero, and the signs of the final many-fermion states will
reflect the number of permutations required to express them
in normal ordering. Furthermore, the result is clearly the de-
terminant Dn (or its negative) rather than the permanent. The
states (46) and (38) reveal a close connection between the
determinant and the permanent expressed in terms of indis-
tinguishable particles.

Consider explicitly the n = 3 case:

M̃3
f |0〉 = (w2,0 f †

0 + w2,1 f †
1 + w2,2 f †

2 )

×(w1,0 f †
0 + w1,1 f †

1 + w1,2 f †
2 )

×(w0,0 f †
0 + w0,1 f †

1 + w0,2 f †
2 )|O〉.

= w2,2 f †
2 (w1,1 f †

1 w0,0 f †
0 + w1,0 f †

0 w0,1 f †
1 )

+w2,1 f †
1 (w1,2 f †

2 w0,0 f †
0 + w1,0 f †

0 w0,2 f †
2 )

+w2,0 f †
0 (w1,1 f †

1 w0,2 f †
2 + w1,2 f †

2 w0,1 f †
1 )|O〉

= [w2,2(w1,1w0,0 − w1,0w0,1).

+w2,1(−w1,2w0,0 + w1,0w0,2)

+w2,0(−w1,1w0,2 + w1,2w0,1)] f †
2 f †

1 f †
0 |O〉

= D3 f †
2 f †

1 f †
0 |O〉. (47)

Recapitulating the arguments of Sec. III B but for M̃ f instead
of M̃ or M̆, one obtains that the only nonzero eigenvalues of
M̃ f are given by the (n + 1)th roots of Dn.

V. ROW REDUCTIONS

The exponentially small rank of the matrices M̃ and M̆,
discussed in Sec. III B, suggests that it might be possible to
apply row reductions to reduce their dimension without af-
fecting the nonzero eigenvalues. Just as Gaussian elimination
reduces a matrix to upper (or lower) triangular form, so that
the determinant (which would otherwise require summing n!
terms) can be evaluated by a product of the diagonal elements,
row reduction of M̃ or M̆ reduces the n! paths of the algebraic
branching program to a single path by deleting vertices and
reweighting edges. As shown below, row reductions in the
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fermionic model correspond precisely to the Gaussian elim-
ination approach to evaluating the determinant. The bosonic
version provides a road map for row reductions to evaluate the
permanent, but does not appear to provide a speedup over the
direct matrix multiplication method discussed in Sec. III C.

As shown in Sec. III B, the blocks M̃m of M̃n+1 and M̆n

have dimension ( n
m ) but are all unit rank, so that the ranks

of M̃n+1 and M̆n are n + 1 and n, respectively. In contrast,
the matrices M̃ and M̆ are not block diagonal, and their
eigenvectors are no longer given by M̃m|0〉 and M̆m|0〉, re-
spectively. Consider M̆ for concreteness. While the n nonzero
eigenvalues correspond to the nth roots of the permanent,
the zero eigenvalues have multiplicity 2n−1 − n; thus, the
kernel of M̆ is comprised of generalized zero eigenvectors of
rank 1 up to n − 1. The set of linearly independent vectors
spanning these defective matrices must therefore be obtained
sequentially. The standard procedure is to obtain the set of
rm generalized zero rank-m vectors |v(m)

i 〉, 1 � i � rm, such
that M̆m|v(m)

i 〉 = |O〉. The rank-nullity theorem ensures that
n + ∑n−1

m=1 rm = 2n − 1.
In practice there is a more efficient iterative proce-

dure to obtain the kernel. First generate the reduced row
echelon form (also known as the pivot matrix) B1 for M̆,
via Gauss-Jordan elimination. For any rank-deficient matrix
such as M̆, the deviation of B1 from the identity is driven
entirely by the r1 rank-1 zero eigenvectors; thus, the (2n − 1 −
r1) × (2n − 1) matrix B1 annihilates the null space: B1|v(1)

i 〉 =
0. One can then find an n × (2n − 1 − r1) matrix A1 such
that M̆ = A1B1; its matrix elements coincide with those of
M̆ but with r1 columns removed whose indices correspond
to the location of the first nonzero element of each |v(1)

i 〉.
The (2n − 1 − r1) × (2n − 1 − r1) matrix M̆ (2) ≡ B1A1 there-
fore has the same eigenvalues as M̆ but now with r1 fewer
zeros.

