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Non-Markovian open quantum dynamics in squeezed environments: Coherent-state unraveling
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We apply the stochastic Schrödinger equation approach to study the non-Markovian dynamics of quantum sys-
tems coupled to a squeezed environment. We derive the non-Markovian quantum-state-diffusion equation using
coherent-state unraveling and the associated zeroth-order master equation for general models in a microscopic
quantum context. Focused on a dissipative optical cavity coupled with a squeezed vacuum, the numerical
simulations demonstrate the time evolution of photon numbers in an optical cavity. We observe that the long-time
limits of the non-Markovian dynamics are significantly different from those of the Markovian dynamics for
various memory factors and squeezing factors. Additionally, non-Markovian dynamics exhibit a distinct pattern
of behavior when parameters change. Our work provides a method to study the impact of multiple parameters
on the non-Markovian dynamics and long-time limits in a joint manner. The method can be further extended to
squeezed finite-temperature environments.
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I. INTRODUCTION

The squeezed state has attracted much interest in both
theory and experiment. On the one hand, squeezed states
generated from nonlinear optical processes provide insight
into nonlinear quantum optics and quantum materials; on
the other hand, squeezed states find a wide range of ap-
plications in quantum information and quantum metrology
[1–12]. One remarkable example is LIGO, where optical
squeezed states of light are utilized to reduce quantum noise
and improve the accuracy of gravitational wave detection
[13–16]. Spin squeezing is another feasible application re-
lated to squeezed states, which is essential for enhancing
the sensitivity of atomic interferometers [17–23]. Moreover,
squeezed states are crucial to continuous variable information
processing, exploring quantum decoherence in a nonequilib-
rium environment, etc. Recently, nonequilibrium reservoirs,
such as squeezed environments, have attracted extensive at-
tention since they are expected to increase the efficiency of
work generation and surpass standard thermodynamic bounds
[24–26]. Therefore, a better understanding of the dynamics
of the quantum system coupled to a squeezed environment
will extend our knowledge of finite-size and nonequilibrium
quantum effects.

However, estimating the dynamics in a squeezed environ-
ment is extremely difficult due to the lack of mathematical
tools. In previous works, the master equation approach and
the input-output approach have been derived using the Born-
Markov approximation, in which we assume the coupling
strength between the system and environment is relatively
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weak and the memory time of the environment is extremely
short compared with the relaxation time [27–31]. But when
the coupling strength is increased to the strong regime, or the
memory effect of the environment is not negligible, the Born-
Markov approximation will lead to failure. Moreover, it is
believed that the non-Markovian dynamics have significantly
different behavior in the short-time range compared with the
Markovian counterpart, and its long-time limit or steady states
still match the Markovian dynamics.

In addition to the methods mentioned above, there are
recent advancements in applying the quantum-state-diffusion
(QSD) approach with a novel unraveling method using a series
of squeezed coherent states [25]. In this paper our approach
is based on the traditional coherent-state unraveling, indi-
cating that the environment will collapse to a coherent state
after a shot measurement. Both unravelings can be utilized in
various situations in quantum optics, offering an alternative
perspective for understanding the dynamics of open quantum
systems in a squeezed environment. Here we explore two
parameters, the squeezing factor and the memory time, and
find out the long-time steady states of the non-Markovian
dynamics are way different from those of the Markovian
dynamics.

Consider an open quantum system (OQS) with a formal
Hamiltonian, in the system-environment framework,

Ĥtot = ĤS + Ĥint + ĤE, (1)

where ĤS is the Hamiltonian of the system, ĤE is the Hamil-
tonian of the environment, and Ĥint represents the interaction
between the system and the environment. Without loss of
generality, we assume the environment Hamiltonian has the
form ĤE = ∑

k ωkb̂†
kb̂k , where b̂k (b̂†

k ) is the annihilation (cre-
ation) operator of the kth mode in the environment, associated
with the eigenfrequency ωk . In addition, L̂, an operator in the
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system’s Hilbert space, is the Lindblad operator coupled to the
environment. Consequently, the interaction Hamiltonian in the
rotating frame with respect to ĤE can be formally written as

Ĥ I
int = L̂

∑
k

g∗
kb̂†

keiωkt + L̂†
∑

k

gkb̂ke−iωkt . (2)

In the conventional context of the stochastic Schrödinger
equation approach [32–34], the environment can be under-
stood as a fluctuated influence on the system. Particularly,
the QSD approach unravels the influence in the Bargmann
coherent-state space representation [35–42].

In this work we revise the QSD approach for the squeezed
environment model to study the exact non-Markovian dynam-
ics and explore the long-time steady states in the parameter
space. Comparing to the traditional QSD equation approach
for a nonsqueezed zero-temperature environment, we find
that one extra stochastic process is naturally introduced when
applying the functional derivative chain rule, resulting in the
exact QSD equation and the associated master equation for
the squeezed environment. Our paper is organized as follows.
In Sec. II we extend the conventional QSD approach to study
a generic OQS coupled to a squeezed-vacuum environment.
Moreover, we focus on deriving the QSD equation and the
associated master equation. In Sec. III we study an optical
cavity model and demonstrate the numerical simulations of
the non-Markovian dynamics of its photon population using
the QSD equation and the master equation approach. The
impacts of the squeeze factor of the environment’s initial
state will be explored numerically, from a non-Markovian to
Markovian regime. We conclude in Sec. IV and extend our
discussion toward broader applications.

II. FORMAL QSD EQUATION
FOR SQUEEZED ENVIRONMENTS

In this section we formally discuss how to deal with the
squeezed environment in the context of the QSD approach.
In the system-environment framework, the dynamics of the
state of the total system |�tot (t )〉 are governed by a closed
Schrödinger equation (setting h̄ = 1),

∂t |�tot〉 = −i
(
ĤS + Ĥ I

int

)|�tot〉. (3)

Assuming the generic coupling is linear with respect to the
environment annihilation operators and creation operators,
shown in Eq. (2), arbitrary environment states can be written
in the Bargmann space representation ‖z〉, defined as

‖z〉 ≡ ⊗k‖zk〉, (4)

where the kth-mode Bargmann coherent state reads

‖zk〉 ≡
∑

nk

(zk )nk

√
nk!

|nk〉. (5)

Based on the identity of resolution,

ÎE =
∫

d2z
e−|z|2

π
‖z〉〈z‖, (6)

the reduced density operator of the system can be obtained by
taking the partial trace in the Bargmann space representation:

ρ̂r (t ) =
∫

d2z
e−|z|2

π
〈z‖ρ̂tot (t )‖z〉

=
∫

d2z
e−|z|2

π
〈z‖�tot (t )〉〈�tot (t )‖z〉. (7)

If we consider the term e−|z|2

π
〈z‖�tot (t )〉〈�tot (t )‖z〉 as the

outcome of a single shot measurement, the environmental
variables {zk} should be interpreted as random numbers.
The pure states of the system, defined as |ψz〉 = 〈z‖�tot〉,
are turned into stochastic quantum trajectories. Furthermore,
we can recover the reduced density operator by taking the
ensemble average over all the quantum trajectories: ρ̂r =
M(|ψz〉〈ψz|), where M(·) stands for the ensemble aver-
age. The stochastic nature of each quantum trajectory arises
from the random collapse after the measurement of the
environment. Consequently, every different unraveling is cor-
responding to a specific measurement process. In our work
we describe a quantum trajectory corresponding to a shot
measurement that the environment collapses to a coherent
state. Therefore we choose the coherent-state unraveling.

