
PHYSICAL REVIEW A 108, 012203 (2023)

Partial-wave expansion of the Uehling potential
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A coordinate space approach to vacuum polarization using Pauli-Villars regularization is used to calculate the
Uehling potential as a partial-wave expansion. This is done to develop a method that can be extended to cases of
vacuum polarization where there is no simple analytic form to use to carry out the necessary renormalization. The
numerical behavior of the partial-wave expansion is examined for the Uehling potential itself, its contribution to
the fine structure of muonic hydrogen, and its contribution to electron scattering.
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I. INTRODUCTION

The ultraviolet divergences of relativistic quantum field
theory arise from the short-distance behavior of the products
of propagators encountered in loops. An early discussion of
how to regulate these divergences was given by Pauli and
Villars [1]. Their analysis of vacuum polarization was made
in coordinate space, and they used the known short-distance
behavior of the propagators to show how a combination of
two or more additional terms with a negative metric and large
masses m1, m2, . . . could cancel the divergences and give a
regularized result.

If one is dealing with free propagators it is convenient to
work instead in momentum space, where the propagators have
a simple form. However, when studying the effect of vacuum
polarization on the energy levels of electrons bound in atoms,
the actual propagator differs from a free propagator, and the
momentum space representation does not offer a significant
advantage. This leads to the general question of how to cal-
culate vacuum polarization for particles whose propagators
differ significantly from free propagators, and in particular
how to regularize and renormalize in that case.

This is an issue particularly important for highly charged
ions, where the strong nuclear Coulomb field leads to so
much distortion of the free propagators that both the self-
energy and vacuum polarization require an exact treatment.
This can be done in coordinate space, where the propagator
may be represented as a partial-wave expansion in terms of
Whittaker functions. For the case of vacuum polarization, this
approach was pioneered by Wichmann and Kroll [2]. They
exploited the fact that the calculation with free propagators
had already been carried out, with the divergences regularized
and the resultant change of the charge dealt with through the
renormalization program. Even before the proper treatment

*mohr@nist.gov
†jsapirst@nd.edu

of the divergences was carried out, it had been shown that a
finite part remained that modified the Coulomb potential of the
nucleus. This remainder is known as the Uehling potential and
is the largest part of vacuum polarization. As all the ultraviolet
divergences were associated with the Uehling potential, Wich-
mann and Kroll were able to isolate it and thereby evaluate a
finite expression as a partial-wave expansion. The so-called
Wichmann-Kroll terms require the evaluation of only the first
few partial waves even for highly charged ions. One can then
add in the Uehling potential, and the treatment of vacuum
polarization is complete.

This approach of subtracting the Uehling potential con-
tribution to the vacuum polarization term by term in the
angular momentum expansion has been done in many calcu-
lations since the Wichmann-Kroll work. For a few examples,
see [3–5].

An answer to the general question posed above for atoms
might be to work in coordinate space and calculate the differ-
ence between the bound-electron propagator and free-electron
propagator, with the difference being an ultraviolet-finite ex-
pression. One could then separately evaluate the free-electron
terms in momentum space and deal with their regularization
and renormalization using standard methods. However, the
success of this approach relies on the electron propagator at
short distances not being qualitatively changed by the pres-
ence of a nuclear Coulomb field. If it is necessary to deal with
a significantly changed bound-state propagator, the general
question is still open. (In the early studies of highly charged
ions, the possibility of some breakdown was considered very
real.)

In this paper we show that one can calculate atomic
vacuum polarization entirely in coordinate space using a
partial-wave expansion that includes the Uehling potential.
The cost is the need to deal with many partial waves, but
the advantage is that one is no longer dependent on us-
ing the free-electron propagator to explicitly carry out the
renormalization. This approach can be extended to other
spherically symmetric central potentials. We formulate the
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renormalization procedure, which is still necessary after the
Pauli-Villars regularization, in such a way that it may be
applied to the partial-wave expansion without invoking a per-
turbation expansion to isolate the singularities.

II. FORMALISM

We set up the calculation of vacuum polarization us-
ing a representation of the electron propagator intermediate
between coordinate and momentum space. Whenever a prop-
agator S(x2, x1) depends on the times t2 and t1 only through
the time difference τ ≡ t2 − t1, a Fourier transform allows one
to work with a function of two spatial coordinates and one
energy parameter, G(x2, x1, z), which is the Green function.
For electrons it is defined by

G(x2, x1, z) ≡ −
∫

dτeizτ/h̄S(x2, x1)γ 0. (1)

In the following we work in SI units, keeping all factors of
c, h̄, and ε0. The electron and proton charges are denoted qe

and qp. The elementary charge e is understood to be positive,
so qe = −e and qp = e.

The Green functions are related to the resolvent [6,7], de-
fined formally in terms of a complex number z and an operator
A,

R(A, z) = 1

A − z
. (2)

If the operator A is taken to be a time-independent
Hamiltonian H , the matrix element of the resolvent is
〈x2|R(H, z)|x1〉 = G(x2, x1, z). A particularly useful form for
it comes from inserting complete sets of eigenfunctions ψn of
H with eigenvalues En, which yields

G(x2, x1, z) =
∑

n

ψn(x2)ψ†
n (x1)

En − z
, (3)

which is referred to as the spectral decomposition. In Eq. (3)
the summation symbol denotes a discrete sum over bound
states and integration over the continuous spectrum. The com-
pleteness of the eigenfunctions then leads to

(H − z)G(x2, x1, z) = δ(x2 − x1). (4)

Here and in the following, z is understood to be multiplied
by a factor of 1 + iη, where η is a positive real infinitesimal,
which implements the Feynman contour prescription. The
Hamiltonians of interest here can be written in terms of the
related Dirac equation,

[−ih̄cα · ∇ + mec2β + V (x) + X (x)β]ψn(x) = Enψn(x),
(5)

with α = γ 0γ , β = γ 0, and x = |x|, and me is the electron
mass. This class of equations includes several special cases of
note. If the functions V (x) and X (x) vanish, we have the free
Dirac Hamiltonian and the corresponding Green function, for
which we reserve the notation F (x2, x1, z). If X (x) vanishes
and

V (x) = − h̄cα

x
≡ Vc(x), (6)

we have the Coulomb Dirac equation with its corresponding
Green function for an electron in a model of the hydrogen

atom where the proton is a fixed point charge. The electro-
static potential in this case is


c(x) = qp

4πε0x
, (7)

which provides the most studied Green function for the
bound-state problem in atomic physics. If we include a factor
Z (x),


Z (x) = qpZ (x)

4πε0x
, (8)

a number of other useful Green functions can be defined. If
Z (x) is chosen as the atomic number Z , one has a starting
point for the treatment of hydrogenic ions. If Z (x) is chosen
to be a potential that is close to the Hartree-Fock potential (the
nonlocality of the latter makes directly using it difficult), one
has a lowest-order model for many-electron atoms and ions
that can be systematically improved with many-body pertur-
bation theory. If it is chosen to model the charge distribution
of a nucleus, one can study finite-size effects on energy levels
of those ions. In this case, we have


nucl(x) = 1

4πε0

∫
dx1

qp ρnucl(x1)

|x − x1| , (9)

where qp ρnucl(x1) is the charge distribution of the nucleus,
normalized to qp.

The timelike term X (x) can be used for quark model calcu-
lations: in particular, we note the MIT bag model [8] uses such
a function to effect confinement. In all cases discussed here,
the choice of having the functions depend only on x leads to
considerable simplification because one can separate out the
angle dependence and carry out the associated integrations
analytically.

III. VACUUM POLARIZATION

The one-loop energy level shift due to vacuum polarization
for an electron bound to a point charge at the origin with wave
function φn is (see, for example, [9])

�E (ρn) = iαh̄c

2π

∫ ∞

−∞
dz

∫
dx2

∫
dx1

1

|x2 − x1|
× Tr[G(x2, x2, z(1 + iδ)) ]ρn(x1), (10)

where ρn = |φn|2. This can be written in terms of the electro-
static potential created by the electron


n(x2) = − e

4πε0

∫
dx1

1

|x2 − x1| φ†
n (x1) φn(x1) (11)

or generalized to the electrostatic potential 
ρ associated with
an arbitrary charge distribution eρ given by


ρ (x2) = e

4πε0

∫
dx1

ρ(x1)

|x2 − x1| . (12)

In this paper we will calculate the change in the interaction
energy of a charge density eρi(x) in the electrostatic potential

c(x) of a static point proton at the origin, Eq. (7), caused by
the one-loop vacuum polarization for various charge densities.
The unperturbed energy is

E (ρ) = qp
ρ (0), (13)
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which follows from the relation

E (ρ) ≡ e
∫

dx 
c(x)ρ(x) = −ε0

∫
dx 
c(x) ∇2 
ρ (x)

= −ε0

∫
dx 
ρ (x) ∇2
c(x) = qp

∫
dx 
ρ (x) δ(x).