The rank-2 generalized eigenvectors are the solutions of

M̆2
∣∣v(2)

i

〉 = A1B1A1B1

∣∣v(2)
i

〉 = |0〉, (48)

for 1 � i � r2, which can be rewritten as

A1M̆ (2)(B1|v(2)
i 〉) = 0. (49)

At the same time, the zero eigenvectors of M̆ (2) are the solu-
tions of

M̆ (2)
∣∣ṽ(2)

i

〉 = 0. (50)

Thus, with the identification |ṽ(2)
i 〉 ≡ B1|v(2)

i 〉, Eq. (49) is au-
tomatically satisfied by Eq. (50), and solving the latter is more
efficient than the former due to the smaller matrix dimension.
It is straightforward to verify that the nonzero eigenstates of
interest from Eq. (21),

∣∣φ(1)
n (k)

〉 = e−i2πk/n
n−1∑
j=0

ei2π jk/n

(
M̆

P1/n
n

) j

|0⊗n〉, (51)

are transformed into

∣∣φ(2)
n (k)

〉 = e−i2πk/n
n−1∑
j=0

ei2π jk/n

(
M̆ (2)

P1/n
n

) j

|0⊗n〉

= B1

∣∣φ(1)
n (k)

〉
. (52)

The procedure is then repeated for M̆ (2) = A2B2. After n −
1 iterations, the original rank-deficient (2n − 1)-dimensional
matrix M̆ is reduced to a full-rank n-dimensional matrix
M̆ (n−1) with eigenvectors

∏n−1
i=1 Bn−i|φn(k)〉 and correspond-

ing eigenvalues P1/n
n . As shown below, this procedure is

equivalent to Gaussian elimination of M for the evaluation of
the determinant, and also provides an equivalent systematic
approach to the evaluation of the permanent.

A. Example: Three fermions

Consider row reductions of M̃ f ,alt , Eq. (45), for the specific
case n = 3, depicted in Fig. 3. The (unnormalized) rank-1
generalized zero eigenvectors can be written as∣∣v(1)

1

〉 = |001〉 + w1,1

w1,2
|010〉 + w1,0

w1,2
|100〉,

∣∣v(1)
2

〉 = |011〉 − w2,0

w2,2
|110〉,

∣∣v(1)
3

〉 = |101〉 + w2,1

w2,2
|110〉, (53)

so that one may eliminate vertices labeled by the bit strings
001, 011, and 101. The matrix B1 must satisfy B1|v(1)

i 〉 = 0; a
sufficient construction is

B1 = I − ∣∣v(1)
1

〉〈
001

∣∣ − ∣∣v(1)
2

〉〈
011

∣∣ − ∣∣v(1)
3

〉〈101|

=

⎛
⎜⎜⎜⎝

1 0 0 0 0 0 0
0 −w1,1

w1,2
1 0 0 0 0

0 −w1,0

w1,2
0 0 1 0 0

0 0 0 w2,0

w2,2
0 −w2,1

w2,2
1

⎞
⎟⎟⎟⎠, (54)

where row and column indices are labeled by bit strings with
the least significant bit on the right. Here, B1 is expressed
in the somewhat unconventional lower-triangular reduced row
echelon form. Likewise,

A1 = M̆ f ,alt\{〈001|, 〈011|, 〈101|}

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 w2,2

w0,2 0 0 0
w0,1 0 0 0

0 w1,2 0 0
w0,0 0 0 0

0 0 w1,2 0
0 −w1,0 w1,1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

It is straightforward to verify that A1B1 = M̆ f ,alt . One then
obtains

M̃ (2)
f ,alt = B1A1 =

⎛
⎜⎜⎝

0 0 0 w2,2

w′
0,1 0 0 0

w′
0,0 0 0 0
0 −w′

1,0 w′
1,1 0

⎞
⎟⎟⎠, (56)

where w′
0,0, w′

0,1, w′
1,0, and w′

1,1 coincide with the reweighted
terms in M derived from a first round of Gaussian elimination,
defined in Eqs. (4) and (5).

