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The quantum switch implements indefinite causal order via a coherent control of the orderings of multiple
quantum operations, leading to various advantages and applications, one of which being in work extraction where
enhancements to daemonic ergotropy is possible. Motivated by recent developments in the connections between
non-Markovianity and the quantum switch, we construct a non-Markovian process that reduces to the two-party
quantum switch in the fully non-Markovian limit. By controlling the amount of non-Markovianity in the process,
we identified two operational regimes with differing behaviors. One has its daemonic ergotropy dependent on
the presence and amount of non-Markovianity, achieving the maximum in the quantum switch case of full non-
Markovianity. The other regime, however, has no advantages from non-Markovianity. We compare this non-
Markovian process with the case of a superposition of independent channels, where two channels are placed
in a coherent superposition without indefinite causal order, uncovering the advantages of non-Markovianity.
Finally, the conditions required for the production of positive daemonic ergotropy are also derived for the case
of fully non-Markovian and fully Markovian limits, where we compare against the conditions required for the
superposition of independent channels.
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I. INTRODUCTION

The phenomenon of indefinite causal order, where the
orderings of multiple quantum operations can be in a state
of quantum uncertainty, has seen much attention in recent
years [1–3]. This was most apparent in the field of quantum
information theory after the characterization of the two-party
quantum switch [4], a setup that implements indefinite causal
order by controlling the orderings of two quantum channels
�A and �B acting on a main quantum system with a control
qubit. For example, suppose that the operation order �B ◦ �A

is set to occur if the control qubit is in a particular state
|a〉, and that the alternate order �A ◦ �B occurs if it is in a
state |b〉 orthogonal to |a〉; then indefinite causal order can be
achieved if the control qubit is in a quantum superposition
of the two orthogonal states |c〉 = √

α|a〉 + √
1 − α|b〉 for

α �= 0, 1. This is referred to as a controlled superposition.
Combined with its experimental viability [5–9], there have

been numerous studies on the quantum switch’s applica-
tion, which covers various quantum information tasks such
as enhancements in computation [4,10–12], communication
[13–15], and metrology [16–18]. For example, if �A and �B

are completely depolarizing channels, such that communica-
tion is impossible individually, putting them in a quantum
switch setup can result in nonzero Holevo and coherent in-
formation of the output state, implying the possibility for
both classical and quantum communications, a phenomenon
referred to as the perfect activation of quantum and classical
capacities [19,20].

*Corresponding author: lockyue@ntu.edu.sg

Naturally, the quantum switch’s advantages were also stud-
ied in work extraction and refrigeration tasks [21–23]. Work
extraction is an important topic in quantum thermodynamics,
where quantum thermal machines facilitate cyclic conversion
of heat from a heat bath into work or usable energy, which
can be stored (charged) and extracted (discharged) in quantum
batteries [24]. For the quantum switch, it was shown that
enhancements to the maximum extractable work of the output
state are possible. This is possible even if the channels �A and
�B are fully thermalizing channels, which returns the thermal
state individually with no extractable work.

These various quantum advantages of the quantum switch
are usually attributed to its intrinsic indefinite causality. How-
ever, some authors have argued that some of these advantages
can be replicated or even surpassed in systems without in-
definite causal order [25], such as in a superposition of
independent channels where �A and �B are placed in the
controlled superposition [15,26], although a fair comparison
might be difficult as these systems can utilize additional
resources not present in the quantum switch [27,28]. Fur-
thermore, there are recent developments in the connections
between non-Markovianity and indefinite causal order, where
non-Markovianity can replicate the advantages of the quan-
tum switch [29], or that the quantum switch can enhance or
activate hidden non-Markovianity in a system [30]. It was also
shown in Ref. [31] that the implementation of the quantum
switch has intrinsic non-Markovianity, where non-Markovian
backflow of information is possible. The communication
enhancements of the quantum switch, as well as the perfect ac-
tivation of capacities, can then be explained from the backflow
of information due to non-Markovianity, with the amount of
enhancement dependent on the amount of non-Markovianity
present.
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Motivated by these developments, we construct a non-
Markovian process that has its non-Markovianity controllable,
and will reduce to the quantum switch when it is fully
non-Markovian. Focusing on input states that are thermal
states, we show that the maximum extractable work of
the output state, as quantified by the daemonic ergotropy
[32], is dependent on the amount of non-Markovianity,
achieving the maximum in the quantum switch case where
non-Markovianity is maximal. Furthermore, in this non-
Markovian process, the case of a superposition of independent
channels is but an intermediate time step in the process. The
comparison between this intermediate time step and the final
time step of the process reveals that the presence of non-
Markovianity is required to outperform the superposition of
independent channels.

This paper is outlined as follows: In Sec. II, we review the
definitions of a non-Markovian operation in the environmental
representation (Sec. II A), from which we show the presence
of non-Markovianity in the quantum switch (Sec. II B). In
Sec. III A, we construct the non-Markovian process that re-
duces to the quantum switch in the fully non-Markovian limit,
before computing the daemonic ergotropy as the maximum
extractable work of this process in a three-stroke cycle heat
engine in Sec. III B. In Sec. IV A, we present our results
where the daemonic ergotropy is enhanced in certain op-
erational regimes in the presence of non-Markovianity, and
in Sec. IV B, we find the conditions for positive daemonic
ergotropy for arbitrary bath temperatures in the prethermal-
ization and full thermalization regimes. Finally, we conclude
the paper in Sec. V.