Now we can obtain the QSD equation governing the dy-
namics of trajectories:

∂t |ψz〉 = −iĤeff |ψz〉. (8)

In the Bargmann state representation, the effective Hamilto-
nian reads

Ĥeff = ĤS + L̂
∑

k

g∗
kz∗

k eiωkt + L̂†
∑

k

gke−iωkt ∂

∂z∗
k

. (9)

Assuming the system and environment are separate at t = 0,
that |�tot (0)〉 = |ψS(0)〉 ⊗ |ψE(0)〉, the initial value of the tra-
jectory generally reads 〈z‖�tot (0)〉 = 〈z‖ψE(0)〉 ⊗ |ψS(0)〉.
Considering a nonsqueezed zero-temperature environment,
the inner product factor 〈z‖ψE (0)〉 = 〈z‖0〉 = 1 and the initial
state of every single trajectory |ψz(0)〉 is the same as the
system’s initial state |ψS(0)〉, that |ψz(0)〉 = |ψS(0)〉.

However, if the environment is not zero temperature but a
squeezed vacuum, the above derivation needs to be refined.
The initial state of the environment reads [43]

|ψE(0)〉 ≡
⊗

k

∑
nk

(− tanh rk )nk

√
cosh rk

√
(2nk )!

2nk nk!
|2nk〉. (10)

Therefore the inner product term 〈z‖ψE(0)〉 is

〈z‖ψE(0)〉 =
∏

k

∑
nk

z∗
k

2nk

√
(2nk )!

(− tanh rk )nk

√
cosh rk

√
(2nk )!

2nk nk!

=
∏

k

1√
cosh rk

e
− tanh rk

2 (z∗
k )2

. (11)

Since the inner product 〈z‖ψE(0)〉 	= 1, one issue arises that
the initial states of trajectories |ψz(0)〉 are noise depended.
Thus we introduce a normalized trajectory |ϕz〉, defined as

|ϕz〉 ≡ |ψz〉∏
k

1√
cosh rk

e
− tanh rk

2 (z∗
k )2

, (12)
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to satisfy the coincidence of the initial condition |ϕz(0)〉 =
|ψS(0)〉. Consequently, we obtain

∂z∗
k
|ψz〉 =

∏
k′

1√
cosh rk′

e
− tanh rk′

2 (z∗
k′ )2

∂z∗
k
|ϕz〉

+
∏

k′

− tanh rk z∗
k√

cosh rk′
e

− tanh rk′
2 (z∗

k′ )2 |ϕz〉. (13)

Substituting it into Eqs. (8) and (9), a QSD equation of the
normalized trajectory |ϕz〉 reads

∂t |ϕz〉 = (−iĤS + z∗
t L̂ + w∗

−t L̂
†)|ϕz〉

−iL̂†
∑

k

gke−iωkt∂z∗
k
|ϕz〉, (14)

where two stochastic processes are defined as, both in terms
of z∗

k ,

z∗
t ≡ −i

∑
k

g∗
kz∗

k eiωkt , (15)

w∗
t ≡ i

∑
k

gkz∗
k eiωkt tanh rk, (16)

respectively. Equation (14) indicates that the new trajectory
|ϕz〉 involves two noises. By taking rk = 0, it is easy to
verify that w∗

t = 0, which proves that the nonsqueezed zero-
temperature model is a specific case of Eq. (14). It is worth
pointing out that the two noises can be merged when the
condition L̂ = L̂† is satisfied [44–46].

Applying the chain rule [47], the term of ∂z∗
k
|ϕz〉 can be

explicitly extended as a sum of two integrals for the functional
derivatives with respect to the two stochastic processes, that

−i
∑

k

gke−iωkt∂z∗
k

= −i
∑

k

gke−iωkt

(∫ t

0
ds

∂z∗
s

∂z∗
k

δz∗
s
+

∫ 0

−t
ds

∂w∗
s

∂z∗
k

δw∗
s

)

= −
∫ t

0
ds

∑
k

|gk|2e−iωk (t−s)δz∗
s

+
∫ 0

−t
ds

∑
k

g2
k tanh rke−iωk (t−s)δw∗

s

= −
∫ t

0
ds α(t, s)δz∗

s
−

∫ 0

−t
ds β(t, s)δw∗

s
, (17)

where α(t, s) = ∑
k |gk|2e−iωk (t−s) is the correlation function

of the noise z∗
t , and β(t, s) = M(ztw

∗
s ) is the cross-correlation

function between the two noises. Moreover, we define two to-
be-determined operators Ôz(t, s) and Ôw(t, s) as

Ôz(t, s)|ϕz〉 ≡ δz∗
s
|ϕz〉, Ôw(t, s)|ϕz〉 ≡ δw∗

s
|ϕz〉. (18)

With the O operators, the linear QSD Eq. (14) can be formally
written as [39,46]

∂t |ϕz〉 = (−iĤS + z∗
t L̂ + w∗

−t L̂
†)|ϕz〉

−[L̂†Ōα
z (t ) + L̂†Ōβ

w(t )]|ϕz〉, (19)

where

Ōα
z (t ) ≡

∫ t

0
dsα(t, s)Ôz(t, s),

Ōβ
w(t ) ≡

∫ 0

−t
dsβ(t, s)Ôw(t, s).

Here, using the consistency condition that ∂tδz∗
s (w∗

s )|ϕz〉 =
δz∗

s (w∗
s )∂t |ϕz〉, the two operators Ôz(t, s) and Ôw(t, s) can be

determined by two evolution equations, respectively:

∂t Ôz(t, s) = [−iĤS + z∗
t L̂ + w∗

−t L̂
†, Ôz(t, s)]

+ [−L̂†Ōα
z (t ) − L̂†Ōβ

w(t ), Ôz(t, s)]

− δz∗
s

(
L̂†Ōα

z (t ) + L̂†Ōβ
w(t )

)
, (20)

∂t Ôw(t, s) = [−iĤS + z∗
t L̂ + w∗

−t L̂
†, Ôw(t, s)]

+ [−L̂†Ōα
z (t ) − L̂†Ōβ

w(t ), Ôw(t, s)]

− δw∗
s

(
L̂†Ōα

z (t ) + L̂†Ōβ
w(t )

)
. (21)

The initial conditions read

Ôz(t, s = t ) = L̂, Ôw(t, s = −t ) = L̂†. (22)

Moreover, it is worth noting that the initial condition
Ôw(t, s = −t ) = L̂† in the above discussion indicates the non-
trivial dynamics of the system.