(14)

We will consider three cases. In the first case, the charge
density is that of a test charge e at position x, ρ1(x2) =
eδ(x2 − x). In this case


1(x2) = e

4πε0

1

|x2 − x| (15)

and

E (ρ1) = eqp

4πε0x
. (16)

This is just the electrostatic potential of the proton evaluated
at the position x.

The second charge density is the difference of the charge
densities of the 2p and 2s states of muonic hydrogen, treated
nonrelativistically. The potential corresponding to the charge
density of the state n is


n(x2) = qe

4πε0

∫
dx1

|ψn(x1)|2
|x2 − x1| , (17)

where ψn is the Schrödinger wave function. Due to the spher-
ical symmetry of the proton charge distribution, only the
spherical average of the electron potential


n(x2) =
∫

d�2

4π

n(x2)

= qe

4πε0

∫ ∞

0
dx1

x2
1

max(x2, x1)

∫
d� |ψn(x1)|2

(18)

is relevant. The separate potentials are


2p(x2)

= qe

4πε0x2

{
1− e−γ x2

24

[
24+ 18γ x2 + 6(γ x2)2 + (γ x2)3

]}
,

(19)


2s(x2)

= qe

4πε0x2

{
1 − e−γ x2

8

[
8 + 6γ x2 + 2(γ x2)2 + (γ x2)3

]}
,

(20)

where γ = α mrc/h̄ = α (mr/me )/λ̄e, where λ̄e = h̄/(mec) is
the reduced Compton wavelength of the electron, and mr is
the muon reduced mass, with mrc2 ≈ 95 MeV. The difference
is simply


2(x2) = 
2p(x2) − 
2s(x2) = qe

4πε0x2

e−γ x2 (γ x2)3

12
(21)

and

E (ρ2) = 0. (22)

In the third case, the charge density is of an electron scat-
tering by a static proton with momentum transfer Q, with the

potential


3(x2) = qe

Q2
ei Q·x2/h̄, (23)

and, rather than an energy,

B(ρ3) = qeqp

Q2
(24)

is proportional to the Born amplitude.
The vacuum polarization correction corresponding to any

of these charge distributions is

�E (ρ)

= − ie

2π

∫ ∞

−∞
dz

∫
dx2 Tr[G(x2, x2, z(1 + iη)) ]
ρ (x2).

= − ie

2π

∫
F

dz
∫

dx2 Tr[G(x2, x2, z) ]
ρ (x2), (25)

where F denotes the Feynman contour which passes from −∞
below the negative real z axis, through 0, and to ∞ above the
positive real z axis.

We are here interested in the Uehling contribution �Eu to
the vacuum polarization, which is the linear term in expansion
of the Green function in powers of Vc. The expansion is

G(x2, x2, z) = F (x2, x2, z) + G(1)(x2, x2, z) + · · · , (26)

where

G(1)(x2, x2, z) = −
∫

dx1 F (x2, x1, z)Vc(x1)F (x1, x2, z),

(27)

and F (x2, x2, z) is the free Green function in Eq. (30). We thus
have

�Eu(ρ) = − ie

2π

∫
F

dz
∫

dx2 Tr[G(1)(x2, x2, z)]
ρ (x2)

= ie2

2π

∫
F

dz
∫

dx2

∫
dx1 
c(x1)

× Tr[F (x2, x1, z)F (x1, x2, z)]
ρ (x2). (28)

An important special case is the free-electron propagator,

S0(x2, x1) = 1

h̄4

∫
d4 p

(2π )4

e−i[p0cτ−p·(x2−x1 )]/h̄

p0(1 + iη)γ 0 − γ · p − mec
.

(29)
A closed form for the free Green function F (x2, x1, z) follows
from Eq. (29) as

F (x2, x1, z) = −
∫

dτeizτ/h̄S0(x2, x1)γ 0

= 1

h̄3

∫
d p

(2π )3

eip·(x2−x1 )/h̄

cα · p + βmec2 − z

= 1

4π (h̄c)2
[−ih̄cα · ∇2 + βmec2 + z]

e−c0|x2−x1|

|x2 − x1|

= 1

4π (h̄c)2

[
ih̄c

(
c0 + 1

|x2 − x1|
)

α · (x2 − x1)

|x2 − x1|

+βmec2 + z

]
e−c0|x2−x1|

|x2 − x1| , (30)
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where

c0 ≡
√

(mec2)2 − z2

h̄c
, Re(c0) > 0. (31)

The function F (x2, x1, z) satisfies the equations

[−ih̄cα · ∇2 + βmec2 − z]F (x2, x1, z) = δ(x2 − x1) (32)

and

F (x2, x1, z)[ih̄cα · ←−∇ 1 + βmec2 − z] = δ(x2 − x1). (33)

The latter relation is made evident by the observation that

[−ih̄cα · ∇2 + βmec2 + z]
e−c0|x2−x1|

|x2 − x1|

= e−c0|x2−x1|

|x2 − x1| [ih̄cα · ←−∇ 1 + βmec2 + z] (34)

in Eq. (30).
The equations for the vacuum polarization correction given

up to this point should be viewed as formal expressions, be-
cause it is necessary to modify them to produce nonsingular
functions. In particular, it must be noted that each of the
terms in Eqs. (26) and (27) is undefined for equal coordinates.
However, as shown in [9], if the replacement

Vc(x1) → Vc(x1) − Vc(x2) (35)

is made in Eq. (27), then the singularity is canceled in the
difference, which vanishes for equal values of the coordinates.
Moreover, the integration in Eq. (28) over the subtracted term
vanishes when Pauli-Villars regularization is applied to the
calculation [9].

On the other hand, Pauli-Villars regularization is sufficient
to obtain a finite result for the correction. We begin by review-
ing the regularization procedure.

IV. PAULI-VILLARS REGULARIZATION

In order to evaluate Eq. (28), we employ Pauli-Villars (PV)
regularization, as mentioned. The basic form of the calcula-
tion remains unchanged when this regularization is used, as
described in Ref. [9] and chapter 7 of [10]. PV regularization
involves the introduction of two regularizing masses m1 and
m2, taking m0 to be the electron mass me. To cancel the
short-distance infinities one introduces the constants

C0 = 1, C1 = m2
0 − m2

2

m2
2 − m2

1

, C2 = m2
1 − m2

0

m2
2 − m2

1

, (36)

with
2∑

i=0

Ci = 0,

2∑
i=0

Cim
2
i = 0. (37)

We thus redefine �Eu(ρ) to be

�Eu(ρ) ≡ − ie2

2π

∫
F

dz
2∑

i=0

Ci

∫
dx2

∫
dx1
c(x1)

× Tr[Fi(x2, x1, z)Fi(x1, x2, z)]
ρ (x2), (38)

and Fi is the free Green function for a particle with mass mi.
Because the PV method involves several masses we employ
the notation Fi(x2, x1, z) to denote free Green functions that

have the electron mass me replaced by mi and c0 replaced by
ci =

√
(mic2)2 − z2/(h̄c), Re(ci ) > 0; the Green function for

the electron has subscript i = 0 and m0 = me.
For the regularized expression, we may rotate the contour

of the integral over z to lie along the imaginary z axis. The
contributions from the quarter circles at large |z| give no
contribution [9]. Thus in terms of the variable u, where z = iu,
and taking into account the fact that the argument is an even
function of u, we have

�Eu(ρ) = e2

π

∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1
c(x1)

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]
ρ (x2). (39)

V. RENORMALIZATION

After regularization, it is necessary to isolate and remove
the contribution that corresponds to charge renormalization,
which is logarithmically divergent in the limit as the auxil-
iary masses m1 and m2 are taken to infinity. To be explicit,
we note that the expression for the vacuum polarization in
Eq. (39) can be viewed as the interaction energy between a
vacuum polarization electrostatic potential 
vp and the charge
distribution eρ

�Eu(ρ) =
∫

dx 
vp(x) eρ(x), (40)

where


vp(x) = h̄cα

π

∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1
c(x1)

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]
1

|x2 − x| . (41)

The limiting form of the potential for large x = |x| is taken to
be due to a vacuum polarization charge q(2)

p which is defined
by


vp(x) → 1

4πε0

q(2)
p

x
+ · · · as x → ∞

→ h̄cα

π

∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1
c(x1)

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]
1

x
(42)

or

q(2)
p = e2

π

∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1
c(x1)

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]

= α

π

qp

3

2∑
i=0

Ci ln

(
mi

m0

)2

. (43)

See Sec. VI for details.
The charge q(2)

p is infinite in the limit of large regulator
masses, so renormalization is invoked as follows. The charge
in the zero-order potential in Eq. (7) is taken to be the sum of a
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bare charge q(0)
p together with the leading vacuum polarization

correction,

qp = q(0)
p + q(2)

p + O
(
α q(2)

p

)
, (44)

because the observed physical charge is the sum of all contri-
butions. So the potential due to the proton is the sum of the

zero-order potential plus the vacuum polarization potential


(0)
c (x) + 
vp(x) = q(0)

p + q(2)
p

4πε0|x| + 
̂vp(x) + O
(
α q(2)

p

)
. (45)

The renormalized potential is (see, for example, [9])


̂vp(x) = h̄cα

π

∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1
c(x1)Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]

(
1

|x2 − x| − 1

|x|
)

,

= α

3π

qp

4πε0 x

∫ ∞

1
dt

√
t2 − 1

(
2

t2
+ 1

t4

) 2∑
i=0

Ci e−2txmic/h̄ (46)

→ α

3π

qp

4πε0 x

∫ ∞

1
dt

√
t2 − 1

(
2

t2
+ 1

t4

)
e−2txmec/h̄, (47)

which is the conventional result for the Uehling potential and
is understood to be the limit as m1, m2 → ∞. To the order
under consideration, the charge qp is the measured charge.