It is illuminating to view this first round as an operation
on the graph representing the binary branching process, as
depicted in Figs. 3(b) and 3(c). Vertices labeled by bit strings
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001, 011, and 101 are deleted, reducing the total number of
branches from six to two. The contributions to the determinant
of the branches through the deleted vertices are incorporated
by reweighting remaining edges. For example, the weight
−w1,2w2,1 of the path from |100〉 to |000〉 through vertex
|101〉 is incorporated into the new path weight w′

1,1w2,2; sim-
ilarly, the path from |010〉 to |000〉 through deleted vertex
|011〉 is incorporated in w′

1,0. Perhaps surprisingly, these edge
reweightings can also compensate for both of the deleted paths
from |001〉 to |000〉 through the two deleted vertices |011〉
and |101〉. Crucially, for fermions, the total path weights after
the transformation are products of revised edge weights; as
discussed in Sec. II A, cancellation of signed terms ensure
that the total weights for the reduced branching process still
coincide with the determinant.

The remaining (unnormalized) rank-2 generalized zero
eigenvector can now be efficiently written as

|v(2)〉 = |010〉 + w′
1,0

w′
1,1

|100〉, (57)

so that one may eliminate the vertex labeled by the bit string
010. The matrix B2 must satisfy B2|v(2)〉 = |O〉:

B2 = I − |v(2)〉〈010|

=

⎛
⎜⎝

1 0 0 0

0 −w′
1,0

w′
1,1

1 0

0 0 0 1

⎞
⎟⎠. (58)

Likewise,

A2 = M̆ (2)
f ,alt\〈010|

=

⎛
⎜⎜⎝

0 0 w2,2

w′
0,1 0 0

w′
0,0 0 0
0 w′

1,1 0

⎞
⎟⎟⎠. (59)

Again, it is straightforward to verify that A2B2 = M̆ (2)
f ,alt . One

then obtains

M̆ (3)
f ,alt = B2A2 =

⎛
⎝ 0 0 w2,2

w′′
0,0 0 0
0 w′

1,1 0

⎞
⎠, (60)

where w′′
0,0 coincides with Eq. (7). The eigenvalues of M̆ (3) are

the cube roots of D3 = w′′
0,0w

′
1,1w2,2. In this example, the sec-

ond and final round of Gauss-Jordan elimination corresponds
to deleting the vertex labeled by bit string 010, as depicted in
Fig. 3(d), yielding only one path from |000〉 to |000〉 and the
rescaled weight w′′

0,0. The product of the edge weights for this
path, w′′

0,0w
′
1,1w2,2 is precisely the product of diagonal terms

of M in lower-triangular form, Eq. (6).
It is instructive to write the consequences of row reduction

for the fermionic representation of the eigenstate, Eq. (47), for
the example considered above. After the first round, the state

FIG. 4. Round 1 (a) and 2 (b) of row reduction for the original
spin model, equivalent to Schwinger bosons, for n = 3.

becomes

M̃3
f |0〉 = w2,2 f †

2 (w′
1,0 f †

0 + w′
1,1 f †

1 )(w′
0,0 f †

0 + w′
0,1 f †

1 )|O〉,
(61)

using the Pauli principle. After the second round, one obtains

M̃3
f |0〉 = w2,2 f †

2 w′
1,1 f †

1 w′′
0,0 f †

0 |O〉 = D3 f †
2 f †

1 f †
0 |O〉. (62)

Thus, for fermions, no explicit expansion of the state (47)
is required; rather, the initial product of factors with three
terms is reduced to a product of factors with two terms,
and finally a product of single terms. The general strategy
is the same for all n. This reduction of the evaluation of the
determinant to a product of n terms is at the heart of its
efficiency.