III. MODELS AND NUMERICAL RESULTS

A. Non-Markovian QSD equations

In this section we will take the optical cavity as an example
to demonstrate the impacts of the squeezed-vacuum environ-
ment. The system’s Hamiltonian reads

ĤS = ωâ†â, (23)

and the coupling operator is L̂ = â. For simplicity, we assume
the squeezing factors are identical rk = r for every mode in
the environment. As a result, the second noise takes a com-
pact form that w∗

−t = i(tanh r)
∑

k gke−iωkt z∗
k . Considering the

condition gk = g∗
k > 0, the cross-correlation function satisfies

β(t, s) = − tanh r α(t, s). Consequently, the O operators sat-
isfying Eqs. (20) and (21) and the associated initial condition
in Eq. (22) must be formulated as [46]

Ôz(t, s) ≡ fz1(t, s)â + fz2(t, s)â† +
∫ t

0
ds′z∗

s′ jz1(t, s, s′)

+
∫ 0

−t
ds′w∗

s′ jz2(t, s, s′),

Ôw(t, s) ≡ fw1(t, s)â + fw2(t, s)â† +
∫ t

0
ds′z∗

s′ jw1(t, s, s′)

+
∫ 0

−t
ds′w∗

s′ jw2(t, s, s′), (s < 0). (24)

The eight coefficients fz1(2), fw1(2), jz1(2), and jw1(2) can be
numerically determined by solving a set of evolution equa-
tions (Appendix A).
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Moreover, with the ansatzes of Ôz and Ôw in Eq. (24), the
other two operators Ōα

z and Ōβ
w can be written explicitly as

Ōα
z (t ) ≡ Fα

z1(t )â + Fα
z2(t )â† +

∫ t

0
ds′z∗

s′Jα
z1(t, s′)

+
∫ 0

−t
ds′w∗

s′Jα
z2(t, s′),

Ōβ
w(t ) ≡ Fβ

w1(t )â + Fβ

w2(t )â† +
∫ t

0
ds′z∗

s′J
β

w1(t, s′)

+
∫ 0

−t
ds′w∗

s′J
β

w2(t, s′), (s < 0), (25)

where

Fα
zi (t ) ≡

∫ t

0
dsα(t, s) fzi(t, s),

Fβ
wi(t ) ≡

∫ 0

−t
dsβ(t, s) fwi(t, s)

= − tanh r
∫ 0

−t
dsα(t, s) fwi(t, s),

Jα
zi (t, s′) ≡

∫ t

0
dsα(t, s) jzi(t, s, s′),

Jβ
wi(t, s′) ≡

∫ 0

−t
dsβ(t, s) jwi(t, s, s′)

= − tanh r
∫ 0

−t
dsα(t, s) jwi(t, s, s′),

× (i = 1, 2). (26)

Similarly, the above eight coefficients Fα
z1(2), Fβ

w1(2), Jα
z1(2),

and Jβ

w1(2) can be numerically determined by a set of integro-
differential equations (see Appendix B). Now, the QSD
equation (19) can be explicitly shown as

∂t |ϕz〉 =
{

(−iω − Fα
z1 − Fβ

w1)â†â − (Fα
z2 + Fβ

w2)â†2

+ z∗
t â + w∗

−t â
† −

[∫ t

0
dsz∗

s [Jα
z1(t, s) + Jβ

w1(t, s)]

+
∫ 0

−t
dsw∗

s [Jα
z2(t, s) + Jβ

w2(t, s)]

]
â†

}
|ϕz〉. (27)

To compare the dynamics in Markovian and non-
Markovian regimes, we choose the Ornstein-Uhlenbeck pro-
cess whose correlation function α(t, s) = �γ

2 e−γ |t−s|e−i�(t−s).
Here � controls the coupling strength, and 1/γ scales the
memory time of the environment. As a result, the evolu-
tion equations of the eight coefficients defined in Eq. (26)
can be further simplified to a set of differential equations
(Appendix B).

B. Non-Markovian master equations

In this section we work on the formal master equation.
With the numerically determined quantum trajectories gov-
erned by Eq. (27), the reduced density operator ρ̂r can be

obtained by taking the ensemble average over all quantum
trajectories. First, we define two operators P̂ψ ≡ |ψz〉〈ψz|
and P̂ϕ ≡ |ϕz〉〈ϕz| for the two types of quantum trajectories,
respectively. These two types of trajectories obey the re-
lation |ϕz〉 = 1

K |ψz〉, where K = ∏
k

1√
cosh rk

exp( − tanh rk
2 z∗

k
2),

by definition. As a result, the reduced density operator
reads

ρ̂r ≡ M(|ψz〉〈ψz|) ≡ M(|K|2|ϕz〉〈ϕz|). (28)

It is easy to prove that

M(|K|2) =
∏

k

∫
d2zk

π cosh rk
e−|zk |2−(x2

k −y2
k ) tanh rk

=
∏

k

∫
dxkdyk

π cosh rk
e−(1+tanh rk )x2

k −(1−tanh rk )y2
k

= 1, (29)

where xk and yk are the real and imaginary parts of zk . The

equation reveals that |K|2e−|z|2

π
is also a probability distribution,

and the squeezing factors {rk} break the symmetry between xk

and yk in the original complex Gaussian distribution.
Because the evolution equations of the coefficients in Ôz

and Ôw have similar structures (see Appendix B), we de-
fine a new set of coefficients to further simplify the QSD
equation,

∂t |ϕz〉 =
[( − iω − F z

1

)
â†â − F z

2 â†2 + z∗
t â + w∗

−t â
†

−
( ∫ t

0
dsz∗

s Jz
1 (t, s) +

∫ 0

−t
dsw∗

s Jz
2 (t, s)

)
â†

]
|ϕz〉,

(30)

where

F z
1 ≡ Fα

z1 + Fβ

w1, F z
2 ≡ Fα

z2 + Fβ

w2,

Jz
1 ≡ Jα

z1 + Jβ

w1, Jz
2 ≡ Jα

z2 + Jβ

w2. (31)

The formal non-Markovian master equation reads

∂t ρ̂r = M(|K|2∂t |ϕz〉〈ϕz| + |K|2|ϕz〉∂t 〈ϕz|)
= −i[ĤS, ρ̂r] + {

[â cosh2 r, R̂1 + R̂2]

+ [â† cosh2 r, R̂3 + R̂4] + H.c.
}
, (32)

where

R̂1 =
∫ t

0
dsM(zsz

∗
t )M

(
P̂ψ Ô†

z (t, s)
)
,

R̂2 =
∫ 0

−t
dsM(wsz

∗
t )M

(
P̂ψ Ô†

w(t, s)
)
,

R̂3 =
∫ t

0
dsM(zsw

∗
−t )M

(
P̂ψ Ô†

z (t, s)
)
,

R̂4 =
∫ 0

−t
dsM(wsw

∗
−t )M

(
P̂ψ Ô†

w(t, s)
)
.