Here we note that this conventional treatment of vacuum
polarization is being reviewed in order to show for a known
example that the renormaliztion based on the large x limit
of the potential may be applied without knowledge of the
explicit functional form of the correction, and that it gives the
proper result for the Coulomb source charge where explicit
expressions are available. It can be expected to be more widely
applicable to other cases where the explicit expressions are
not necessarily known. In particular, it will be applied term by
term to the partial-wave expansion which is the main topic of
this study.

VI. ANALYTIC CALCULATION

This section provides an explicit calculation of the vacuum
polarization potential in coordinate space. This has been done
in Ref. [9], but here it is done without the subtraction intro-
duced in that work to avoid the equal coordinate singularity.
Here that singularity is dealt with by the use of PV regulariza-
tion. This is shown by doing the calculation with the complete,
i.e., not expanded in angular momentum, expression for the
product of free Green functions. This calculation also provides
a check on the numerical code at each step.

The starting point is Eq. (41). It is convenient to parame-
terize the vacuum polarization potential in terms of a function
T (x) through


vp(x) = α

π

qp

4πε0x
T (x), (48)

where

T (x) = h̄c
∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1

1

x1

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]
x

max(x2, x)
. (49)

Here we note that the treatment of the formal expression for
vacuum polarization requires careful consideration, because
the singularities can lead to ambiguities in the result, despite

the use of regularization counter-terms. In particular, for the
renormalization charge in Eq. (43), if we write [see, for exam-
ple, Eq. (37) in [9]]∫

dx2 Tr[Fi(x2, x1, z)Fi(x1, x2, z)]

= lim
δx→0

∫
dx2 Tr[Fi(x1, x2, z)Fi(x2, x1 − δx, z)]

= lim
δx→0

∂

∂z
[Fi(x1, x1 − δx, z)] = lim

δx→0

∂

∂z

z e−ci|δx|

π (h̄c)2|δx|

= lim
δx→0

∂

∂z

z

π (h̄c)2

(
1

|δx| − ci + · · ·
)

, (50)

then we have∫ ∞

0
du

2∑
i=0

Ci

∫
dx2 Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]

= −
∫ ∞

0
du

∂

∂ u

2∑
i=0

Ci
u ci

π (h̄c)2

= −
2∑

i=0

Ci
u ci

π (h̄c)2

∣∣∣∣∞
0

= 0, (51)

where the surface term at u = ∞ vanishes because

u ci = 1

h̄c

[
u2 + (mic2)2

2
− (mic2)4

8u2

]
+ · · · , (52)

and the leading two terms vanish by the regulator conditions.
Although this combination of integrations gives zero, there is
still an integral over x1 which yields an infinite result, so the
net result is indeterminant. To deal with this, we impose a limit
on the radius of the potential due to the charge density ρ,


ρ (x2) → 
ρ (x2) θ (R − x2). (53)

This removes ambiguities in the calculation, and the effect on
the final result may be made arbitrarily small by choosing R
to be sufficiently large, but finite.
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From Eq. (30), we have∫
d�2

∫
d�1Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]

= 2

(h̄c)2

∫ 1

−1
dξ

[
2ci

|x2 − x1| + 1

|x2 − x1|2 + 2
(mic

h̄

)2
]

e−2ci|x2−x1|

|x2 − x1|2 ,

= 1

(h̄c)2

∫ 1

−1
dξ

[
1

x2x1

∂

∂ξ

(
2ci

|x2 − x1| + 1

|x2 − x1|2
)

−
( u

h̄c

)2 4

|x2 − x1|2
]

e−2ci|x2−x1|, (54)

where ξ is the cosine of the angle between x2 and x1. For the last term, integration by parts over u gives∫ ∞

0
du

( u

h̄c

)2 e−2ci|x2−x1|

|x2 − x1|2 = 2

3

∫ ∞

0
du

1

ci

( u

h̄c

)4 e−2ci|x2−x1|

|x2 − x1| = 1

3x2x1

∫ ∞

0
du

1

c2
i

( u

h̄c

)4 ∂

∂ξ
e−2ci|x2−x1|, (55)

and thus ∫ ∞

0
du

2∑
i=0

Ci

∫
d�2

∫
d�1Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)] = 1

(h̄c)2

∫ ∞

0
du

2∑
i=0

Ci fi(x2, x1, u), (56)

where

fi(x2, x1, u) = 1

x2x1

{[
2ci

|x2 − x1| + 1

|x2 − x1|2 − 4

3c2
i

( u

h̄c

)4
]

e−2ci|x2−x1| −
[

2ci

x2 + x1
+ 1

(x2 + x1)2
− 4

3c2
i

( u

h̄c

)4
]

e−2ci (x2+x1 )

}
.

(57)

To deal with the singularity for x2 ≈ x1, we exclude the interval (x2 − ε, x2 + ε) in the integration over x1 and consider the limit
as ε → 0. So we write

g(ε)
i (x2, u) =

∫ x2−ε

0
dx1 x1 fi(x2, x1, u) +

∫ ∞

x2+ε

dx1 x1 fi(x2, x1, u)

= 1

x2

(
2

e−2ciε

ε
− 2

e−2cix2

x2
+ e−2ci (2x2−ε)

2x2 − ε
− e−2ci (2x2+ε)

2x2 + ε

)
− 2

3c3
i x2

( u

h̄c

)4
(2 e−2ciε − 2 e−2cix2 + e−2ci (2x2−ε) − e−2ci (2x2+ε) )

= 1

x2

(
2

ε
− 4ci

)
− 2

e−2cix2

x2
2

− 4

3c3
i x2

( u

h̄c

)4
(1 − e−2cix2 ) + O(ε), (58)

which yields the limit

lim
ε→0

∫ ∞

0
du

2∑
i=0

Ci g(ε)
i (x2, u) = 2

∫ ∞

0
du

2∑
i=0

Ci

[
2

3c3
i x2

( u

h̄c

)4
− 1

x2
2

]
e−2cix2 .

= 4
∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i x2

( u

h̄c

)4
− 1

cix2

( u

h̄c

)2
]

e−2cix2 . (59)

The term proportional to 1/ε vanishes due to the regulator sum condition, and the integral over u of the second and fourth terms
(ignoring parentheses) in the last line of Eq. (58) is zero, because∫ ∞

0
du

2∑
i=0

Ci

[
ci + 1

3c3
i

( u

h̄c

)4
]

= h̄c
∫ ∞

0
du

2∑
i=0

Ci
∂

∂u

[
ci

( u

h̄c

)
− 1

3ci

( u

h̄c

)3
]

= h̄c lim
u→∞

2∑
i=0

Ci

[
ci

( u

h̄c

)
− 1

3ci

( u

h̄c

)3
]

= 0.

(60)

Although these terms may be replaced by zero in the analytic calculation if R is finite, they will be present in the numerical
calculation, so that errors in the integral over u will be amplified by a factor of order (R/λ̄e)2 
 1. We take this into consideration
in the choice of R to be used in the numerical work. We thus have

T (x) = 1

h̄c

∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i

( u

h̄c

)4
− 1

ci

( u

h̄c

)2
]

Ki(x, u), (61)
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where

Ki(x, u) = 4
∫ R

0
dx2

x2 x

max(x2, x)
e−2cix2 . (62)

For the integration over x2, we consider separately T (∞) and the renormalized remainder T̂ (x), where

T̂ (x) = T (x) − T (∞). (63)

The integrand of the renormalization term T (∞) is

Ki(∞, u) = 4
∫ R

0
dx2 x2 e−2cix2 = 1

c2
i

+ �Ki(∞, u), (64)

which leads to (see Appendix A)

T (∞) = 1

3

2∑
i=0

Ci ln

(
mi

m0

)2

+ �T (∞). (65)

The extra term �Ki(∞, u) is

�Ki(∞, u) = −4
∫ ∞

R
dx2 x2 e−2cix2 = −1 + 2ciR

c2
i

e−2ciR (66)

and

lim
R→∞

�Ki(∞, u) = 0. (67)

The correction �T (∞) corresponding to �Ki(∞, u) can be calculated to find the error that results from using a particular value
for R in the numerical calculations.