B. Example: Three bosons

Consider next row reductions for the bosonic case, again
using n = 3 as an example to illustrate the procedure for
general n. The procedure works in much the same way as
for fermions, and is depicted in Fig. 4. The initial graph is
equivalent to that for the original spin model, and is shown in
Fig. 2.

The (unnormalized) rank-1 generalized zero eigenvectors
of M̆b, Eq. (10), can be written as∣∣v(1)

1

〉 = |011〉 − w2,0

w2,2
|110〉, ∣∣v(1)

2

〉 = |101〉 − w2,1

w2,2
|110〉.

(63)

When compared with Eq. (53), one notices the similarity with
|v(1)

2 〉 and |v(1)
3 〉 in the fermionic case, and also that there is no

rank-1 zero eigenvector involving h = 1 states. The vertices
labeled by the bit strings 011 and 101 can be eliminated
choosing the projector

B1 = I − ∣∣v(1)
1

〉〈
011

∣∣ − ∣∣v(1)
2

〉〈101|

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 w2,0

w2,2
0 w2,1

w2,2
1

⎞
⎟⎟⎟⎟⎠ (64)
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and

A1 = M̆b\{〈011|, 〈101|}

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 w2,2

w0,2 0 0 0 0
w0,1 0 0 0 0

0 w1,1 w1,2 0 0
w0,0 0 0 0 0

0 w1,0 0 w1,2 0
0 0 w1,0 w1,1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (65)

Again, it is straightforward to verify that A1B1 = M̆. One then
obtains

M̃ (2) = B1A1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 w2,2

w0,2 0 0 0 0
w0,1 0 0 0 0
w0,0 0 0 0 0

0 x w′
1,0 w′

1,1 0

⎞
⎟⎟⎟⎟⎠, (66)

where w′
1,0 and w′

1,1 coincide with the expressions in Eq. (5)
but with minus signs replaced with plus signs, and a new term
is introduced,

x = w1,0w2,1 + w1,1w2,0

w2,2
. (67)

The first round of row reductions, shown in Fig. 4(a), corre-
sponds to deleting two vertices in the h = 2 layer but none in
the h = 1 layer, in contrast with the fermionic case. Deleting
vertices in only a single layer avoids generating paths with
rescaled weights on two adjacent edges, which would yield
unphysical cross terms in their product (cf. the discussion
in Sec. II A). But this comes at a high cost: vertices cannot
be deleted in an adjacent layer simultaneously if they share
edges with vertices in the first layer, as is possible in the
fermionic case. This clearly decreases the efficiency of the
reduction. Furthermore, deleting vertices in one layer requires
adding new edges from the remaining vertex in that layer to
all vertices in the next layer that had (now deleted) edges; in
this case, the additional edge has weight x.

The second and final round of row reductions in this exam-
ple is governed by the rank-2 generalized zero eigenvectors:

∣∣v(2)
1

〉 = |001〉 − x

w′
1,1

|100〉,

∣∣v(2)
2

〉 = |010〉 − w′
1,0

w′
1,1

|100〉. (68)

As shown in Fig. 4(b), the vertices labeled by the bit strings
001 and 010 are eliminated:

B2 = I − ∣∣v(2)
1

〉〈
001

∣∣ − ∣∣v(2)
2

〉〈010|

=

⎛
⎜⎝

1 0 0 0 0

0 x
w′

1,1

w′
1,0

w′
1,1

1 0

0 0 0 0 1

⎞
⎟⎠ (69)

and

A2 = M̆ (2)\{〈001|, 〈010|} =

⎛
⎜⎜⎜⎜⎝

0 0 w2,2

w0,2 0 0
w0,1 0 0
w0,0 0 0

0 w′
1,1 0

⎞
⎟⎟⎟⎟⎠. (70)