II. PRELIMINARIES

A. Non-Markovian operation

A quantum operation or channel that acts on a quantum
system Q in an interval t0 → tτ can be described by a com-
pletely positive and trace-preserving (CPTP) map �t0→tτ , such
that ρ

Q
tτ = �t0→tτ (ρQ

t0 ). Such a channel admits an environmen-
tal representation where it can be represented by a bipartite
unitary operation U QA

t0→tτ acting jointly on the system Q and an
ancillary environmental system A, before tracing out A [33],
i.e.,

�t0→tτ (ρQ) = TrA
[
U QA

t0→tτ (ρQ ⊗ ρA)U †QA
t0→tτ

]
. (1)

Note that the superscript indicates the subsystems of a quan-
tum state, or the subsystems that a unitary is acting on. If
the ancillary environmental system ρA = σ A

βA
, where σβ is the

Gibbs or thermal state at inverse temperature β = 1/kBT with
Hamiltonian H , i.e.,

σβ = e−βH

Tr[e−βH ]
, (2)

and the unitary operation U QA conserves total energy with
[U QA, HQ + HA] = 0, then we say that �t0→tτ is a thermal
operation and that it is Gibbs preserving with �t0→tτ (σβ ) = σβ

[34]. Furthermore, we say that the operation is Markovian and
completely positive (CP)-divisible if it is divisible into other
CPTP maps for all times t0 < t < tτ [35,36], i.e.,

�t0→tτ = �t→tτ ◦ �t0→t , ∀ t0 < t < tτ . (3)

Physically, this Markovian thermal operation describes the
evolution of the quantum system Q if it is brought into contact
with a Markovian heat bath at inverse temperature βA.

A crucial requirement for Eq. (1) to hold is for the main and
ancillary environmental systems to be in a product state with
ρQ ⊗ ρA, such that they are uncorrelated [37,38]. Therefore,
if an operation �t0→t2 is Markovian as in Eq. (3), and acts on
an initial state ρ

Q
t0 with ρ

Q
t2 = �t0→t2 (ρQ

t0 ), we have

ρ
Q
t1 = �t0→t1

(
ρ

Q
t0

) = TrA
[
U QA

t0→t1

(
ρ

Q
t0 ⊗ σ A

βA

)
U †QA

t0→t1

]
, (4)

ρ
Q
t2 = �t1→t2

(
ρ

Q
t1

) = TrA′
[
U QA′

t1→t2

(
ρ

Q
t1 ⊗ σ A′

βA

)
U †QA′

t1→t2

]
, (5)

where we have �t0→t2 = �t1→t2 ◦ �t0→t1 . Thus, the Marko-
vian operation �t0→t2 requires two independent environmental
subsystems A and A′ that are uncorrelated with the main
system Q at the start of each interaction.

On the other hand, supposing if we have a channel �′
t0→t2

where the environment A′ of the second time step is correlated
to the main system Q such that they cannot be expressed as a
product state, i.e.,

ρ
Q
t2 = �t1→t2

(
ρ

Q
t1

) = TrA′
[
U QA′

t1→t2

(
ρ

QA′
t1

)
U †QA′

t1→t2

]
, (6)

then we have �′
t0→t2 = �t1→t2 ◦ �t0→t1 , where �t1→t2 is not

a CPTP map in general, implying that �′
t0→t2 is a non-

Markovian process as it does not fulfill the divisibility
property in Eq. (3). This can happen if the environmental
subsystem A′ = A, where its correlations with Q in ρ

QA
t1 comes

from its previous interaction in �t0→t1 [39]. Note that the pres-
ence of system-environment correlations in the environmental
representation is a necessary but not sufficient condition for
non-Markovianity, as there are cases where Eq. (1), and thus
Eq. (3), still holds despite ρQA �= ρQ ⊗ ρA [40–42].

Physically, the environmental subsystem A might be a local
subsystem of the larger heat bath that the main system Q inter-
acts with. Hence, until subsystem A is equilibrated back to the
thermal state by the larger heat bath, it can retain correlations
or memory with the main system Q from previous interactions
[43]. If we restrict the main system Q to interact only with this
local subsystem A, and if the interaction timescale is shorter
than the time it takes for subsystem A to equilibrate back to
the thermal state, then the effective dynamics on the evolution
of the main system Q is non-Markovian in general, where the
evolution of Q does not evolve under CPTP maps for later
time steps as we now have system-environment correlations
between Q and A, i.e., the case in Eq. (6). In the case of
qubits, we refer to such local subsystems as the bath qubit. We
illustrate such a non-Markovian process for qubits in Fig. 1,
where the main system qubit Q interacts with the bath qubit A
at two different time steps, t0 → t1 and t2 → t3, with interval
τA and some interaction strength J . We allow time τT from
t1 → t2 for the bath qubit ρA to equilibrate towards the thermal
state σ A

βA
of the heat bath, governed by some coupling strength

JT . Therefore, by varying τT or JT between the heat bath and
the bath qubit, we can control the non-Markovianity of the
second interaction from t2 → t3. If JT → 0 or τT → 0, the
bath qubit retains all the correlations created from the first
interaction from t0 → t1, resulting in a fully non-Markovian
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FIG. 1. A two-time-step non-Markovian process. The main
quantum system qubit ρQ interacts with a Markovian heat bath at
temperature TA via an intermediary bath qubit ρA at two different
time steps t0 → t1 and t2 → t3. The bath qubit is initialized in the
thermal state of the heat bath with ρA

t0
= σ A

βA
. The bath qubit ρA acts

as a memory in the Markovian heat bath, such that the second inter-
action is correlated to the first, resulting in an overall non-Markovian
interaction. In between the interactions at time steps t1 → t2, the bath
qubit undergoes Markovian interaction with the heat bath, such that
for sufficiently large coupling strength JT or large τT , the bath qubit
ρA can equilibrate back to the thermal state σ A

βA
, losing its memory.