The derivation of Eq. (32) can be found in Appendix C.
For some weak-coupling conditions, the noisy opera-
tor in Eq. (30), [

∫ t
0 dsz∗

s Jz
1 (t, s) + ∫ 0

−t dsw∗
s Jz

2 (t, s)]â†, can
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be dropped off. (To provide a brief justification, we intro-
duce a small multiplier λ, that gk → λgk , and evaluate the
scale of each quantity in terms of λ: z∗

t ,w
∗
t ∼ λ; the cor-

relation or cross-correlation functions α(t, s), β(t, s), · · · ∼
λ2; the coefficients F z

1 , F z
2 , Jz

1, Jz
2, · · · ∼ λ2; and the dropped-

off term [
∫ t

0 dsz∗
s Jz

1 (t, s) + ∫ 0
−t dsw∗

s Jz
2 (t, s)]â† ∼ λ3.) Conse-

quently, the zeroth-order master equation reads

∂t ρ̂r = −i[ĤS, ρ̂r] + cosh2 r
4∑

j=1

L j[ρ̂r], (33)

where

L1[ρ̂r] ≡ 2Re
(
F z

1

)
âρ̂r â† − (

F z
1

∗ρ̂r â†â + F z
1 â†âρ̂r

)
,

L2[ρ̂r] ≡ F z
2

∗âρ̂r â + F z
2 â†ρ̂r â† − (

F z
2

∗ρ̂r â2 + F z
2 â†2ρ̂r

)
,

L3[ρ̂r] ≡ 2Re
(
Fw

2

)
â†ρ̂r â − (

Fw
2

∗ρ̂r ââ† + Fw
2 ââ†ρ̂r

)
,

L4[ρ̂r] ≡ Fw
1

∗â†ρ̂r â† + Fw
1 âρ̂r â − (

Fw
1

∗ρ̂r â†2 + Fw
1 â2ρ̂r

)
.

These coefficients can be numerically determined by a group
of evolution equations, as shown in Appendix B.

C. Master equations in the Markov limit

When the memory factor γ → ∞, the dynamics of the
open system approaches Markovian. The correlation functions
turn into time-local functions: α(t, s) = M(zt z∗

s ) →
�δ(t, s), ε(t, s) = M(wtw

∗
s ) → tanh2 r �δ(t, s), and the

cross-correlation function satisfies M(ztw
∗
s ) = 0 for

t > 0, s < 0. Consequently, the QSD Eq. (19) can be
simplified to

∂t |ϕz〉 =
(

−iĤS + z∗
t L̂ + w∗

−t L̂
† − �

2
L̂†L̂

)
|ϕz〉. (34)

According to the above-simplified QSD equation, the for-
mal Markovian master equation reads

∂t ρ̂r = −i[ĤS, ρ̂r] − �

2
(L̂†L̂ρ̂r + ρ̂r L̂†L̂) + L̂M(z∗

t P̂ψ )

+ L̂†M(w∗
−t P̂ψ ) + M(P̂ψzt )L̂

† + M(P̂ψw−t )L̂. (35)

We apply the Novikov theorem and obtain the following
relations (see Appendix C):

M(w∗
−t P̂ψ ) = − tanh2 rM(zt P̂ψ ) + tanh2 r

�

2
ρ̂r L̂,

M(z∗
t P̂ψ ) = −M(w−t P̂ψ ) + �

2
ρ̂r L̂†. (36)

The solution reads

M(z∗
t P̂ψ ) = − sinh2 r �

2 L̂†ρ̂r + cosh2 r �
2 ρ̂r L̂†,

M(w−t P̂ψ ) = − sinh2 r �
2 ρ̂r L̂† + sinh2 r �

2 L̂†ρ̂r . (37)

By substituting the above solution into Eq. (35), the Marko-
vian master equation can be explicitly written as

∂t ρ̂r = −i[ĤS, ρ̂r] + � cosh2 r

2
(2L̂ρ̂r L̂† − L̂†L̂ρ̂r − ρ̂r L̂†L̂)

+ � sinh2 r

2
(2L̂†ρ̂r L̂ − L̂L̂†ρ̂r − ρ̂r L̂L̂†). (38)

FIG. 1. The dynamics of the population of photons in the optical
cavity. Here we choose the coupling strength � = 1.2, the system’s
frequency ω = 1, and the initial state is a coherent state |ψS(0)〉 =
|α〉 = |2〉. The squeezing factor of the environment is set as r = 0.5.

In a squeezed-vacuum environment, the average number of
photons is ñ = sinh2(r). As a result, the above master equa-
tion is consistent with the Lindblad form:

∂t ρ̂r = −i[ĤS, ρ̂r] + �

2
(ñ + 1)(2L̂ρ̂r L̂† − L̂†L̂ρ̂r − ρ̂r L̂†L̂)

+ �

2
ñ(2L̂†ρ̂r L̂ − L̂L̂†ρ̂r − ρ̂r L̂L̂†). (39)

D. Numerical simulations

In this section, we numerically demonstrate the non-
Markovian dynamics of the population of photons in the
optical cavity N (t ) = 〈â†(t )â(t )〉 by varying the squeezing
factor r for the initial state of the environment and the memory
factor γ for correlation functions. When r = 0, the squeezed
state is turned into a vacuum state; when γ → 0, the memory
time is infinite, indicating the dynamics are in a strong non-
Markovian regime. In addition, we explore the population of
steady states in the optical cavity, from the Markovian to the
non-Markovian regime, and from a vacuum to a squeezed
environment.

In Fig. 1 we plot the time evolution of the population of the
optical cavity interacting with a squeezed environment. We
set the coupling strength � = 1.2 and the system’s frequency
ω = 1. The initial state of the optical cavity is prepared in
a coherent state |α〉 = |2〉, and the squeezing factor of the
environment is set as r = 0.5. We explore the dynamics of
the population of photons by varying memory factor γ from
0.01 to 0.2. In the simulation we noticed that the memory
factor γ changes the dynamics of N (t ) significantly when γ

is around 0.1. The population gradually decays when γ > 0.1
but increases to a value larger than the initial photon number
when γ < 0.1. Our simulations show that there are multiple
trends in non-Markovian dynamics if we carefully explore the
entire parameter space [31].