One then obtains

M̃ (3) = B2A2 =
⎛
⎝ 0 0 w2,2

w′
0,0 0 0
0 w′

1,1 0

⎞
⎠, (71)

where

w′
0,0 = w0,0 + w0,1w

′
1,0 + w0,2x

w′
1,1

. (72)

As is shown in Fig. 4(b), two vertices in the h = 1 layer are
now deleted, requiring a rescaling of the w0,0 weight, and
one obtains a single path from |000〉 to |000〉, as desired. The
permanent is then

P3 = w′
0,0w

′
1,1w2,2, (73)

which is expressed as a product of three single terms, much
like the expression of the determinant in Eq. (2).

C. Example: Four bosons

Given the superficial similarities between row reductions
for the bosonic and fermionic cases when n = 3, it is instruc-
tive to discuss the n = 4 case to gather a better understanding
of why the permanent is nevertheless exponentially more dif-
ficult to compute with this method. The rank-1 generalized
zero eigenvectors are∣∣v(1)

1

〉 = |0011〉 − w2,1

w2,3
|0110〉 − w2,0

w2,2
|1001〉 + w2,0w2,1

w2,2w2,3

=
(

|01〉 − w2,0

w2,2
|10〉

)
0,2

(
|01〉 − w2,1

w2,3
|10〉

)
1,3

,

∣∣v(1)
2

〉 = |0101〉 − w2,2

w2,3
|0110〉 − w2,0

w2,1
|1001〉 + w2,0w2,2

w2,1w2,3
,

=
(

|01〉 − w2,0

w2,1
|10〉

)
0,1

(
|01〉 − w2,2

w2,3
|10〉

)
2,3

,

∣∣v(1)
3

〉 = |0111〉 − w3,0

w3,3
|1110〉

=
(

|01〉 − w3,0

w3,3
|10〉

)
0,3

|11〉1,2,

∣∣v(1)
4

〉 = |1011〉 − w3,1

w3,3
|1110〉

=
(

|01〉 − w3,1

w3,3
|10〉

)
1,3

|11〉0,2,

∣∣v(1)
5

〉 = |1101〉 − w3,2

w3,3
|1110〉

=
(

|01〉 − w3,2

w3,3
|10〉

)
2,3

|11〉0,1. (74)
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The eigenvectors can all be written in explicitly separable
forms, where the indices outside the parentheses denote the
label partitions; note that these also match the second in-
dices in the weight ratios. Evidently the generalized zero
eigenvectors for n = 3, Eqs. (63) and (68), can be written
in a similar product form. This is due to the fact that the
Hamiltonian (10) itself can be written as a sum of permuta-
tions of separable terms. For example, the terms in the n = 4
Hamiltonian that map h = 2 states to h = 3 states can be
expressed as

M̆(h=2→3) = 1
2 [()0,1I2,3 + I0,1()2,3 + ()0,2I1,3 + I0,2()1,3

+()0,3I1,2 + I0,3()1,2], (75)

where

()i, j = |11〉i, j (w2,i〈01| + w2, j〈10|)i, j,

Ii, j = (|01〉〈01| + |10〉〈10|)i, j . (76)

The “identity” operator is the sum of all idempotents with
h = 1, enumerated by the 1/2 prefactor in Eq. (75). Thus,
M̆(h=2→3) has the form of Cartesian products of operators
over all four-site bipartitions restricted to states with specific
Hamming weight. It is straightforward to verify that the |v(1)

1 〉
and |v(1)

2 〉 in Eq. (74) are zero eigenvectors of the first and
second Cartesian product, respectively, and have no support
on the third. Similar expressions can be obtained for the other
terms in the Hamiltonian.