The renormalized remainder T̂ (x) for x < R follows from

K̂i(x, u) = 4
∫ R

0
dx2 x2

[
x

max(x2, x)
− 1

]
e−2cix2 = − 1

c2
i

e−2cix + �K̂i(x, u), (68)

which gives

T̂ (x) = 1

3

∫ ∞

1
dt

√
t2 − 1

(
2

t2
+ 1

t4

) 2∑
i=0

Ci e−2txmic/h̄ + �T̂ (x) (69)

in agreement with Eq. (46). The correction term �T̂ (x) follows from

�K̂i(x, u) = 4
∫ ∞

R
dx2(x2 − x)e−2cix2 = 1 + 2ci(R − x)

c2
i

e−2ciR. (70)

VII. PARTIAL WAVE EXPANSION

Having the analytic form of the Green function is of course very useful, but even in cases where such a form is not available,
for a spherically symmetric source charge distribution, further progress can be made by expressing the Green function as a
partial-wave expansion.

For the free case, the expansion of Eq. (30) is [11]

F (x2, x1, z) = c0

(h̄c)2

∑
κμ

[
θ (x2 − x1)W μ

κ (x2, z)U μ
κ

†(x1, z∗) + θ (x1 − x2)U μ
κ (x2, z)W μ

κ
†(x1, z∗)

]
, (71)

where U μ
κ (x, z) is regular as x → 0 and W μ

κ (x, z) is regular as x → ∞.
If we define

�1 ≡ ∣∣κ + 1
2

∣∣ − 1
2 , �2 ≡ ∣∣κ − 1

2

∣∣ − 1
2 , (72)

the four-spinor solutions U μ
κ and W μ

κ of the free homogeneous Dirac equation with mass m

[−ih̄cα · ∇ + βmc2 − z]U μ
κ (x, z) = 0, (73)

[−ih̄cα · ∇ + βmc2 − z]W μ
κ (x, z) = 0 (74)
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can be written as

U μ
κ (x, z) =

( √
mc2 + z i�1 (c0x)χμ

κ (x̂)

i
√

mc2 − z i�2 (c0x)χμ
−κ (x̂)

)
(75)

and

W μ
κ (x, z) =

( √
mc2 + z k�1 (c0x)χμ

κ (x̂)

−i
√

mc2 − z k�2 (c0x)χμ
−κ (x̂)

)
, (76)

where i and k are the modified spherical Bessel functions [12]. The effective adjoints are

U μ †
κ (x, z∗) = (√

mc2 + z i�1 (c0x)χμ †
κ (x̂) − i

√
mc2 − z i�2 (c0x)χμ †

−κ (x̂)
)
, (77)

W μ †
κ (x, z∗) = (√

mc2 + z k�1 (c0x)χμ †
κ (x̂) i

√
mc2 − z k�2 (c0x)χμ †

−κ (x̂)
)
, (78)

and they are solutions of the equations

U μ †
κ (x, z∗)(ih̄cα · ←−∇ + βmc2 − z) = 0, (79)

W μ †
κ (x, z∗)(ih̄cα · ←−∇ + βmc2 − z) = 0, (80)

corresponding to Eq. (33)
To confirm that the spinors are indeed solutions of the Dirac equation, we employ the identity

σ · x̂ σ · ∇ = x̂ · ∇ + i σ · (x̂ × ∇), =
(

d

dx
+ 1

x

)
− σ · L + 1

x
, (81)

and the fact that the Dirac spherical spinors satisfy

(σ · L + 1)χμ
κ (x̂) = −κ χμ

κ (x̂), (82)

σ · x̂ χμ
κ (x̂) = −χ

μ
−κ (x̂), (83)

to write

σ · ∇ i�1 (c0x)χμ
κ (x̂) = −

(
d

dx
+ 1 + κ

x

)
i�1 (c0x)χμ

−κ (x̂) = −c0 i�2 (c0x)χμ
−κ (x̂), (84)

σ · ∇ i�2 (c0x)χμ
−κ (x̂) = −

(
d

dx
+ 1 − κ

x

)
i�2 (c0x)χμ

κ (x̂) = −c0 i�1 (c0x)χμ
κ (x̂), (85)

and

σ · ∇ k�1 (c0x)χμ
κ (x̂) = −

(
d

dx
+ 1 + κ

x

)
k�1 (c0x)χμ

−κ (x̂) = c0 k�2 (c0x)χμ
−κ (x̂), (86)

σ · ∇ k�2 (c0x)χμ
−κ (x̂) = −

(
d

dx
+ 1 − κ

x

)
k�2 (c0x)χμ

κ (x̂) = c0 k�1 (c0x)χμ
κ (x̂). (87)

From these relations, Eqs. (73) and (74) can be confirmed. Similarly, taking into account the fact that

(c0x)2[i�1 (c0x) k�2 (c0x) + i�2 (c0x) k�1 (c0x)] = 1 (88)

and the completeness relation ∑
κ μ

χμ
κ (x̂2) χμ

κ
†(x̂1) =

(
1 0
0 1

)
δ(φ2 − φ1) δ(cos θ2 − cos θ1), (89)

Eq. (71) can be confirmed.
While we will be dealing with here only with the free Green function, when using the partial-wave expansion, other

Green functions for spherically symmetric potentials may be expressed similarly, requiring only the replacement of the radial
functions. For the Coulomb problem one replaces the spherical Bessel functions by Whittaker functions. If an analytic solution
is not available, numerical solutions for the radial function regular at the origin, corresponding to i�(x), or regular at infinity,
corresponding to k�(x), can be generated. Thus it is straightforward to extend the method described in this paper to other
problems.
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VIII. APPLICATION OF THE PARTIAL-WAVE EXPANSION

The central part of this paper, described here, is the coordinate space evaluation of �Eu(ρ), given in Eq. (39), using a
partial-wave expansion. We can write

�Eu(ρ) = e2

π

∫ ∞

0
du

2∑
i=0

CiEi(u, ρ), (90)

where

Ei(u, ρ) =
∫

dx2

∫
dx1
c(x1)Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)]
ρ (x2). (91)

The partial-wave expansions of the Green functions entails a breakup into terms that distinguish the relative magnitudes of x2

and x1:

Ei(u, ρ) = c2
i

(h̄c)4

∫
dx2

∫
dx1 
c(x1)
ρ (x2)

×
∑
κ1μ1

∑
κ2μ2

[
θ (x2 − x1)W μ2

κ2

†(x2,−iu)W μ1
κ1

(x2, iu)U μ1
κ1

†(x1,−iu)U μ2
κ2

(x1, iu)

+ θ (x1 − x2)U μ2
κ2

†(x2,−iu)U μ1
κ1

(x2, iu)W μ1
κ1

†(x1,−iu)W μ2
κ2

(x1, iu)
]
. (92)

The trace allows the matrix reordering to be made, and the integration over �1 forces κ1 = κ2 and μ1 = μ2, which gives∫
d�2

∫
d�1 
c(x1)
ρ (x2)W μ2

κ2

†(x2,−iu)W μ1
κ1

(x2, iu)U μ1
κ1

†(x1,−iu)U μ2
κ2

(x1, iu)

= δκ2κ1δμ2μ1
c(x1)
ρ (x2)
[
(mic

2 + iu)k2
�1

(cix2) + (mic
2 − iu)k2

�2
(cix2)

]
× [

(mic
2 + iu)i2

�1
(cix1) + (mic

2 − iu)i2
�2

(cix1)
]

(93)

and ∫
d�2

∫
d�1 
c(x1)
ρ (x2)U μ2

κ2

†(x2,−iu)U μ1
κ1

(x2, iu)W μ1
κ1

†(x1,−iu)W μ2
κ2

(x1, iu)

= δκ2κ1δμ2μ1
c(x1)
ρ (x2)
[
(mic

2 + iu)i2
�1

(cix2) + (mic
2 − iu)i2

�2
(cix2)

]
× [

(mic
2 + iu)k2

�1
(cix1) + (mic

2 − iu)k2
�2

(cix1)
]
, (94)

where


ρ (x2) = 1

4π

∫
d�
ρ (x2), (95)

and �1 and �2 are defined in Eq. (72) with κ = κ2 = κ1. In the sum over μ1 and μ2, one summation remains with no μ

dependence, giving a factor 2|κ|.
The integral over u in Eq. (39) includes only positive values of u based on the fact that the argument is an even function of u.