To single out the impact of the squeezing factor of the
environment on the dynamics of the system, we plot the
evolution of the population of photons in the optical cavity

012206-5



WUFU SHI, QUANZHEN DING, AND YUSUI CHEN PHYSICAL REVIEW A 108, 012206 (2023)

FIG. 2. The dynamics of the population of photons in the optical
cavity. Here we choose the coupling strength � = 1.2, the system’s
frequency ω = 1, and the initial state is a coherent state |ψS(0)〉 =
|α〉 = |2〉. The squeezing factor of the environment is set as r = 0,
so the environment is not in a squeezed state initially.

when the environment is in a vacuum state |ψS(0)〉 = |0〉
in Fig. 2 and compare it with Fig. 1. When the squeezing
factor is set to zero, it is observed that the non-Markovian
dynamics obey a similar decaying pattern that the decaying
rate is solely controlled by the memory factor γ . However,
in Fig. 1, when the squeezing factor r = 0.5, the population
is not always decaying with time but can increase once in
a non-Markovian regime with long-time memory. This in-
dicates that the exact dynamical equations for the squeezed
environment case are necessary and crucial, since even a
slight change in the squeezing factor can bring in a com-
pletely different type of dynamics. It is also verified that
an approximated Markovian master equation is not appro-
priate to study the squeezed environment case, even if the
squeezing factor is relatively small. Due to the complexity
of non-Markovian dynamics, slight differences in the initial
states of the environment can make the system evolve along
a completely different path and end up at a different steady
state.

In addition, we include the central frequency of the en-
vironment � into the non-Markovian dynamics [48] of the
photon population by changing it from � = 0 (in Figs. 1
and 2) to � = 0.5 (as shown in Fig. 3). We demonstrate that
when the environment’s central frequency � is close to the
eigenfrequency of the system ω, the efficiency of the energy
injection is increased. As a result, the highest reading of the
photon number in the optical cavity is greater compared with
the out-of-tune case (� = 0).

Finally, we perform numerical simulations to examine the
steady population of photons in the cavity, shown in Figs. 4
and 5. Previous works on the dynamics in a squeezed en-
vironment usually are performed under the Markovian or
near-Markovian approximation, and only a limited amount
of work was conducted in the non-Markovian regime. In
fact, when the memory factor γ is relatively small, the
dynamics, both short time and long time, have not been
well understood. At least, it is not proper to characterize

FIG. 3. The dynamics of the population of photons in the optical
cavity. Here we choose the coupling strength � = 1.2, the system’s
frequency ω = 1, the initial state is a coherent |ψS(0)〉 = |α〉 = |2〉,
and the central frequency of the environment � = 0.5. The squeez-
ing factor of the environment is set as (a) r = 0.5, (b) r = 0, so the
environment is not in a squeezed state initially.

the non-Markovian dynamics by the decay rate � solely.
The numerical simulations in Figs. 4 and 5 reveal that the
steady population of photons in the optical cavity is extremely
sensitive to the memory factor γ . There is a sharp peak
in the steady population when γ is around 0.03, suggest-
ing that the steady population of photons is complicatedly
influenced by three factors: the memory factor γ , the squeez-
ing factor r, and the central frequency �. Moreover, within
the parameter regime around the peak, the dynamics are
highly different from the conventional Markovian dynamics,
indicating that the cavity can be more efficiently coupled
with the environment, allowing it to absorb energy from the
environment.

IV. CONCLUSION

We study the non-Markovian dynamics of a quantum sys-
tem coupled to a bosonic squeezed-vacuum environment.
Although several master equations, such as Lindblad or
Redfield equations, have provided robust and efficient mathe-
matical tools, these approaches have common shortcomings in
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FIG. 4. Long-time limit population of photons. The memory fac-
tor γ changes from 0.01 to 0.5. The environmental squeezing factor
varies from 0 to 0.7. The frequency of the system is set as ω = 1.
The central frequency of the environment is set as � = 0.5, and the
coupling strength is set as � = 0.2.

that they are rooted in the Born-Markov approximation. In this
work we first use the conventional quantum-state-diffusion
(QSD) approach to unravel the reduced density operator of the
cavity into a set of stochastic pure states—quantum trajecto-
ries. There are two significant difficulties in deriving quantum
trajectory evolution equations: (1) how to expand a squeezed
state in the Bargmann space representation, and (2) how to
calculate the derivative term ∂

∂z∗
k
|ψz〉.

For the first issue we modify the conventional QSD
approach where the reduced density operator equals the
ensemble average over all quantum trajectories, ρ̂r =
M(|ψz〉〈ψz|) = ∫

d2z
π

e−|z|2 |ψz〉〈ψz|. By introducing a factor
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FIG. 5. Long-time limit population of photons. (a) The memory
factor γ changes from 0.01 to 0.5. The environmental squeezing
factor r is selected as 0.2 (blue solid), 0.5 (dotted), 0.6 (dashed), 0.7
(purple solid). (b) The squeezing factor r varies from 0 to 0.7. The
memory factor γ is selected as 0.01 (blue solid), 0.02 (red dashed),
0.026 (orange solid), 0.06 (dash-dotted), 0.41 (dotted).

K = ∏
k

1√
cosh rk

exp( − tanh rk
2 z∗

k
2), the reduced density operator

can be generated by a new formula ρ̂r = M(|K|2|ϕz〉〈ϕz|) =∫
d2z
π

e−|z|2 |K|2|ϕz〉〈ϕz|, where |ϕz〉 = |ψz〉/K is a newly de-
fined quantum trajectory.

For the second issue, due to the factor K , it is nat-
ural to introduce two stochastic processes z∗

t and w∗
−t .

As a result, the chain rule must be extended as ∂z∗
k
=∫ t

0 ds ∂z∗
s

∂z∗
k
δz∗

s
+ ∫ 0

−t ds ∂w∗
s

∂z∗
k
δw∗

s
, and the ansatzes of two O oper-

ators read Ôz(t, s)|ϕz〉 ≡ δz∗
s
|ϕz〉 and Ôw(t, s)|ϕz〉 ≡ δw∗

s
|ϕz〉,

respectively.
With the above-mentioned solutions, we derive the exact

linear QSD equation and the associated zeroth-order master
equation for general systems coupled to a squeezed vacuum.
In principle, our method is valid for arbitrary correlation
functions. In this work we choose the Ornstein-Uhlenbeck
process in numerical simulations for simplicity. Furthermore,
we prove that the conventional finite-temperature Lindblad
master equation is consistent with our general non-Markovian
master equations.