Therefore, the non-Markovianity of the process is dependent on JT

and τT , with the fully non-Markovian case achieved with JT → 0 or
τT → 0.

second interaction. On the other hand, if JT or τT is suffi-
ciently large, then the bath qubit ρA can equilibrate back to
the thermal state σ A

βA
, resulting in a fully Markovian second

interaction.
Note that physically, the bath qubit interacts with the heat

bath continuously. However, in the system under study in
Fig. 1, we consider only bipartite interactions where the bath
qubit system A decouples from the heat bath when it interacts
with the main qubit system Q. This is a reasonable assumption
to make for J 
 JT , where the interaction with the main
system Q dominates the evolution of bath qubit A.

B. Non-Markovianity in the quantum switch

In the two-party quantum switch, two quantum channels
�A and �B that operate on a quantum system Q are placed in a
controlled superposition of alternating operation orders �B ◦
�A and �A ◦ �B, with the superposition coherently controlled
by an ancillary control qubit C. Without loss of generality,
we set the order �B ◦ �A when the control qubit is |0〉, and
the order �A ◦ �B when the control qubit is |1〉. In the Kraus
representation, this quantum switch operation �sw acts as

�sw(ρC ⊗ ρQ) =
∑
i, j

K sw
i j (ρC ⊗ ρQ)K sw†

i j , (7)

with

K sw
i j = |0〉〈0| ⊗ BjAi + |1〉〈1| ⊗ AiBj, (8)

where {Ai} and {Bj} are the sets of Kraus operators for �A and
�B, i.e., �A(ρQ) = ∑

i Aiρ
QA†

i and �B(ρQ) = ∑
j B jρ

QB†
j .

Note that the quantum switch operation �sw remains as a valid
CPTP map with

∑
i, j K sw†

i j K sw
i j = ∑

i A†
i Ai = ∑

j B†
j B j = I .

FIG. 2. Schematics of the quantum switch. The control qubit
ρC controls the operation orders on the main quantum system ρQ.
If ρC = |0〉〈0|, we have �B ◦ �A(ρQ) (solid arrows), and if ρC =
|1〉〈1|, we have �A ◦ �B(ρQ) (dashed arrows). By breaking the quan-
tum switch operation into two different time steps, i.e., �sw

t0→t2
=

�sw
t1→t2

◦ �sw
t0→t1

, it can be shown that �sw
t1→t2

is not a CPTP map in
general and, thus, is non-Markovian and allows for non-Markovian
effects such as backflow of information.

Therefore, it also admits an environmental representation of

�sw(ρC ⊗ ρQ) = TrA,B[U sw(ρC ⊗ ρA ⊗ ρQ ⊗ ρB)U sw†],

(9)

where subsystems A and B are the ancillary environmental
subsystems corresponding to �A and �B, respectively. It was
shown in Ref. [31] that if we split �sw into two different time
steps such that

U sw = U sw
t1→t2U

sw
t0→t1

= [|0〉〈0|C ⊗ (
IA ⊗ U QB

B

) + |1〉〈1|C ⊗ (
U AQ

A ⊗ IB
)]

× [|0〉〈0|C ⊗ (
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

IA ⊗ U QB
B

)]
,

(10)

we have

ρ
CQ
t1 = �sw

t0→t1

(
ρC

t0 ⊗ ρ
Q
t0

)
= TrA,B

[
U sw

t0→t1

(
ρC

t0 ⊗ ρA
t0 ⊗ ρ

Q
t0 ⊗ ρB

t0

)
U sw†

t0→t1

]
, (11)

ρ
CQ
t2 = �sw

t1→t2

(
ρ

CQ
t1

)
= TrA,B

[
U sw

t1→t2

(
ρ

CAQB
t1

)
U sw†

t1→t2

]
. (12)

That is, we obtained the case of Eq. (6) with �sw
t0→t2 = �sw

t1→t2 ◦
�sw

t0→t1 , where �sw
t1→t2 is not a CPTP map as the environments

A and B are not independent of systems CQ after the first
interaction �sw

t0→t1 with corresponding unitary U sw
t0→t1 . This

means that the second half of the quantum switch operation
is non-Markovian in general, and can lead to backflow of
information that can contribute to enhanced communications.
We illustrate this in Fig. 2, and show in Appendix A 1 that
Eqs. (9) and (10) indeed correspond to the quantum switch
operation of Eqs. (7) and (8).

012201-3



CHEONG, PRADANA, AND CHEW PHYSICAL REVIEW A 108, 012201 (2023)

Suppose if, instead, we dictate that U sw
t1→t2 acts on new

independent environments A′ and B′ as in Eq. (5), then we
have

ρ
CQ
t2 = �

traj
t1→t2

(
ρ

CQ
1

)
= TrA′,B′

[
U sw

t1→t2

(
ρA′ ⊗ ρ

CQ
t1 ⊗ ρB′)

U sw†
t1→t2

]
, (13)

such that �
traj
t1→t2 is a CPTP map, and �traj ≡ �

traj
t1→t2 ◦ �sw

t0→t1
is Markovian; then its corresponding Kraus operator is not the
quantum switch:

K traj
i jkl = α0|0〉〈0| ⊗ BlAi + α1|1〉〈1| ⊗ AkBj, (14)

where α0 and α1 are complex coefficients to ensure∑
i jkl K traj†

i jkl K traj
i jkl = I . This is referred to as a superposition of

trajectories [27], for which we denote its operation as �traj,
in contrast with the quantum switch’s superposition of orders.
In other words, the condition of system-environment corre-
lations, i.e., the possibility for a non-Markovian process, is
necessary to recover the quantum switch operation �sw.