This is not the case for the terms in Eqs. (93) and (94) taken individually. However, they are symmetric under the simultaneous
change of signs of both κ and u, and the evaluation sums over signs of κ , so the sum is indeed an even function of u.

We thus have

Ei(u, ρ) = 4

(h̄c)4
c2

i

∫ ∞

0
dx2 x2

2

∫ ∞

0
dx1 x2

1 
c(x1)
ρ (x2)
∞∑

|κ|=1

|κ|{(m2c4 − u2)
[
k2
|κ|(cix>)i2

|κ|(cix<) + k2
|κ|−1(cix>)i2

|κ|−1(cix<)
]

+ (m2c4 + u2)
[
k2
|κ|(cix>)i2

|κ|−1(cix<) + k2
|κ|−1(cix>)i2

|κ|(cix<)
]}

, (96)

with x< = min(x2, x1) and x> = max(x2, x1).

IX. NUMERICAL ANALYSIS

To carry out the numerical calculation, we form the regu-
larized linear combination of the three values of Ei, choose
a value for |κ|, and carry out the three-dimensional inte-
gration. This is also done for a range of partial waves.
The calculation could be reordered by first carrying out the
partial-wave expansion for a given u, x2, x1 until conver-
gence to a given accuracy is achieved, and then doing the

integrations: this is can be a more efficient approach but would
obscure the purpose of the present paper. Here we are inter-
ested in studying the numerical behavior of the partial-wave
expansion.

The expression in Eq. (96) can be evaluated with
a multidimensional integration package, but modifications
are needed in order to deal with numerical instabili-
ties. In this approach, the entire regulated unrenormalized
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TABLE I. Values for T (∞), T̂ (100 fm), and the total T (100 fm) = T (∞) + T̂ (100 fm).

Regulator T (∞) T̂ (100 fm) T (100 fm)

PV1 −1.320 971 0.309 207 −1.011 764 Eqs. (65) and (69)
PV2 −1.781 447 0.309 854 −1.471 593
PV3 −2.051 457 0.309 856 −1.741 601
m1, m2 → ∞ −∞ 0.309 856 −∞ Eq. (47)

function is calculated and the renormalization is carried out by
subtracting the known regulated charge renormalization from
the sum over |κ|. We have done the evaluation this way.
In addition, we have done it by repeated one-dimensional
Gaussian integrations, where the renormalization is carried
out by making the separation discussed in Sec. VI. In this
case, the renormalization may be carried out term by term in
the partial-wave expansion and prior knowledge of the total
charge renormalization is not required. In the general case,
the charge renormalization will not be known exactly as it
is for the Coulomb field case, so the isolation of the charge
renormalization provides a method that may be used for an
arbitrary source. Details of this latter approach are given in the
following.

Below, the complete functions, not expanded in partial
waves, are considered to study their behavior as functions of
the regulator masses and the cutoff parameter ε.

A. Explicit values for x, the regulator masses, and R

The numerical calculation of the PV regularized function
T (x), defined in Eq. (49), is described here. We work with the
example x = 100 fm = 0.258 960 507 λ̄e, and it is necessary
to employ particular values for the PV regularization masses
discussed in Sec. IV. To do this we choose three pairs of
masses, m1 = 10 me and m2 = 15 me, which we refer to as
the PV1 scheme, m1 = 20 me and m2 = 30 me, referred to as
the PV2 scheme, and m1 = 30 me and m2 = 45 me, for the
PV3 scheme. Calculated values for T (x) for the three pairs of
values of the regulator masses, broken down into the separate
contributions of T (∞) and T̂ (100 fm), are given in Table I.
The value used for the cutoff R, defined in Eq. (53), is 10.0λ̄e,
which results in truncation errors given by �T (∞) and �T̂ (x)
of 5.5 × 10−10 and −5.4 × 10−10, respectively. The error val-
ues are virtually the same for all three regulator schemes,
because the higher-mass counter-terms are negligibly small.

B. The cusp cutoff ε

To deal with the singularity for equal coordinates, it is
necessary to select a value for the cutoff parameter ε as it
appears in the integration over x1 in Eq. (58). If the value is
too small, there is roundoff error in the numerical evaluation
that would obscure the result. If the value is too large, it will
produce a non-negligible change in the value of the integral.
To find an acceptable value we calculate the change in the
function h(ε)(x2) as a function of ε and x2, where

h(ε)(x2) = x2
2

h̄c

∫ ∞

0
du

2∑
i=0

Ci g(ε)
i (x2, u) (97)

and

h(x2) = lim
ε→0

h(ε)(x2)

= 4

h̄c

∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i

( u

h̄c

)4
− 1

ci

( u

h̄c

)2
]

x2 e−2cix2 ,

(98)

so that

T (x) =
∫ R

0
dx2

x

max(x2, x)
h(x2) + �T (x). (99)

Table II lists values of the difference

�h(x2) = h(ε)(x2) − h(x2) (100)

for various values of ε and x2 for the PVI regulator as an
example. The numbers in italics indicate the observed order of
magnitude of the roundoff error from the leading term of 1/ε

in Eq. (58), which would be completely canceled by the regu-
lator subtraction if the numerics were exact. We use quadruple
precision in the FORTRAN code, which gives about 32 signif-
icant figures. Based on the values in that table, we employ
ε = 10−16 λ̄e in the calculations, which gives the minimum
contribution. For x2 � λ̄e, �h(x2) is essentially independent
of x2, so that∫ R

0
dx2 �h(x2) ≈ R�h(x2) ≈ 10−11 (101)

for the working values of R and ε. This error would be prob-
lematic for R → ∞, and numerical extrapolation to ε → 0
and R → ∞ would yield an ambiguous result.

C. The function h|κ|(x2 )

The partial-wave expansion of h is given by

h(x2) =
∞∑

|κ|=1

h|κ|(x2), (102)

where

h|κ|(x2) = 4|κ|x2
2

(h̄c)3

∫ ∞

0
du

∫ ∞

0
dx1 x1

2∑
i=0

Ci c2
i

× {(
m2

i c4 − u2
)[

k2
|κ|(cix>)i2

|κ|(cix<)

+ k2
|κ|−1(cix>)i2

|κ|−1(cix<)
]

+ (
m2

i c4 + u2
)[

k2
|κ|(cix>)i2

|κ|−1(cix<)

+ k2
|κ|−1(cix>)i2

|κ|(cix<)
]}

. (103)
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TABLE II. The difference �h(x2)λ̄e, Eq. (100), as a function of x2 and ε. All values are calculated with the PV1 regulator.

ε/λ̄e x2 = 0.01 λ̄e x2 = 0.1 λ̄e x2 = 1.0 λ̄e x2 = 10.0 λ̄e x2 = 100.0 λ̄e x2 = 1 000.0 λ̄e

10−6 2.9 × 10−3 3.8 × 10−3 3.7 × 10−3 3.7 × 10−3 3.7 × 10−3 3.7 × 10−3

10−8 2.9 × 10−5 3.8 × 10−5 3.7 × 10−5 3.7 × 10−5 3.7 × 10−5 3.7 × 10−5

10−10 2.9 × 10−7 3.8 × 10−7 3.7 × 10−7 3.7 × 10−7 3.7 × 10−7 3.7 × 10−7

10−12 2.9 × 10−9 3.8 × 10−9 3.7 × 10−9 3.7 × 10−9 3.7 × 10−9 3.7 × 10−9

10−14 2.9 × 10−11 3.8 × 10−11 3.7 × 10−11 3.7 × 10−11 3.7 × 10−11 3.7 × 10−11

10−16 10−12 10−12 10−12 10−12 10−12 10−12

10−18 10−9 10−9 10−9 10−9 10−9 10−9

The integration over x1 is carried out as described in
Sec. VI, that is, with the replacement∫ ∞

0
dx1 →

∫ x2−ε

0
dx1 +

∫ ∞

x2+ε

dx1. (104)

Here and in the following, we employ the value ε = 10−16 λ̄e

instead of writing or taking the limit. The integrations are
done with Gauss-Legendre or Gauss-Laguerre quadrature, as
appropriate.

D. Partial sums of h|κ|(x2 )

We shall ultimately consider the partial-wave expansion of
the function T (x), but at this point it is useful to compare
partial sums over |κ| of h|κ|(x2) to the complete function h(x2)
for two reasons. One is to confirm that the numerical code is
correct. The other is to examine the nature of the convergence
of the sum, which is one of the goals of this work.