At last, we apply this method to estimate the population of
photons in the optical cavity coupled to a squeezed vacuum,
and we numerically explore the impacts of all factors on
the non-Markovian dynamics. The simulation results show
a counterintuitive fact that the non-Markovian dynamics are
distinct in different parameter regimes. The long-time limit
population of photons can increase sharply inside a narrow
parameter regime, where the squeezing factor r is greater
than 0.3 and the memory factor γ is less than 0.2. Out of
the regime, the population of photons of the steady state is
very close to zero. Therefore a full exploration of the entire
parameter space, specifically inside the strong non-Markovian
regime, is necessary. However, the long-time behavior of non-
Markovian dynamics is still an open question. In Markovian
dynamics, the coupling strength between the system and each
mode in the environment remains constant, resulting in white
noise. In contrast, non-Markovian dynamics involve mode-
dependent coupling strength and colored noise. Therefore
some specific non-Markovian phenomena can be missed in
the theoretical study if the structured environment is charac-
terized using the decay rate � solely. The observed “peak”
in the population at the long-time limit in Fig. 4 serves as
compelling evidence that in non-Markovian dynamics, the
system can form highly efficient coupling with some selected
modes.

In summary, we develop a systematic method to ob-
tain the exact linear non-Markovian QSD equation using
coherent-state unraveling and the master equation for quan-
tum systems coupled to a squeezed vacuum. With the derived
zeroth-order non-Markovian master equation, it is feasible to
study the nonequilibrium dynamics of a variety of models,
such as quantum optics, optomechanical systems, and spin
squeezing.
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APPENDIX A: EVOLUTION EQUATIONS OF
COEFFICIENTS IN OPERATORS Ôz AND Ôw

Here the two O operators, Ôz and Ôw, read

Ôz(t, s) ≡ fz1(t, s)â + fz2(t, s)â† +
∫ t

0
ds′z∗

s′ jz1(t, s, s′)

+
∫ 0

−t
ds′w∗

s′ jz2(t, s, s′),

Ôw(t, s) ≡ fw1(t, s)â + fw2(t, s)â† +
∫ t

0
ds′z∗

s′ jw1(t, s, s′)

+
∫ 0

−t
ds′w∗

s′ jw2(t, s, s′), (s < 0). (A1)

Substituting them into the consistency condition that
∂tδz∗

s (w∗
s )|ϕz〉 = δz∗

s (w∗
s )∂t |ϕz〉, the two O operators must satisfy

Eqs. (20) and (21). So the coefficients obey the following
equations:

∂t fz1(t, s) = (iω + Fα
z1 + Fβ

w1) fz1,

∂t fz2(t, s) = (−iω − Fα
z1 − Fβ

w1) fz2 + 2(Fα
z2 + Fβ

w2) fz1

−Jα
z1(t, s) − Jβ

w1(t, s),

∂t fw1(t, s) = (iω + Fα
z1 + Fβ

w1) fw1,

∂t fw2(t, s) = (−iω − Fα
z1 − Fβ

w1) fw2 + 2(Fα
z2 + Fβ

w2) fw1

−Jα
z2(t, s) − Jβ

w2(t, s),

∂t jz1(t, s, s′) = [Jα
z1(t, s′) + Jβ

w1(t, s′)] fz1(t, s),

∂t jz2(t, s, s′) = [Jα
z2(t, s′) + Jβ

w2(t, s′)] fz1(t, s),

∂t jw1(t, s, s′) = [Jα
z1(t, s′) + Jβ

w1(t, s′)] fw1(t, s),

∂t jw2(t, s, s′) = [Jα
z2(t, s′) + Jβ

w2(t, s′)] fw1(t, s), (A2)

with the initial conditions

fz1(t = s, s) = 1,

fz2(t = s, s) = 0,

fw1(−t = s, s < 0) = 0,

fw2(−t = s, s < 0) = 1,

jz1(t, s, s′ = t ) = fz2(t, s),

jz2(t, s, s′ = −t ) = − fz1(t, s),

jw1(t, s, s′ = t ) = fw2(t, s),

jw2(t, s, s′ = −t ) = − fw1(t, s). (A3)

As shown in Eqs. (20) and (21), the evolution of O operators
depends on two new operators Ōα

z and Ōβ
z , which correspond

to the coefficients Fα
z1(2), Fβ

w1(2), Jα
z1(2), and Jβ

w1(2) in Eq. (A2).
According to the relations between fz(w)1(2), jz(w)1(2) and
Fα

z1(2), Fβ

w1(2), Jα
z1(2), Jβ

w1(2) demonstrated in Eq. (26), we rec-
ognize that Eq. (A2) is essentially a set of integro-differential
equations of fz(w)1(2), jz(w)1(2). More tricks frequently used in
solving the equations can be found in Appendix B.

APPENDIX B: EVOLUTION EQUATIONS OF
COEFFICIENTS IN OPERATORS Ōα

z AND Ōβ
w

Due to the definition,

Ōα
z (t ) ≡

∫ t

0
dsα(t, s)Ôz(t, s),

Ōβ
w(t ) ≡

∫ 0

−t
dsβ(t, s)Ôw(t, s),

the ansatzes of Ōα
z and Ōβ

w read

Ōα
z (t ) ≡ Fα

z1(t )â + Fα
z2(t )â† +

∫ t

0
ds′z∗

s′Jα
z1(t, s′)

+
∫ 0

−t
ds′w∗

s′Jα
z2(t, s′),

Ōβ
w(t ) ≡ Fβ

w1(t )â + Fβ

w2(t )â† +
∫ t

0
ds′z∗

s′J
β

w1(t, s′)

+
∫ 0

−t
ds′w∗

s′J
β

w2(t, s′), (s < 0), (B1)

where

Fα
zi (t ) ≡

∫ t

0
dsα(t, s) fzi(t, s),

Fβ
wi(t ) ≡

∫ 0

−t
dsβ(t, s) fwi(t, s)

= − tanh r
∫ 0

−t
dsα(t, s) fwi(t, s),

Jα
zi (t, s′) ≡

∫ t

0
dsα(t, s) jzi(t, s, s′),

Jβ
wi(t, s′) ≡

∫ 0

−t
dsβ(t, s) jwi(t, s, s′)

≡ − tanh r
∫ 0

−t
dsα(t, s) jwi(t, s, s′), (i = 1, 2).

(B2)

The dynamics of coefficients fz(w)1(2) and jz(w)1(2) are gov-
erned by a set of integro-differential equations. However, if
the correlation functions satisfy an exponential form, we can
avoid solving the integro-differential equations numerically.
For example, suppose f (t, s) satisfies the equation

∂t f (t, s) = F (t ) f (t, s), f (t, s = t ) = 1,

F (t ) =
∫ t

0
dsα(t, s) f (t, s),

α(t, s) = e−γ (t−s).

(B3)

With the given partial differential equation of f (t, s), we can
obtain the differential equation of F (t ) using the formula

d

dt
F (t ) = α(t, s = t ) f (t, s = t ) +

∫ t

0
ds

∂α(t, s)

∂t
f (t, s)

+
∫ t

0
dsα(t, s)

∂ f (t, s)

∂t

= 1 − γ F + F 2. (B4)
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Similarly, in our QSD equation, the coefficients Fα
z1(2), Fβ

w1(2),

Jα
z1(2), and Jβ

w1(2) can be determined by a group of ordinary
differential equations. Noting that this method only works for
exponential form correlation functions.