Construction of A1 and B1 proceeds analogously to the
n = 3 case, and generates M̆ (2) = B1A1 with basis states
(graph vertices) {|0011〉, |0101〉, |0111〉, |1011〉, |1101〉} re-
moved. However, all but one of the 23 nonzero terms in
the resulting matrix is unique. From the graph perspective,
only five edges are reweighted, nine edges have unchanged
weights, and nine new edges with unique weights must
be added. Generically, in the bosonic case, the number of
unique terms that need to be evaluated during the row re-
duction procedure grows exponentially with n. There does
not appear to be any way to exploit the separable na-
ture of the generalized zero eigenvectors to simplify the
calculation.

VI. DISCUSSION: PROSPECTS FOR A QUANTUM
ALGORITHM

As discussed in Sec. III B, the permanent of an n × n ma-
trix M relates to the eigenvalues of another 2n-dimensional
matrix M̃ or M̆ (the dimension of the latter is one smaller
so that one basis state is unused). This matrix has several
attributes that would appear to favor the development of an
efficient quantum algorithm for the evaluation of the perma-
nent: the dimension of M̃ is a power of two, which would be
the case for an n-qubit operator; matrix elements of M̃ are
easily indexed by address, which corresponds to their original
positions in M; M̃ is n-sparse (no row or column has more than
n − 1 elements); and the permanent is the maximal eigenvalue
of M̃n. Despite these nice features, however, the construction
of an efficient algorithm for the permanent using this approach
is not straightforward for one principal reason: neither M̃ nor
M̆ is Hermitian or unitary.

As a first attempt at a quantum algorithm, one might lever-
age the relation Pn = 〈0|M̆n|0〉, Eq. (31). The quantity on the
right-hand side can be computed using any of the known
algorithms for evaluating expectation values [35,36]. Unfor-
tunately, such algorithms have O(1/ε) or worse dependence
on additive error [37], and thus an even worse dependence
on the multiplicative error. Moreover, the operator norm of
M̆n is not polynomially bounded in general. Consequently,
this approach fails to suggest an avenue toward an efficient
quantum algorithm.

A more lucrative approach might be to make use of the
fact that all nonzero eigenvalues of M̆ have absolute value
|Pn|1/n, Eq. (23). Thus, if there exists an efficient procedure
to generate one of the corresponding eigenstates, then |Pn|1/n

can be computed efficiently to constant or polynomially small
additive error. Note that an additive approximation of |Pn|1/n

provides significantly more resolution, at least for the unitary
matrices M that would be relevant to boson sampling, in
contrast to an additive approximation of |Pn|. As noted by
Aaronson and Arkhipov [7], since |Pn| is typically exponen-
tially small for unitary matrices sampled from a Haar random
distribution, an additive approximation of |Pn| to polynomial
accuracy would almost always return zero. On the other hand,
the average of |Pn|1/n is in 	(1) for unitary matrices sampled
from a Haar random distribution, and therefore an approxima-
tion of |Pn|1/n to polynomially small or even constant additive
error provides more resolution.

Unfortunately, generating any eigenstates of M̆, Eq. (21), is
not straightforward. The coefficients in the linear combination
depend on the value of Pn, which is unknown and in fact the
goal of the computation. Even if one could obtain a suffi-
ciently good approximation of Pn (via randomized classical
algorithms), taking appropriate linear combinations using the
techniques developed in Ref. [38] would only generate the tar-
geted eigenstate with exponentially small probability, limiting
the runtime of the algorithm. Specifically, it is not obvious
how to adapt block-encoding techniques [39] to generate, with
high probability, the state M̆n−1|0〉/‖M̆n−1|0〉‖, which is one
of the terms in the desired linear combination.

Consider instead leveraging the useful property that
the state |0〉 is an equal superposition of all eigenstates
corresponding to nonzero eigenvalues of M̆. If M̆ were uni-
tary, this fact would have been sufficient for computing
all eigenvalues of M̆ efficiently using repeated application
of the phase estimation algorithm [40]. Unfortunately, the
extension of phase estimation to nonunitary operators is
generally inefficient [41]. For the present problem, we ex-
pect phase estimation to take an exponentially long time,
as the eigenvalues being estimated lie well inside the unit
circle.