Note that if we were to stop the operation of the quantum
switch after �sw

t0→t1 , we have an operation where �A is applied
when the control qubit is |0〉, and �B is applied when the
control qubit is |1〉. This is referred to as a superposition of
independent channels [26], which we denote as �indep, and
has the Kraus operator of

K indep
i j = η0|0〉〈0| ⊗ Ai + η1|1〉〈1| ⊗ Bj, (15)

where η0 and η1 are complex coefficients to ensure∑
i j K indep†

i j K indep
i j = I . We show in Appendix A 3 that dictat-

ing Eq. (13) indeed leads to Eq. (14), and in Appendix A 2
that terminating the quantum switch after �sw

t0→t1 indeed leads
to Eq. (15).

The case of �indep is often compared to the quantum
switch operation �sw in discussions on the origins of the
quantum switch’s advantages, where the operation �indep was
shown to be able to replicate or surpass the communication
enhancements of �sw in certain cases [15,26,28]. In this non-
Markovian perspective of the quantum switch, the difference
in communication enhancements between �sw and �indep can
be framed as the presence of non-Markovian effects in the op-
eration of �sw

t1→t2 , specifically the presence of non-Markovian
backflow of information [31]. Likewise, a comparison be-
tween �sw and �traj [28] can also be framed as the difference
between a system with non-Markovian system-environment
correlations and one without it.

III. NON-MARKOVIAN PROCESS THAT REDUCES
TO THE QUANTUM SWITCH

A. Extending the quantum switch to control non-Markovianity

As described in Sec. II B, we can break the quantum switch
operation �sw into a two-time-step process in the environmen-
tal representation of Eq. (9). By having the initial ancillary
environmental states to be thermal states with inverse tem-
peratures βA and βB, and by ensuring that U sw = U sw

t1→t2U
sw
t0→t1

conserves total energy, the quantum switch operation �sw is
an indefinite causal order of thermal operations, with environ-

mental representation of

�sw(ρC ⊗ ρQ) = TrA,B
[
U sw

(
ρC ⊗ σ A

βA
⊗ ρQ ⊗ σ B

βB

)
U sw†

]
.

(16)

Physically, the main system Q interacts with two heat baths
A and B of inverse temperatures βA and βB in a superposi-
tion of alternating orders. If the control qubit C is |0〉, the
main system Q interacts with heat bath A before heat bath
B, and if the control qubit is |1〉, the interaction is with
bath B before bath A. As noted in Sec. II B, the presence
of system-environment correlations is necessary to recover
the quantum switch operation �sw. Therefore, these ancillary
environmental subsystems A and B play the role of the local
bath subsystems that can retain their memory between the
operations of U sw

t0→t1 and U sw
t1→t2 (see Sec. II A).

Similar to the case of Fig. 1, we can extend the op-
eration of the quantum switch by allowing control of the
non-Markovianity via the equilibration of local bath subsys-
tems A and B, between the operations of U sw

t0→t1 and U sw
t1→t2 .

Since the equilibration takes place between U sw
t0→t1 and U sw

t1→t2 ,
we relabel U sw

t1→t2 → U sw
t2→t3 , such that the equilibration opera-

tion which we denote by Nt1→t2 takes place in t1 → t2.
We refer to this extended quantum switch operation with

the additional equilibration process as �ext. If this equilibra-
tion is absent, we have �ext = �sw, and if this equilibration
is maximum, such that the bath qubits return to the thermal
states, then we have �ext = �traj. More specifically, we have

�ext(ρC⊗ρQ) = TrA,B
[
U sw

t2→t3Nt1→t2

(
U sw

t0→t1

(
ρC ⊗σ A

βA
⊗ρQσ B

βB

)
× U sw†

t0→t1

)
U sw†

t2→t3

]
, (17)

where between the operations of U sw
t0→t1 and U sw

t2→t3 , we per-
form a thermal operation Nt1→t2 that acts on local bath
subsystems A and B.

Let us first define the energy-conserving unitaries U sw
t0→t1

and U sw
t2→t3 , before returning to the definition of Nt1→t2 . We

consider qubit systems where the free Hamiltonians of the
main system Q, and local bath qubits A and B, are

HQ = IC ⊗ IA ⊗ ω|1〉〈1|Q ⊗ IB, (18)

HA = IC ⊗ ω|1〉〈1|A ⊗ IQ ⊗ IB, (19)

HB = IC ⊗ IA ⊗ IQ ⊗ ω|1〉〈1|B, (20)

while the control qubit C has no energy. Next, we define the
interaction Hamiltonian between the main system Q and the
bath qubits as a simple energy-conserving exchange operation
of

HAQ
int = J (eiϕσ A

−σ
Q
+ + e−iϕσ A

+σ
Q
− ), (21)

HQB
int = J (eiϕσ B

−σ
Q
+ + e−iϕσ B

+σ
Q
− ), (22)

where J is the interaction strength, ϕ is an arbitrary phase,
and σ+ and σ− are the qubit raising and lowering oper-
ators for their corresponding subsystems, i.e., σ

Q
+ = IC ⊗

IA ⊗ |1〉〈0|Q ⊗ IB and σ
Q
− = IC ⊗ IA ⊗ |0〉〈1|Q ⊗ IB, and vice

versa for σ A
± and σ B

±. The bipartite unitaries that imple-
ment these interactions for a time interval of t can then be
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derived as

U AQ
A =

⎛
⎜⎜⎝

1 0 0
0 cos Jt −ieiϕ sin Jt 0
0 −ie−iϕ sin Jt cos Jt 0
0 0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0

0 xA −ieiϕ
√

1 − x2
A 0

0 −ie−iϕ
√

1 − x2
A xA 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (23)

and likewise,

U QB
B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 xB −ie−iϕ
√

1 − x2
B 0

0 −ieiϕ
√

1 − x2
B xB 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (24)

such that

e−iHAQ
int t/h̄ = IC ⊗ U AQ

A ⊗ IB, (25)

e−iHQB
int t/h̄ = IC ⊗ IA ⊗ U QB

B , (26)

where for simplicity we have taken xA, xB = cos Jt with −1 �
xA, xB � 1. The interactions would then be characterized by
the values of xA and xB in a discrete time manner, rather than
the interaction strength J or time t .