In our work we consider the correlation function of
Ornstein-Uhlenbeck process

α(t, s) = �γ

2
e−γ |t−s|−i�(t−s). (B5)

Consequently, the coefficients of the operators Ōα
z and Ōβ

w

satisfy the following equations:

∂t F
α

z1(t ) = (iω − i� − γ + Fα
z1 + Fβ

w1)Fα
z1 + �γ

2
,

∂t F
α

z2(t ) = (−iω − i� − γ − Fα
z1 − Fβ

w1)Fα
z2

+ 2(Fα
z2 + Fβ

w2)Fα
z1 − J̃αα

z1 (t ) − J̃βα

w1 (t ),

∂t F
β

w1(t ) = (iω − i� − γ + Fα
z1 + Fβ

w1)Fβ

w1,

∂t F
β

w2(t ) = (−iω − i� − γ − Fα
z1 − Fβ

w1)Fβ

w2

+ 2(Fα
z2 + Fβ

w2)Fβ

w1 − J̃αβ

z2 (t ) − J̃ββ

w2 (t )

−�γ

2
tanh re−2γ t e−2i�t ,

∂t J
α
z1(t, s) = (−γ − i�)Jα

z1 + (Jα
z1 + Jβ

w1)Fα
z1,

∂t J
α
z2(t, s) = (−γ − i�)Jα

z2 + (Jα
z2 + Jβ

w2)Fα
z1,

∂t J
β

w1(t, s) = (−γ − i�)Jβ

w1 + (Jα
z1 + Jβ

w1)Fβ

w1,

∂t J
β

w2(t, s) = (−γ − i�)Jβ

w2 + (Jα
z2 + Jβ

w2)Fβ

w1, (B6)

with the initial conditions

Jα
z1(t, s = t ) = Fα

z2(t ),

Jα
z2(t, s = −t < 0) = −Fα

z1(t ),

Jβ

w1(t, s = t ) = Fβ

w2(t ),

Jβ

w2(t, s = −t < 0) = −Fβ

w1(t ). (B7)

Here, to make the above group of differential equations com-
plete, we define two new sets of to-be-determined coefficients:

J̃αα
z1 (t ) ≡

∫ t

0
dsα(t, s)Jα

z1(t, s),

J̃βα

w1 (t ) ≡
∫ t

0
dsα(t, s)Jβ

w1(t, s),

J̃αβ

z2 (t ) ≡
∫ 0

−t
dsβ(t, s)Jα

z2(t, s),

J̃ββ

w2 (t ) ≡
∫ 0

−t
dsβ(t, s)Jβ

w2(t, s), (B8)

and

J̃αγ

z1 (t ) ≡
∫ t

0
dsγ (−t, s)Jα

z1(t, s),

J̃βγ

w1 (t ) ≡
∫ t

0
dsγ (−t, s)Jβ

w1(t, s),

J̃αε
z2 (t ) ≡

∫ 0

−t
dsε(−t, s)Jα

z2(t, s),

J̃βε

w2(t ) ≡
∫ 0

−t
dsε(−t, s)Jβ

w2(t, s), (B9)

where γ (t, s) ≡ M(wt z∗
s ) = − tanh rα(t, s) is the cross-

correlation function and ε(t, s) ≡ M(wtw
∗
s ) = tanh2 rα(t, s)

is the correlation function. They are governed by the following
evolution equations:

∂t J̃
αα
z1 = (−2γ − 2i� + Fα

z1)J̃αα
z1 + Fα

z1J̃βα

w1 + �γ

2
Fα

z2,

∂t J̃
αβ

z2 = (−2γ − 2i� + Fα
z1)J̃αβ

z2 + Fα
z1J̃ββ

w2

+ �γ

2
tanh re−2γ t−2i�t Fα

z1,

∂t J̃
βα

w1 = (−2γ − 2i� + Fβ

w1)J̃βα

w1 + Fβ

w1J̃αα
z1 + �γ

2
Fβ

w2,

∂t J̃
ββ

w2 = (−2γ − 2i� + Fβ

w1)J̃ββ

w2 + Fβ

w1J̃αβ

z2

+ �γ

2
tanh re−2γ t−2i�t Fβ

w1,

∂t J̃
αγ

z1 = (−2γ + Fα
z1)J̃αγ

z1 + Fα
z1J̃βγ

w1

− �γ

2
tanh re−2γ t+2i�t Fα

z2

∂t J̃
αε
z2 = (−2γ + Fα

z1)J̃αε
z2 + Fα

z1J̃βε

w2 − �γ

2
tanh2 rFα

z1,

∂t J̃
βγ

w1 = (−2γ + Fβ

w1)J̃βγ

w1 + Fβ

w1J̃αγ

z1

− �γ

2
tanh re−2γ t+2i�t Fβ

w2,

∂t J̃
βε

w2 = (−2γ + Fβ

w1)J̃βε

w2 + Fβ

w1J̃αε
z2 − �γ

2
tanh2 rFβ

w1.

(B10)

As we proceed with the derivation of the master equation,
we encounter the emergence of several new terms resulting
from the application of the Novikov theorem in Eq. (32):

F γ
zi (t ) ≡

∫ t

0
dsγ (−t, s) fz1(t, s)

= − tanh r
∫ t

0
dsα(−t, s) fz1(t, s),

F ε
wi(t ) ≡

∫ 0

−t
dsε(−t, s) fwi(t, s)

= tanh2 r
∫ 0

−t
dsα(−t, s) fwi(t, s), (i = 1, 2). (B11)

The above four coefficients can be numerically determined
using the following evolution equations:

∂t F
γ

z1 (t ) = (iω + i� − γ + Fα
z1 + Fβ

w1)F γ

z1 (t )

−�γ

2
tanh re−2γ t e2i�t ,

∂t F
γ

z2 (t ) = [−iω + i� − γ − Fα
z1(t ) − Fβ

w1(t )]F γ

z2 (t )

+2[Fα
z2(t ) + Fβ

w2(t )]F γ

z1 (t ) − J̃αγ

z1 (t ) − J̃βγ

w1 (t ),
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∂t F
ε
w1(t ) = (iω + i� − γ + Fα

z1 + Fβ

w1)F ε
w1(t ),

∂t F
ε
w2(t ) = [−iω + i� − γ − Fα

z1(t ) − Fβ

w1(t )]F ε
w2(t )

+2[Fα
z2(t ) + Fβ

w2(t )]F ε
w1(t ) − J̃αε

z2 (t )

−J̃βε

w2(t ) + �γ

2
tanh2 r. (B12)