A more sophisticated approach to computing the eigen-
values of M̆ is based on quantum linear-system solvers [42].
The complexity of this approach is limited by the condition
number of the eigenvectors, however. We have verified nu-
merically that the condition number is exponentially large for
typical real and complex matrices M.

To summarize, mapping the problem of computing the
permanent of M to calculating the eigenvalues of M̆ would
seem to suggest new routes for designing an efficient quan-
tum algorithm to obtain a multiplicative approximation of the
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permanent. Yet, such an algorithm does not follow from the
immediate application of the currently available algorithmic
tools for linear algebra in a quantum setting. In all likelihood,

if such an algorithm exists, it would rely on more subtle
properties of the permanent than are made apparent by the
present mapping.

APPENDIX: BLOCK-DIAGONAL REPRESENTATION

This section derives the expression for M̃n+1, where M̃ is defined by Eq. (9). Consider first M̃2:

M̃2 =
⎛
⎝∑

i0

n−1∑
j0=0

wh(i0 ), j0σ
+
j0
|i0〉〈i0| + |0〉〈1|

⎞
⎠

⎛
⎝∑

i1

n−1∑
j1=0

wh(i1 ), j1σ
+
j1
|i1〉〈i1| + |0〉〈1|

⎞
⎠

=
∑
i0,i1

∑
j0, j1

wh(i0 ), j0σ
+
j0
|i0〉〈i0|wh(i1 ), j1σ

+
j1
|i1〉〈i1| +

∑
i1

∑
j1

|0〉〈1|wh(i1 ), j1σ
+
j1
|i1〉〈i1| +

∑
i0

∑
j0

wh(i0 ), j0σ
+
j0
|i0〉〈i0|0〉〈1|. (A1)

For the evaluation of the 〈i0|wh(i1 ), j1σ
+
j1
|i1〉 factor in first term of Eq. (A1), there are three possibilities: σ+

j1
|i1〉 = 0, σ−

j1
|i0〉 = 0, or

σ+
j1
|i1〉 = |i0〉 (equivalently |i1〉 = σ−

j1
|i0〉 or 〈i1| = 〈i0|σ+

j1
), and the first two possibilities contribute nothing to the sum. Similar

arguments apply to the second and third terms, and one obtains

M̃2 =
∑

i

∑
j0, j1

wh(i), j0wh(i)−1, j1σ
+
j0
|i〉〈i|σ+

j1
+

∑
j0

(
wn−1, j0 |0〉〈1|σ+

j1
+ w0, j0σ

+
j0
|0〉〈1|). (A2)

Next, consider M̃3. After elementary algebra along the same lines as above, one obtains

M̃3 =
∑

i

∑
j0, j1, j2

(wh(i), j0σ
+
j0

)|i〉〈i|(wh(i)−1, j1σ
+
j1

)(wh(i)−2, j2σ
+
j2

) +
∑
j0, j1

(w0, j0σ
+
j0

)(w1, j1σ
+
j1

)|0〉〈1|

+
∑

jn−1, jn−2

|0〉〈1|(wn−1, jn−1σ
+
jn−1

)(wn−2, jn−2σ
+
jn−2

) +
∑

j0, jn−1

(w0, j0σ
+
j0

)|0〉〈1|(wn−1, jn−1σ
+
jn−1

). (A3)

The form of leading term in M̃n+1 should now be evident:∑
i

∑
j0,..., jn

(wh(i), j0σ
+
j0

)|i〉〈i|(wh(i)−1, j1σ
+
j1

) · · · (wh(i)−n, jnσ
+
jn

). (A4)