We note that for positive values of xA and xB, and for ar-
bitrary ϕ, U AQ

A and U QB
B are simply the generalized amplitude

damping channel (GADC), also referred to as the one-qubit
thermal operation [44,45]. Note that we take ϕ = 3π/2 for the
rest of the paper, such that U AQ

A and U QB
B take the same signs

as the GADC used in the literature. For negative values of xA

and xB, the resulting operation is simply the GADC with an
additional phase flip of σz ⊗ σz where σz is the Pauli Z matrix.
The values of xA or xB determine the amount of thermalization
on the main system Q. If xA or xB is zero, then we have full
thermalization where the main system Q becomes a thermal
state. Otherwise, as xA and xB are distanced from zero, we
have prethermalization where the thermalization is weakened,
until the values of −1 and 1, where there is no thermalization
at all. In the two-time-step quantum switch operation of Fig. 2,
we have

U sw
t0→t1 = |0〉〈0|C ⊗ U AQ

A ⊗ IB + |1〉〈1|C ⊗ IA ⊗ U QB
B , (27)

U sw
t2→t3 = |0〉〈0|C ⊗ IA ⊗ U QB

B + |1〉〈1|C ⊗ U AQ
A ⊗ IB, (28)

which are each a controlled superposition of one-qubit ther-
mal operations.

Finally, for the equilibration operation Nt1→t2 of the bath
qubits, we can also describe it with the GADC or one-qubit
thermal operation. However, since we do not need to keep
track of additional ancillaries for the bath qubits, we can

simply use its Kraus representation of [46]

K1 = √
1 − N (|0〉〈0| +

√
1 − γ |1〉〈1|),

K2 =
√

γ (1 − N )|0〉〈1|,
(29)

K3 =
√

N (
√

1 − γ |0〉〈0| + |1〉〈1|),
K4 =

√
γ N |1〉〈0|,

such that

Nt1→t2

(
ρ

CAQB
t1

) =
∑
i, j

Wi jρ
CAQB
t1 W †

i j, (30)

where

Wi j = IC ⊗ KA
i ⊗ IQ ⊗ KB

j . (31)

N ∈ [0, 0.5] is the excited state population of a thermal state
at the temperature of the heat bath that does the equilibration,
i.e.,

NA = 1

1 + eβAω
, NB = 1

1 + eβBω
, (32)

σβA =
(

1 − NA 0
0 NA

)
, σβB =

(
1 − NB 0

0 NB

)
. (33)

Note that the equilibration of each individual bath qubit A and
B has the canonical master equation of

ρ̇(t ) = JT n
[
σ−ρ(t )σ+ − 1

2 {σ+σ−, ρ(t )}]
+ JT (n + 1)

[
σ+ρ(t )σ− − 1

2 {σ−σ+, ρ(t )}], (34)

where JT is the coupling strength with the bath, n = (eβω −
1)−1 is the mean number of excitations in the bath, and {·} is
the anticommutator. We have [47]

γ = 1 − eJT (2n+1)(t2−t1 ), (35)

where t2 − t1 is the equilibration time, and the parameter γ ∈
[0, 1] controls the strength of the thermalization or equilibra-
tion of the bath qubits. For γ = 0, there is no thermalization
and thus the bath qubits retain their correlations with the main
system Q, giving us the fully non-Markovian case of �ext(γ =
0) = �sw. If instead we have γ = 1, then the thermalization
is maximum and the bath qubits return to the thermal states,
losing their correlations with the main system Q, giving us the
fully Markovian case of �ext(γ = 1) = �traj. For 0 < γ < 1,
we have the general case that has varying non-Markovianity
that is between the extreme cases of the quantum switch �sw

and the superposition of trajectories �traj.
This completes the construction of the extended non-

Markovian process �ext, and we have illustrated its operation
in Fig. 3. This operation �ext exemplifies the differences be-
tween �sw, �traj, and �indep, as well as covering both full and
prethermalization regimes by varying xA and xB. We have

ρ
CAQB
t1 = U sw

t0→t1

(
ρC

t0 ⊗ σ A
βA

⊗ ρ
Q
t0 ⊗ σ B

βB

)
U sw†

t0→t1 , (36)

ρ
CAQB
t2 = Nt1→t2

(
ρ

CAQB
t1

)
, (37)

ρ
CAQB
t3 = U sw

t2→t3ρ
CAQB
t2 U sw†

t2→t3 , (38)
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FIG. 3. A non-Markovian operation �ext that reduces to the
quantum switch operation �sw when JT = 0 or t2 − t1 = 0, and
to the superposition-of-trajectories operation �traj when JT 
 0 or
t2 − t1 
 0. Equivalently, these correspond to γ = 0 and γ = 1,
respectively. The main quantum system qubit Q is sent into a super-
position of two alternating interaction orders, controlled by a control
qubit C. If ρC = |0〉〈0|C , Q interacts with the bath qubit A from
t0 → t1, followed by bath qubit B from t2 → t3 (solid arrows). On
the other hand, if ρC = |1〉〈1|C , Q interacts with B first from t0 → t1,
before A from t2 → t3 (dashed arrows). From t1 → t2, the bath qubits
undergo an equilibration process Nt1→t2 by the heat baths they are in,
which depends on the parameter γ . For strong equilibration (γ → 1),
the bath qubits return to the thermal state and lose their memory of
the previous interaction, resulting in a Markovian process. On the
other hand, for weak equilibration (γ → 0), the bath qubits can retain
their memory, resulting in a non-Markovian process in general.

and

�indep
(
ρC

t0 ⊗ ρ
Q
t0

) = TrA,B
[
ρ

CAQB
t1

]
, (39)