Because the evolution equations of the coefficients have a sim-
ilar structure, we identify F z

1 and F z
2 in Eq. (31) and similarly

Fw
1 and Fw

2 :

F z
1 ≡ Fα

z1 + Fβ

w1, F z
2 ≡ Fα

z2 + Fβ

w2,

Fw
1 ≡ F γ

z1 + F ε
w1, Fw

2 ≡ F γ

z2 + F ε
w2. (B13)

We now briefly demonstrate the Markov limit of these co-
efficients. Firstly, when the memory factor γ → ∞, the
correlation function α(t, s) = M(zt z∗

s ) → �δ(t, s), ε(t, s) =
M(wtw

∗
s ) → tanh2 r �δ(t, s), and the cross-correlation func-

tion satisfies M(ztw
∗
s ) = 0 for t > 0, s < 0 (setting � = 0

for simplicity). Consequently, Fβ

w1 = Fβ

w2 = F γ

z1 = F γ

z2 = 0.
Using the initial conditions in Eq. (A3), we can explicitly
calculate the coefficients in Eq. (33),

F z
1 = Fα

z1 = �

2
fz1(t, t ) = �

2
,

F z
2 = Fα

z2 = �

2
fz2(t, t ) = 0,

Fw
1 = F ε

w1 = �

2
tanh2 r fw1(t, t ) = 0,

Fw
2 = F ε

w2 = �

2
tanh2 r fw2(t, t ) = �

2
tanh2 r. (B14)

As a result, the four superoperators in Eq. (33) can be rewrit-
ten in the Markov limit as

L1[ρ̂r] ≡ �

2
(2âρ̂r â† − ρ̂r â†â − â†âρ̂r ),

L2[ρ̂r] ≡ 0,

L3[ρ̂r] ≡ �

2
tanh2 r(2â†ρ̂r â − ρ̂r ââ† − ââ†ρ̂r ),

L4[ρ̂r] ≡ 0.

Finally, Eq. (39) in the main manuscript can be re-produced
from Eq. (33) under the Markov limit.

APPENDIX C: DERIVATION OF EQ. (32)

Here we apply the Novikov theorem [37,49] to compute the
four terms M(z∗

t P̂ψ ), M(w∗
−t P̂ψ ), M(zt P̂ψ ), and M(w−t P̂ψ ),

respectively:

M(z∗
t P̂ψ ) = −i

∑
k

g∗
keiωktM(∂zk P̂ψ )

= −i
∑

k

g∗
keiωkt (− tanh rk )M(zkP̂ψ )

−i
∑

k

g∗
keiωktM(|K|2∂zk P̂ϕ )

= −M(w−t P̂ψ ) +
∫ t

0
dsM

(|K|2M(zsz
∗
t )δzs P̂ϕ

)

+
∫ 0

−t
dsM

(|K|2M(wsz
∗
t )δws P̂ϕ

)

= −M(w−t P̂ψ ) +
∫ t

0
dsM(zsz

∗
t )M

(
P̂ψ Ô†

z (t, s)
)

+
∫ 0

−t
dsM(wsz

∗
t )M

(
P̂ψ Ō†

w(t, s)
)
, (C1)

M(w∗
−t P̂ψ ) = i

∑
k

gke−iωkt tanh rkM(∂zk P̂ψ )

= i
∑

k

gke−iωkt (− tanh2 rk )M(zkP̂ψ )

+i
∑

k

gke−iωkt tanh rkM(|K|2∂zk P̂ϕ )

= − tanh2 rM(zt P̂ψ )

+
∫ t

0
dsM

(|K|2M(zsw
∗
−t )δzs P̂ϕ

)

+
∫ 0

−t
dsM

(|K|2M(wsw
∗
−t )δws P̂ϕ

)
,

= − tanh2 rM(zt P̂ψ )

+
∫ t

0
dsM(zsw

∗
−t )M

(
P̂ψ Ô†

z (t, s)
)

+
∫ 0

−t
dsM(wsw

∗
−t )M

(
P̂ψ Ô†

w(t, s)
)
. (C2)

Combining Eqs. (C1) and (C2), we can obtain the expressions
of M(z∗

t P̂ψ ) and M(w∗
−t P̂ψ ):

M(z∗
t P̂ψ ) = cosh2 r

[ ∫ t

0
dsM(zsz

∗
t )M

(
P̂ψ Ô†

z (t, s)
)

+
∫ 0

−t
dsM(wsz

∗
t )M

(
P̂ψ Ô†

w(t, s)
)

−
∫ t

0
dsM(z∗

s w−t )M
(
Ôz(t, s)P̂ψ

)

−
∫ 0

−t
dsM(w∗

s w−t )M
(
Ôw(t, s)P̂ψ

)]
,

M(w∗
−t P̂ψ ) = − sinh2 r

[ ∫ t

0
dsM(zt z

∗
s )M

(
Ôz(t, s)P̂ψ

)

+
∫ 0

−t
dsM(ztw

∗
s )M

(
Ôw(t, s)P̂ψ

)]

+ cosh2 r

[ ∫ t

0
dsM(w∗

−t zs)M
(
P̂ψ Ô†

z (t, s)
)

+
∫ 0

−t
dsM(w∗

−tws)M
(
P̂ψ Ô†

w(t, s)
)]

. (C3)

The explicit expressions of M(zt P̂ψ ) and M(zt P̂ψ ) can be
easily obtained through their Hermitian conjugate operators:
M(zt P̂ψ ) = [M(z∗

t P̂ψ )]†, M(w−t P̂ψ ) = [M(w∗
−t P̂ψ )]†.

When the processes are Markovian, the correlation
functions turn into α(t, s) = M(zt z∗

s ) → �δ(t, s), ε(t, s) =
M(wtw

∗
s ) → tanh2 r �δ(t, s), and the cross-correlation

012206-10
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function satisfies M(ztw
∗
s ) = 0 for t > 0, s < 0. Equa-

tions (C1) and (C2) are reduced to

M(z∗
t P̂ψ ) = −M(w−t P̂ψ ) +

∫ t

0
ds�δ(t, s)M

(
P̂ψ Ô†

z (t, s)
)

M(w∗
−t P̂ψ ) = − tanh2 rM(zt P̂ψ ) +

∫ 0

−t
ds�δ(−t, s) tanh2 r

×M
(
P̂ψ Ô†

w(t, s)
)
. (C4)

Combined with the initial conditions Ôz(t, s = t ) = L̂ and
Ôw(t, s = −t ) = L̂†, we obtain the conclusion

M(w∗
−t P̂ψ ) = − tanh2 rM(zt P̂ψ ) + tanh2 r

�

2
ρ̂r L̂,

M(z∗
t P̂ψ ) = −M(w−t P̂ψ ) + �

2
ρ̂r L̂†. (C5)
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