Let

HK (x2) =
K∑

|κ|=1

h|κ|(x2). (105)

Values of these partial sums are listed in Table III.
A few remarks concerning the numbers in Table III may be

made. The last row of the table is the exact value of the sum for
an infinite number of terms calculated from the analytic result.
The extremely small values of h(x2) for large values of x2

correspond to the exponential falloff of the complete function.
It is evident that there is an extraordinary cancellation among
terms within the partial sums to arrive at the value of the
complete sum. For x2 � 1.0 λ̄e, the values are at the limit
for K � 1 000, to the accuracy displayed. At x2 = 10.0 λ̄e,
H20 000(10.0 λ̄e ) = −1.03 × 10−9/λ̄e, which is consistent with
the partial sums approaching the limit. Thus, by construction

and numerically in Table III, we have

lim
K→∞

HK (x2) = h(x2). (106)

The asymptotic behavior, for large values of x2, of the
function h|κ|(x2) is (see Appendix B)

h|κ|(x2) = 4λ̄e
2|κ|

3x3
2

2∑
i=0

Ci

(
me

mi

)2

+ · · · . (107)

For the masses in the PV1 regularization scheme, this gives

h|κ|(x2) = 2464

1875

λ̄e
2 |κ|
x3

2

+ · · ·

= 1.314 133 . . .
|κ|
λ̄e

(
λ̄e

x2

)3

+ · · · . (108)

This limit can be seen in the K = 1 row in Table III. The linear
growth of the asymptotic value with |κ| results in a quadratic
growth in the partial sums given by

HK (x2) = 1.314133 . . .
K (K + 1)

2λ̄e

(
λ̄e

x2

)3

+ · · · . (109)

Values for the examples

H10(x2) = 72.277 . . .

λ̄e

(
λ̄e

x2

)3

+ · · · , (110)

H100(x2) = 6636. . . .

λ̄e

(
λ̄e

x2

)3

. . . (111)

can be seen in the last column of the table. The quadratic
growth of the partial sums eventually subsides when the
asymptotic condition |κ| 
 x2/λ̄e no longer applies. In fact,
in Table III the maximum value of each partial sum occurs for
K ≈ x2/λ̄e and falls off for larger values of K .

TABLE III. Partial sums HK (x2) of h|κ|(x2) as defined in Eq. (105) and the complete function h(x2) given in the last row. All values are
calculated with the PV1 regulator and are given in units of 1/λ̄e

K x2 = 0.01 λ̄e x2 = 0.1 λ̄e x2 = 1.0 λ̄e x2 = 10.0 λ̄e x2 = 100.0 λ̄e x2 = 1 000.0 λ̄e

1 −0.242 598 −2.433 830 0.238 975 1.319 611×10−3 1.314 187×10−6 1.314 134×10−9

10 −0.247 342 −3.277 891 −0.017 383 3.398 392×10−2 7.149 646×10−5 7.226 945×10−8

100 −0.247 343 −3.279 085 −0.224 219 2.233 941×10−2 3.254 173×10−3 6.569 073×10−6

1 000 −0.247 343 −3.279 085 −0.224 359 1.428 485×10−5 2.250 145×10−3 3.239 986×10−4

10 000 −0.247 343 −3.279 085 −0.224 359 3.550 016×10−10 1.431 161×10−6 2.251 764×10−4

∞ −0.247 343 −3.279 085 −0.224 359 −1.126 281×10−9 −2.445 408×10−88 −1.443 696×10−870
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TABLE IV. Individual terms t (X )
|κ| (∞) and partial sums T (X )

K (∞)
of the incomplete integrals of h|κ|(x2) as defined in Eqs. (116)
and (117) with x = 100 fm = 0.258 960 507 λ̄e. The last column
gives the remainder based on the leading term in the asymptotic ex-
pansion for X = 100 λ̄e. The last row gives values of the incomplete
integral over x2 of the complete sum T (X )(∞) over |κ|. All values
are calculated with the PV1 regulator.

X = 1.0 λ̄e X = 10.0 λ̄e X = 100.0 λ̄e ≈ �t (X )
|κ| (∞)

t (X )
1 (∞) −0.312 883 −0.006 584 −0.000 066 0.000 066

t (X )
2 (∞) −0.237 294 −0.012 768 −0.000 131 0.000 131

t (X )
3 (∞) −0.169 218 −0.018 221 −0.000 197 0.000 197

t (X )
4 (∞) −0.122 177 −0.022 759 −0.000 262 0.000 263

t (X )
5 (∞) −0.089 732 −0.026 316 −0.000 328 0.000 329

T (X )
10 (∞) −1.137 938 −0.242 772 −0.003 594 0.003 614

T (X )
100 (∞) −1.226 549 −1.222 536 −0.227 898 0.331 819

T (X )
1000(∞) −1.226 584 −1.320 935 −1.221 525 32.886 187

T (X )(∞) −1.226 584 −1.320 971 −1.320 971

E. Partial wave expansion of the function T (x)

To further examine the numerical properties of the partial-
wave expansion, we define a function t (X )

|κ| (x) given by

t (X )
|κ| (x) =

∫ X

0
dx2

x

max(x2, x)
h|κ|(x2), (112)

where X > x. Partial sums over |κ| are denoted by

T (X )
K (x) =

K∑
|κ|=1

t (X )
|κ| (x) =

∫ X

0
dx2

x

max(x2, x)
HK (x2). (113)

We expect that

lim
K→∞

T (X )
K (x) = T (X )(x) (114)

and

lim
X→∞

T (X )(x) = T (x). (115)

1. Renormalization term

Following the procedure in Sec. V, we identify the renor-
malization contributions as

t (X )
|κ| (∞) =

∫ X

0
dx2 h|κ|(x2) (116)

and

T (X )
K (x) =

∫ X

0
dx2 HK (x2). (117)

Calculated values of this function, for several values of X ,
are given in Table IV. As the table shows, for low angular
momenta, the integral over x2 decreases rapidly as the upper
limit X increases. The remainder, the integral from X to ∞,

�t (X )
|κ| (∞) =

∫ ∞

X
dx2 h|κ|(x2), (118)

can be approximated by integration of the asymptotic form of
h|κ|(x2) in Eq. (107). This approximation gives

�t (X )
|κ| (∞) = 2λ̄e

2|κ|
3X 2

2∑
i=0

Ci

(
me

mi

)2

+ · · · . (119)

Values of �t (X )
|κ| (∞) for X = 100 λ̄e, based on the leading

asymptotic term, are given in the last column in Table IV. The
integrals up to X = 100 λ̄e plus the estimated remainders, that
is, the complete integrals from zero to infinity, appear to be
consistent with zero, at least for the lowest values of |κ|. For
higher values of |κ|, the values in the last column grow rapidly
because the leading term of the asymptotic expansion is not a
good approximation unless |κ| 
 x2.

The fact that these integrals appear to be zero is consistent
with the discussion at the start of Sec. VI that suggests such in-
tegrals are indeed zero. This raises the interesting question of
why the integral of the complete function, that is, the function
summed over all values of the angular momentum expansion,
is not zero. In fact, these values are listed on the last row of
Table IV and they rapidly converge to a nonzero value as the
integral is extended to infinity due to the exponential falloff of
the integrand for large values of x2, as shown in Table III.

This seemingly contradictory behavior of the individual
terms in the angular momentum expansion and the complete
sum can be understood by recalling that the derivation of the
complete expression requires a cutoff on the potential, so that
an indeterminate product of terms that integrate to zero over
the variable u times terms that are infinite when integrated
over all space, are finite. This can be seen in Table III, where
for a given value of x2, the partial sums over angular momen-
tum approach the value of the complete expression. Thus with
an upper limit on the integration over x2, the integrals of the
partial sums also converge to the integrals over the infinite
sums function. On the other hand, for increasing values of
x2 an increasing number of terms in the angular momentum
expansion is needed to converge to the value of the complete
function.

2. Renormalized remainder

The angular momentum expansion of the renormalized
remainder discussed in Sec. VI is based on the terms given
by

t̂ (X )
|κ| (x) = t (X )

|κ| (x) − t (X )
|κ| (∞) =

∫ X

x
dx2

(
x

x2
− 1

)
h|κ|(x2),

(120)

where X > x. The corresponding partial sums are

T̂ (X )
K (x) =

K∑
|κ|=1

t̂ (X )
|κ| (x) =

∫ X

x
dx2

(
x

x2
− 1

)
HK (x2) (121)

and

lim
K→∞

T̂ (X )
K (x) = T̂ (X )(x), (122)

lim
X→∞

T̂ (X )(x) = T̂ (x). (123)
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TABLE V. Individual terms t̂ (X )
|κ| (x) and partial sums T̂ (X )

K (x) of
the incomplete integrals of h|κ|(x2) as defined in Eqs. (120) and (121)
with x = 100 fm = 0.258 960 507 λ̄e. The last column gives the
remainder based on the leading term in the asymptotic expansion for
X = 100 λ̄e. The last row gives values of the incomplete integral over
x2 of the complete sum T̂ (X )(x) over |κ|. All values are calculated
with the PV1 regulator.