�sw
(
ρC

t0 ⊗ ρ
Q
t0

) = TrA,B
[
ρ

CAQB
t3 (γ = 0)

]
, (40)

�traj
(
ρC

t0 ⊗ ρ
Q
t0

) = TrA,B
[
ρ

CAQB
t3 (γ = 1)

]
. (41)

B. Work extraction

Now that we have the extended non-Markovian process
�ext, we are interested in extracting work if it is part of a
three-stroke cycle heat engine [24] as shown in Fig. 4. In such
a cycle, the working system Q is initialized to a thermal state
by contact with a heat bath with inverse temperature βQ. It
is then placed in contact with a typically hotter heat bath,
extracting usable and passive energies from it. The extracted
usable energy is then stored in a quantum battery which can be
used to perform work. Finally, the working body is initialized
again by the heat bath of βQ, dumping its accumulated passive

FIG. 4. A three-stroke cycle heat engine that utilizes the ex-
tended non-Markovian operation �ext to extract work. (a) The main
system Q is the working body, which is initialized to a thermal state
with inverse temperature βQ. (b) The main system Q undergoes the
�ext operation, extracting energy from the two heat baths with inverse
temperatures βA and βB. (c) The extracted energy is stored in a quan-
tum battery which can be used to do work. By considering an ideal
weight model for the quantum battery, the maximum extractable
work is the ergotropy of the output state in (b). Specifically, we
consider the daemonic ergotropy, where the control qubit is measured
first before work is extracted from the main system Q. The cycle is
then “reset” in (a) when the main system Q is reinitialized, and a
fresh control qubit C is provided.

energy and “resetting” the thermodynamic cycle. In our case,
the hot baths that the working system extracts energy from
are the two heat baths in the �ext operation, with inverse
temperatures βA and βB, as shown in Fig. 4.

While this construction is general for different bath
temperatures, for simplicity we assume βA = βB = β, or
equivalently NA = NB = N , i.e., the bath qubits A and B are
initialized as

σ A
β = σ B

β = (1 − N )|0〉〈0| + N |1〉〈1|, (42)

and since the main system Q is initialized with a bath with
inverse temperature βQ, we have

ρ
Q
0 = σ

Q
βQ

= (
1 − NQ

)|0〉〈0| + NQ|1〉〈1|. (43)

For an initializing bath that is at a lower temperature than the
heat baths in �ext, we have βQ > β and NQ < N .

Here, we consider the ideal weight model for the battery
[48], such that, in the absence of system-battery correlations
and battery coherences in its energy eigenbasis, the maximal
extractable work of the cycle is the ergotropy extracted from
the hotter heat bath [49–51]. Specifically, taking the same
approach as Ref. [22], we consider the daemonic ergotropy
[32] as the extractable energy that can be stored in the quan-
tum battery to do useful work, where the control qubit C is
measured first, before the ergotropy of the collapsed main
system Q is computed, conditioning on the measurement out-
comes. But first, we define the ergotropy as follows: For a
d-dimensional quantum system Q with system Hamiltonian
H0 = ∑d

k=1 εk|εk〉〈εk| such that εk � εk+1, the ergotropy E of
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a state ρQ = ∑d
k=1 qk|qk〉〈qk| such that qk � qk+1 is defined

as

E (ρQ) = max
U∈U

Tr[H0(ρQ − UρQU †)],

= E (ρQ) − E
(
PQ

ρ

)
, (44)

where the maximization is taken over the set of unitaries U
acting on the space of Q, and we defined the passive state
Pρ = U∗ρU †

∗ where U∗ is the unitary that maximizes E (ρ).
Passive states are states that have zero ergotropy, and are di-
agonal in the energy eigenbasis with descending populations,
i.e., Pρ = ∑d

k=1 qk|εk〉〈εk|. We refer to E (Pρ ) as the passive
energy. Furthermore, in the case of qubits, and assuming a
Hamiltonian of H0 = ω|1〉〈1|, the ergotropy of an arbitrary
qubit,

ρ =
(

ρ00 ρ01

ρ∗
01 ρ11

)
, (45)

can be separated into incoherent Ei and coherent Ec contribu-
tions [52], i.e.,

E (ρ) = Ei(ρ) + Ec(ρ), (46)

with

Ei = max {0, ωδρ}, (47)

Ec = ω

2
(
√

2P(ρ) − 1 −
√

2P(ρ) − 1 − 4|ρ01|2), (48)

where δρ = ρ11 − ρ00, and P(ρ) = Tr[ρ2] is the purity of ρ.
The presence of correlations in bipartite systems can en-

hance ergotropy in certain cases [53,54], but its effects are
nontrivial in general [55]. In our case, the control qubit C and
the main system Q are correlated after the operation of �ext.
By using the daemonic ergotropy, where the control qubit is
measured, these correlations can be leveraged for enhanced
work production. The information gained from the measure-
ment of the control qubit is used to condition the ergotropy
extraction unitary U such that the daemonic ergotropy is

ED(ρCQ) = Tr[H0ρ
Q] − min

Ui∈U

∑
i

piTr
[
H0Uiρ

Q
i U †

i

]
=

∑
i

piE
(
ρ

Q
i

)
, (49)

where the control qubit is measured with the set of orthogonal
projectors {Pi}, with ρ

Q
i = TrC[(Pi ⊗ I )ρCQ]/pi and proba-

bility of measurement pi = Tr[(Pi ⊗ I )ρCQ]. In general we
have ED � E , which saturates when there are no correlations
between C and Q.