In the above expression, the 〈i|∏k σ+
jk

term is zero unless i = 1, but then σ+
j0
|i〉 = 0, so that the leading term vanishes. The

remaining terms are straightforward generalizations of those found in Eqs. (A2) and (A3), and one obtains

M̃n+1 =
∑

j0,..., jn−1

[(w0, j0σ
+
j0

) · · · (wn−1, jn−1σ
+
jn−1

)|0〉〈1| + (w0, j0σ
+
j0

) · · · (wn−2, jn−2σ
+
jn−2

)|0〉〈1|(wn−1, jn−1σ
+
jn−1

)

+ . . . + (w0, j0σ
+
j0

)|0〉〈1|(w1, j1σ
+
j1

) · · · (wn−1, jn−1σ
+
jn−1

) + |0〉〈1|(w0, j0σ
+
j0

) · · · (wn−1, jn−1σ
+
jn−1

)]. (A5)

A corollary is that the expression for arbitrary powers p is

M̃ p =
∑

i

∑
j0,..., jp−1

(wh(i), j0σ
+
j0

)|i〉〈i|(wh(i)−1, j1σ
+
j1

) · · · (wh(i)−p+1, jp−1σ
+
jp−1

)

+
∑

j0,..., jp−2

[(w0, j0σ
+
j0

) · · · (wp−2, jp−2σ
+
jp−1

)|0〉〈1| + (w0, j0σ
+
j0

) · · · (wp−3, jp−3σ
+
jn−2

)|0〉〈1|(wp−2, jp−2σ
+
jp−2

)

+ . . . + |0〉〈1|(wn−1, j0σ
+
j0

) · · · (wn−p+1, jp−2σ
+
jp−2

)], (A6)

which can be used to prove Eq. (14), i.e., that

M̃m = M̃m|0〉〈0|M̃n−m+1. (A7)

First,

M̃ p|0〉 =
∑

i

∑
j0,..., jp−1

(wh(i), j0σ
+
j0

)|i〉〈i|(wh(i)−1, j1σ
+
j1

) · · · (wh(i)−p+1, jp−1σ
+
jp−1

)|0〉. (A8)

Only bit strings i with Hamming weight p − 1 will contribute, so

M̃ p|0〉 =
∑

j0,..., jp−1

(w0, j0σ
+
j0

)(w1, j1σ
+
j1

) · · · (wp−1, jp−1σ
+
jp−1

)|0〉. (A9)
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Second, following similar reasoning,

〈0|M̃q =
∑

i

∑
j0,..., jq−1

〈0|wh(i), j0σ
+
j0
|i〉〈i|(wh(i)−1, j1σ

+
j1

) · · · (wh(i)−q+1, jq−1σ
+
jq−1

) +
∑

j0,..., jq−2

〈1|(wn−1, j0σ
+
j0

) · · · (wn−q+1, jq−2σ
+
jq−2

)

=
∑

j0,..., jq−2

〈1|(wn−1, j0σ
+
j0

) · · · (wn−q+1, jq−2σ
+
jq−2

). (A10)

Putting these results together,

M̃m|0〉〈0|M̃n−m+1 =
∑

j0 ,..., jm−1
k0 ,...,kn−m−1

(w0, j0σ
+
j0

)(w1, j1σ
+
j1

) · · · (wm−1, jm−1σ
+
jm−1

)|0〉〈1|(wn−1,k0σ
+
k0

)(wn−2,k1σ
+
k1

) · · · (wm,kn−m−1σ
+
kn−m−1

)

=
∑

j0,..., jn−1

(w0, j0σ
+
j0

)(w1, j1σ
+
j1

) · · · (wm−1, jm−1σ
+
jm−1

)|0〉〈1|(wn−1, jmσ+
jm

)(wn−2, jm+1σ
+
jm+1

) · · · (wm, jn−1σ
+
jn−1

).

(A11)

Comparison with the terms in Eq. (11) immediately yields

M̃m = M̃m|0〉〈0|M̃n−m+1. (A12)
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