X = 1.0 λ̄e X = 10.0 λ̄e X = 100.0 λ̄e ≈ �̂t (X )
|κ| (x)

t̂ (X )
1 (x) −0.075 605 −0.338 331 −0.344 736 −0.000 066

t̂ (X )
2 (x) 0.022 132 −0.177 353 −0.189 772 −0.000 131

t̂ (X )
3 (x) 0.043 360 −0.094 856 −0.112 571 −0.000 197

t̂ (X )
4 (x) 0.043 772 −0.049 945 −0.072 060 −0.000 262

t̂ (X )
5 (x) 0.038 352 −0.023 566 −0.049 121 −0.000 328

T̂ (X )
10 (x) 0.179 115 −0.643 292 −0.878 610 −0.003 608

T̂ (X )
100 (x) 0.233 036 0.214 692 −0.770 631 −0.331 246

T̂ (X )
1000(x) 0.233 059 0.309 172 0.210 158 −32.829 412

T̂ (X )(x) 0.233 059 0.309 207 0.309 207

The remainder, the integral from X to ∞,

�̂t (X )
|κ| (x) =

∫ ∞

X
dx2 h|κ|(x2), (124)

is approximated by integration of the asymptotic form in
Eq. (107), which gives

�̂t (X )
|κ| (x) = −2λ̄e

2|κ|
3X 2

(
1 − 2x

3X

) 2∑
i=0

Ci

(
me

mi

)2

+ · · · .

(125)

Values for the remainder are listed in the last column in
Table V. Values of t̂ (X )

|κ| (x) for x = 100 fm and X = 10.0 λ̄e

are shown in Fig. 1.

F. Muonic hydrogen

The splitting of the 2p1/2 and 2s1/2 states in muonic hy-
drogen is dominated by the Uehling potential, evaluated with

0 20 40 60 80 100-0.4

-0.3

-0.2

-0.1

0

0.1

FIG. 1. Values of t̂ (X )
|κ| (x) for x = 100 fm and X = 10.0 λ̄e

TABLE VI. Values of �Eu,|κ|(µH) and the corresponding partial
sums �EK

u (µH). The last line gives the complete function �Eu(µH).
All values are in units of meV.

PV1 PV2 PV3

�Eu,1(µH) −152.758 −177.010 −183.827

�Eu,2(µH) −53.196 −78.387 −86.643

�Eu,3(µH) −8.827 −31.767 −40.343

�Eu,4(µH) 10.919 −8.914 −17.302

�Eu,5(µH) 19.610 2.955 −4.998

�Eu,6(µH) 23.068 9.377 1.977

�Eu,7(µH) 23.945 12.905 6.110

�Eu,8(µH) 23.527 14.807 8.628

�Eu,9(µH) 22.468 15.754 10.178

�Eu,10(µH) 21.114 16.119 11.124

�E 10
u (µH) −70.131 −224.161 −295.096

�E 50
u (µH) 174.495 108.908 32.957

�E 100
u (µH) 193.275 180.231 148.076

�E 500
u (µH) 196.286 202.510 203.382

�E 1000
u (µH) 196.294 202.621 203.879

�E 5000
u (µH) 196.294 202.629 203.919

�Eu(µH) 196.294 202.629 203.919

nonrelativistic Coulomb wave functions, which contributes
205.007 meV to the theoretical value. The difference between
the splitting of 202.3706(23) meV deduced from measure-
ments and the complete theoretical value is used to extract
the size of the proton [13]. The one-loop vacuum polarization
result is not controversial, but in this section we show how it
behaves as a partial-wave expansion.

For this splitting, the difference potential is given in
Eq. (21) as


2(x2) = 
2p(x2) − 
2s(x2) = qe

4πε0x2

e−γ x2 (γ x2)3

12
.

The long-range component of the potentials, given by the
leading term in each of Eqs. (19) and (20), would be pro-
portional to the renormalization charge, but they cancel in
the difference, so no renormalization is needed for this con-
tribution. However, it is necessary to continue to work with
regulated quantities. From Eqs. (7), (21), (90), (96), and (103),
we have

�Eu(µH) = −α2γ 3 h̄c

12π

∞∑
|κ|=1

∫ ∞

0
dx2 x2

2 e−γ x2 h|κ|(x2). (126)

The individual partial-wave contributions are

�Eu,|κ|(µH) = −α2γ 3 h̄c

12π

∫ ∞

0
dx2 x2

2 e−γ x2 h|κ|(x2). (127)

In Table VI we list the numerical values of Eq. (127) for
the PV1, PV2, and PV3 regulator schemes along with values
of partial sums over |κ|,

�EK
u (µH) =

K∑
|κ|=1

�Eu,|κ|(µH), (128)
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TABLE VII. Values of �Eu,|κ|(µH) for large values of |κ| and
values of p defined in Eq. (130), all calculated with the PV1 regular-
ization scheme.

|κ| �Eu,|κ|(µH) p

100 9.895 × 10−2 3.94
500 6.293 × 10−5 4.92
1000 2.031 × 10−6 4.98
5000 6.569 × 10−10 5.00

for various upper limits. The partial-wave series starts out
with large negative contributions which decrease in magnitude
rapidly and change sign to give net positive partial sums, not
unlike the behavior shown in Fig. 1. For the PV1 scheme,
the positive terms reach a maximum value at |κ| = 7 and
eventually approach zero as |κ| increases. As Table VI shows,
the partial sums approach the limiting value more slowly for
larger values of the regulator masses.

If we assume that the asymptotic form of values of
Eq. (127) is given by

�Eu,|κ|(µH) ≈ const

|κ|p
, (129)

then we can estimate a value for p as

p ≈
ln

( �Eu,|κ|(µH)
�Eu,|κ|+1(µH)

)
ln

( |κ|+1
|κ|

) . (130)

Table VII gives values of �Eu,|κ|(µH) for large values of
|κ| and values of p defined in Eq. (130), all calculated with
the PV1 regularization scheme. The values for p suggest the
asymptotic limit p → 5, although we have not independently
confirmed that result.

G. Scattering

The third case we consider is the scattering potential given
in Eq. (23). The spherical average is


3(x2) = qe

Q2
j0(Qx2/h̄). (131)

The corresponding vacuum polarization correction to the Born
amplitude is

qeq(2)
p (Q2)

Q2
= qeqp

Q2

α

π
�(Q2), (132)

where (see Sec. IX B)

�(Q2) = h̄c
∫ ∞

0
du

2∑
i=0

Ci

∫
dx2

∫
dx1

1

x1

× Tr[Fi(x2, x1, iu)Fi(x1, x2, iu)] j0(Qx2/h̄)

=
∫ ∞

0
dx2 j0(Qx2/h̄) h(x2)

= 1

h̄c

∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i

( u

h̄c

)4
− 1

ci

( u

h̄c

)2
]

× 1

(Q/2h̄)2 + c2
i

(133)

in analogy with Eq. (49). The renormalization constant is

�(0) = 1

3

2∑
i=0

Ci ln

(
mi

m0

)2

, (134)

and the renormalized correction factor is

�̂(Q2) = �(Q2) − �(0). (135)

Note that

�(0) = T (∞), (136)

so we do not discuss the renormalization constant any further
here.

We reintroduce a cutoff on the potential, as in Eq. (53), to
provide a stable numerical evaluation. This can be written as

�(Q2) =
∫ X

0
dx2 j0(Qx2/h̄) h(x2) + ��(Q2), (137)

where

��(Q2) = 1

h̄c

∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i

( u

h̄c

)4
− 1

ci

( u

h̄c

)2
]

× e−2ciX

(Q/2h̄)2+ c2
i

[
cos(QX/h̄)+ 2cih̄

Q
sin(QX/h̄)

]
(138)

and

��(0) = 1

h̄c

∫ ∞

0
du

2∑
i=0

Ci

[
1

3c3
i

( u

h̄c

)4
− 1

ci

( u

h̄c

)2
]

× e−2ciX

c2
i

(1 + 2ciX ). (139)

The partial-wave expansion is given by (see Sec. IX C)

�̂|κ|(Q2) =
∫ X

0
dx2[ j0(Qx2/h̄) − 1]h|κ|(x2). (140)

For the numerical calculation, we consider Q = 0.1mec, with
regulator masses m1 = 3me and m2 = 5me. The cutoff given
in Eq. (53) with R = X is included in the evaluation. Ta-
ble VIII gives the numerical results for various values of the
cutoff X , both for the individual terms in Eq. (140) and for the
partial sums

�̂K (Q2) =
K∑

|κ|=1

�̂|κ|(Q2). (141)

The partial-wave behavior is not much different from that
encountered in the previous two cases. In particular, it can be
seen that the convergence of the sum over |κ| is slower for
larger values of the cutoff X . In fact, the convergence appears
to be nonuniform, that is, to reach a certain accuracy, the
number of terms needed in the partial sum increases as the
cutoff X increases.