In this �ext process, utilizing the control qubit is necessary
for the production of ergotropy. We can see this by explicit
derivation of ρ

Q
t1 , ρ

Q
t2 , and ρ

Q
t3 , that is, if we were to discard

or trace away the control qubit, such that its measurement
outcomes are ignored and not conditioned to perform any
further operations. Noting that ρ

Q
t1 = ρ

Q
t2 , we have

ρ
Q
t1 =

(
1 − ρ

Q
t1,11 0

0 ρ
Q
t1,11

)
, (50)

ρ
Q
t3 =

(
1 − ρ

Q
t3,11 0

0 ρ
Q
t3,11

)
, (51)

where

ρ
Q
t1,11 = N

(
1 − x2

A + x2
B

2

)
+ NQ

(
x2

A + x2
B

2

)
, (52)

ρ
Q
t3,11 = N

(
1 − x2

Ax2
B

) + NQ
(
x2

Ax2
B

)
. (53)

Given the constraints N, NQ ∈ [0, 0.5], and xA, xB ∈ [−1, 1],
such that (x2

A + x2
B)/2 and x2

Ax2
B has a range of [0, 1], the

population of the excited states of both ρ
Q
t1 and ρ

Q
t3 is a con-

vex combination of N and NQ, and thus also has a range
of [0, 0.5], implying that Ei = 0. Furthermore, since the off-
diagonal terms are zero, there is also no coherent contribution
to ergotropy with Ec = 0. Therefore, they are passive states
that have zero ergotropy, i.e.,

E
(
ρ

Q
t1

) = E
(
ρ

Q
t2

) = E
(
ρ

Q
t3

) = 0. (54)

This is consistent with works that demonstrate the advan-
tages of the quantum switch, where the loss of the coherence
of the superposition means the loss of the quantum switch’s
advantages [19,20,31].

Additionally, we note that tracing away the control qubit
will result in a probabilistic mixture of the two causal orders
�B ◦ �A and �A ◦ �B, with the probability of the two orders
depending on the initial state of the control qubit. However,
since the two heat baths have the same temperature in our
case, the two causal orders commute with �B ◦ �A = �A ◦
�B, and so the reduced state ρQ has no dependence on the
initial state of the control qubit.

Here, we further note that the dependence on γ which
controls the non-Markovianity is also absent. This is not
surprising; as one might notice from Fig. 3, the memory
that manifests in the bath qubits after U sw

t0→t1 only comes
into play in the alternate path of the superposition in U sw

t2→t3 ,
e.g., bath qubit A interacts with the main system Q in the
|0〉C path in U sw

t0→t1 , and with Q in the |1〉C path in U sw
t2→t3 .

The non-Markovian effects are thus only present when the
superposition remains coherent. We refer to this as coherent
non-Markovianity.

Taking the control qubit to be ρC = |+〉〈+|, where |+〉 =
(|0〉 + |1〉)/

√
2, such that the superposition along the two

paths is equal, the input joint state of the system is then

ρ
CAQB
t0 = |+〉〈+|C ⊗ σ A

β ⊗ σ
Q
βQ

⊗ σ B
β . (55)

To maintain and maximize the coherence of the superposition,
we measure the control qubit in the |±〉 basis. The daemonic
ergotropy of the �ext process at time t is then

ED
ext

(
ρ

CQ
t

) = p+, tE
(
ρ

Q
+, t

) + p−, tE
(
ρ

Q
−, t

)
, (56)

where

p±, t = Tr
[
(|±〉〈±|C ⊗ IQ)ρCQ

t

]
, (57)

ρ
Q
±, t = 1

p±, t
TrC

[
(|±〉〈±|C ⊗ IQ)ρCQ

t

]
. (58)

We show in Appendix B that p+, tE (ρQ
+, t ) = 0, and so we are

left with p−, tE (ρQ
−, t ). Furthermore, since the main system Q

starts in a thermal state, and because thermal operations do
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not increase coherence, ρQ
±, t will be diagonal with no coherent

contribution to ergotropy. Therefore, we have

ED
ext

(
ρ

CQ
t1

) = max
{
0, ωp−, t1δρ

Q
−, t1

}
, (59)

ED
ext

(
ρ

CQ
t3

) = max
{
0, ωp−, t3δρ

Q
−, t3

}
, (60)

where

p−, t1δρ
Q
−, t1 = −N − NQ

2

(
x2

A + x2
B

) + μ(xA + xB)

+
(

N − NQ

2
− μ

)
(xAxB + 1), (61)

p−, t3δρ
Q
−, t3 = μN (1 − N )γ 2(1 − xA)2(1 − xB)2

+ (μ− ν)(γ − γ
√

1 − γ )xAxB(xA + xB − xAxB)

+ μ(γ + γ
√

1 − γ )(xA + xB − 1)

+ ν(γ − γ
√

1 − γ )(xA + xB − 1)

+ μ(1 − γ )
(
x2

A + x2
B

)
+ N − NQ

2

√
1 − γ (xA + xB)(xAxB − 1)

+
(

−N − NQ

2
− μ

)
x2

Ax2
B + N − NQ

2
− μ,

(62)

and

μ = N

2
(1 − N )(1 − 2NQ), ν = N

2
(1 − N )(1 − 2N ).

(63)
Note that we only consider t1 and t3 since ρ

CQ
t2 = ρ

CQ
t1 . Re-

call that we have the case of superposition of independent
channels �indep at time step t1, the case of superposition of
trajectories �traj at time step t3 when γ = 1, and the quantum
switch case �sw at time step t3 when γ = 0. Therefore,

ED
indep

(
ρ

CQ
t1

) = ED
ext

(
ρ

CQ
t1

)
, (64)

ED
traj

(
ρ

CQ
t3

) = ED
ext

(
ρ

CQ
t3 (γ = 1)

)
, (65)

ED
sw

(
ρ

CQ
t3

) = ED
ext

(
ρ

CQ
t3 (γ = 0)

)
. (66)

Note that Eqs. (59)–(62) are only true for the following three
assumptions: (1) the two heat baths are at the same tem-
perature with βA = βB = β or NA = NB = N , (2) we have
equal controlled superposition with ρC = |+〉〈+|, and (3) we
measure the control qubit C in the |±〉 basis to maximize its
coherence in the basis of the two paths of the superposition.
We will forgo the mention of these assumptions in subsequent
discussions.