X. CONCLUSION

We have carried out calculations of vacuum polarization
for various applications using a partial-wave expansion in
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TABLE VIII. Individual terms �̂|κ|(Q2) and partial sums over
|κ|, �̂K (Q2), for Q = 0.1mec for various values of the cutoff X in the
integration over x2. The last row gives the complete function �̂(Q2).

X = 1.0 λ̄e X = 10.0 λ̄e X = 100.0 λ̄e

�̂1(Q2) 0.000 039 219 −0.003 179 729 −0.005 554 317

�̂2(Q2) 0.000 072 394 −0.003 665 058 −0.008 305 051

�̂3(Q2) 0.000 046 031 −0.003 461 232 −0.010 166 735

�̂4(Q2) 0.000 025 263 −0.002 958 788 −0.011 468 983

�̂5(Q2) 0.000 013 631 −0.002 354 685 −0.012 379 569

�̂10(Q2) 0.000 216 333 −0.019 694 567 −0.115 315 317

�̂100(Q2) 0.000 215 835 0.000 303 838 −0.363 639 445

�̂1000(Q2) 0.000 215 835 0.000 568 154 −0.001 940 354

�̂(Q2) 0.000 215 835 0.000 568 188 0.000 568 188

each case. The calculations are (1) the Uehling potential at
a given radius in the field of a point charge, (2) the vacuum
polarization correction to the Lamb shift in muonic hydrogen,
and (3) the vacuum polarization correction to the amplitude
for scattering from a point charge. The formalism used is quite
general and can be applied to other cases.

An important property of the formulation is the identi-
fication of the renormalization charge based on the leading
behavior of the unrenormalized vacuum polarization at large
distances. This approach does not rely on knowledge of an an-
alytic functional form to calculate the renormalization charge.
As a result, the renormalization may be carried out with a
term-by-term subtraction in the partial-wave expansion.

The analysis shows that certain details of the calculation
require close attention. One issue is the fact that the con-
vergence of the partial wave expansion is seen to depend on
the distance from the source charge in a nonuniform manner,
with the muonic hydrogen calculation being an exception.
This is addressed by introducing a finite cutoff for the range
of the potential of the source charge. We have shown that
the error due to the cutoff may be made arbitrarily small by
making the cutoff sufficiently large. The muonic hydrogen
calculation does not require a cutoff, because for the non-
relativistic wavefunctions considered, there is a cancellation
between the leading large-distance terms of the potentials of
the charge distributions of the S and P states, resulting in an
exponentially damped difference potential.

The numerical results also show that the distribution of the
partial wave contributions to the total depends on both the
regulator masses and the cutoff on the potential of the source

charge. Although this may appear to be problematic, the nu-
merics also show that in the limits of large cutoff distance
and large regulator masses, the results converge to the values
obtained with the conventional approach to the evaluation.

ACKNOWLEDGMENT

J.S. gratefully acknowledges support by the National Insti-
tute of Standards and Technology.

APPENDIX A: SINGULAR INTEGRALS

In the vacuum polarization calculation, singular integrals
of the form

I =
∫ ∞

0
du

2∑
i=0

Ci
u2n

(h̄cci )2n+1
, n = 0, 1, 2, . . . (A1)

occur. Individually, they are logarithmically divergent, but the
sum is finite, because the leading asymptotic behavior of the
individual integrands is 1/u, and this vanishes due to the fact
that C0 + C1 + C2 = 0.

To evaluate the integral, we note that u2 = (h̄cci )2 −
(mic2)2 to write

I =
∫ ∞

0
du

2∑
i=0

Ci
u2n−2

(h̄cci )2n−1
−

∫ ∞

0
du

2∑
i=0

Ci
u2n−2(mic2)2

(h̄cci )2n+1
.

(A2)

The second term on the right-hand side vanishes, because
there is no dependence on i if the variable change u → mic2u
is made, and as a consequence, the regulator sum vanishes.
This scaling is not possible in Eq. (A1) because the integrals
are individually divergent and different scale changes in the
integrals cannot simultaneously be made. Evidently, the inte-
grals in Eq. (A1) are independent of n, so we evaluate them
all by examining the case n = 0.

Starting from∫ w

0
du

1

h̄cci
= ln

(
w

mic2

)
+ ln

⎛⎝1 +
√

1 +
(

mic2

w

)2
⎞⎠,

(A3)

we obtain

I = lim
w→∞

∫ w

0
du

2∑
i=0

Ci
1

h̄cci
= −1

2

2∑
i=0

Ci ln

(
mi

m0

)2

.

(A4)

APPENDIX B: ASYMPTOTIC EXPANSION

This Appendix gives some details of the asymptotic expansion of the function hn(x) for large x. The asymptotic expansions
of the modified spherical Bessel functions are [14]

in(x) = ex

2x

[
1 − n(n + 1)

2x
+ (n − 1)n(n + 1)(n + 2)

8x2
+ · · ·

]
, (B1)

kn(x) = e−x

x

[
1 + n(n + 1)

2x
+ (n − 1)n(n + 1)(n + 2)

8x2
+ · · ·

]
. (B2)
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For the function

f|κ|(mi, u, x2, x1) = |κ|{(m2
i c4 − u2

)[
k2
|κ|(cix>)i2

|κ|(cix<) + k2
|κ|−1(cix>)i2

|κ|−1(cix<)
]

+ (
m2

i c4 + u2
)[

k2
|κ|(cix>)i2

|κ|−1(cix<) + k2
|κ|−1(cix>)i2

|κ|(cix<)
]}

, (B3)

which is implicitly contained in Eq. (103), we define separate terms proportional to m2
i and u2 as

f (m)
|κ| (mi, u, x2, x1) = |κ| m2

i c4[k2
|κ|(cix>) + k2

|κ|−1(cix>)
][

i2
|κ|(cix<) + i2

|κ|−1(cix<)
]

(B4)

and

f (u)
|κ| (mi, u, x2, x1) = −|κ| u2

[
k2
|κ|(cix>) − k2

|κ|−1(cix>)
][

i2
|κ|(cix<) − i2

|κ|−1(cix<)
]
. (B5)

The expansions of the modified spherical Bessel functions yield∫ ∞

0
dx1 x1 f (m)

|κ| (mi, u, x2, x1) = |κ|m2
i c4

c2
i (cix2)2

[
1

cix2
+ 1 − |κ|2

2(cix2)3
+ · · · ,

]
, (B6)

∫ ∞

0
dx1 x1 f (u)

|κ| (mi, u, x2, x1) = |κ|3u2

c2
i (cix2)5

+ · · · , (B7)

where integration over x1 is facilitated by making the expansion

1

x1
= 1

x2
+ x2 − x1

x2
2

+ (x2 − x1)2

x3
2

+ · · · (B8)

where necessary. Thus

h(m)
|κ| (x2) = 4x2

2

(h̄c)3

∫ ∞

0
du

2∑
i=0

Ci c2
i

∫ ∞

0
dx1 x1 f (m)

|κ| (mi, u, x2, x1) = 4

3x3
2

2∑
i=0

Ci

(
h̄

mic

)2

|κ|(1 − |κ|2) + · · · , (B9)

h(u)
|κ| (x2) = 4x2

2

(h̄c)3

∫ ∞

0
du

2∑
i=0

Ci c2
i

∫ ∞

0
dx1 x1 f (u)

|κ| (mi, u, x2, x1) = 4

3x3
2

2∑
i=0

Ci

(
h̄

mic

)2

|κ|3 + · · · , (B10)

and

h|κ|(x2) = h(m)
|κ| (x2) + h(u)

|κ| (x2) = 4λ̄e
2|κ|

3x3
2

2∑
i=0

Ci

(
me

mi

)2

+ · · · . (B11)

For the masses in the PV1 regularization scheme, this gives

h|κ|(x2) = 2464

1875

λ̄e
2 |κ|
x3

2

+ · · · = 1.314 133 . . .
λ̄e

2 |κ|
x3

2

+ · · · . (B12)

In the limit of large regulator masses, this is just

h|κ|(x2) → 4λ̄e
2 |κ|

3x3
2

= 1.333 333 . . .
λ̄e

2 |κ|
x3

2

. (B13)
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