IV. EFFECTS OF NON-MARKOVIANITY ON DAEMONIC
ERGOTROPY

A. Advantages of non-Markovianity

We plot the daemonic ergotropy at t3 against xA and xB, i.e.,
Eq. (62), as a color map for different values of γ for NQ < N ,
i.e., TQ < T or βQ > β, in Fig. 5. The case of NQ � N is
omitted as it does not produce positive daemonic ergotropy.
We take ω = 5 GHz, TA = TB = T = 4 GHz ≈ 31 mK, and

FIG. 5. Daemonic ergotropy ED
ext(ρ

CQ
t3 ) for the case of the ex-

tended non-Markovian operation �ext against xA and xB for different
values of γ , for NQ < N . The case of NQ > N is not shown as there
is no positive daemonic ergotropy.

TQ = T/2, for this example, which can be implemented in
superconducting circuits [56]. From Fig. 5, we identify two
operational regimes that behave differently with varying γ .

First, in the second, third, and fourth quadrants, i.e., xA < 0
or xB < 0 or both, the daemonic ergotropy is maximum in
the fully non-Markovian case of the quantum switch, with
γ = 0. Its magnitude, as well as the possible values of xA

and xB for positive daemonic ergotropy, decreases with in-
creasing γ , that is, with increasing Markovianity. We refer to
this regime as �ext

PF . On the other hand, in the first quadrant,
i.e., xA, xB > 0, the daemonic ergotropy is maximum in the
fully Markovian case of the superposition of trajectories, with
γ = 1. Different from �ext

PF , its magnitude and possible values
of xA and xB increase with increasing γ or Markovianity. We
refer to this regime as �ext

no PF. Since trace distance is contrac-
tive under CPTP maps, D(ρ, σ ) � D(�(ρ),�(σ )). We can
verify the presence of non-Markovianity by computing the
Breuer-Laine-Piilo (BLP) measure [57], where the violation
of the contractive property of trace distance is indicative of
backflow of information, which is a sufficient condition for
non-Markovianity. We define this violation as

�t2→t3 D(ρCQ, σCQ) = D
(
ρ

CQ
t3 , σ

CQ
t3

) − D
(
ρ

CQ
t2 , σ

CQ
t2

)
. (67)

Therefore, non-Markovianity is present whenever
�t2→t3 D(ρCQ, σCQ) > 0. We plot Eq. (67) in Fig. 6, and
note that the non-Markovian backflow of information is only
present in the �ext

PF regime. Furthermore, with the exception
of some outliers for small values of γ , areas where there are
positive daemonic ergotropy in the �ext

PF regime also have
non-Markovian backflow of information, which decreases
with increasing γ .

The presence of different regimes that offer varying perfor-
mances is not surprising, and can also be observed in works
demonstrating the communication advantages of the quantum
switch [15,31], where the quantum switch can only offer an
advantage for certain choices of channels. Likewise, for dae-
monic ergotropy, the quantum switch case of γ = 0 can only
grant positive daemonic ergotropy in the �ext

PF regime, and not
in the �ext

no PF regime as evidenced in Fig. 5.
In addition to the possibility for backflow of information,

the difference between the two regimes �ext
PF and �ext

no PF is the
presence and absence of additional phase-flip operations for
negative and positive values of xA and xB, respectively (as
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FIG. 6. Violations of the contractive property of trace distance
that are indicative of non-Markovian backflow of information. The
backflow of information is only present in the �ext

PF regime where
xA < 0 or xB < 0 or both. With the exception of some outliers in
small values of γ , areas where there is positive daemonic ergotropy
in the �ext

PF regime also have non-Markovian backflow of information.

discussed in Sec. III A), which simply correspond to different
thermal operations or interaction times with the bath qubits.
The additional phase-flip operation increases the system-
environment correlations between the main subsystems CQ,
and the bath qubit subsystems AB at time step t1 after the first
operation of �sw

t0→t1 . This system-environment correlation is
the non-Markovian memory in the system which will decay
during the equilibration operation Nt1→t2 from t1 → t2. We
quantify this system-environment correlation as the quantum
mutual information I (ρCQ; ρAB), where I (ρX ; ρY ) = S(ρX ) +
S(ρY ) − S(ρXY ), and S(·) is the von Neumann entropy.

Specifically, since the phase-flip operation commutes with
the GADC, it is straightforward to show that we have

U sw
t0→t1 = UZU sw′

t0→t1 , (68)

where U sw′
t0→t1 is simply Eq. (27) with the constraint of positive

xA and xB, and UZ is the additional phase-flip operation of

UZ = |0〉〈0|C ⊗ σ A
z ⊗ σ Q

z ⊗ IB + |1〉〈1|C ⊗ IA ⊗ σ Q
z ⊗ σ B

z ,

(69)

for the case where both xA and xB are negative, and

UZA = |0〉〈0|C ⊗ σ A
z ⊗ σ Q

z ⊗ IB + |1〉〈1|C ⊗ IA ⊗ IQ ⊗ IB,

(70)

UZB = |0〉〈0|C ⊗ IA ⊗ IQ ⊗ IB + |1〉〈1|C ⊗ IA ⊗ σ Q
z ⊗ σ B

z ,

(71)

for the cases where only xA is negative and only xB is negative,
respectively. We observed that the operations of UZ , UZA , and
UZB always increase the von Neumann entropy S(ρCQ) after
the operation of U sw′

t0→t1 , and since we have

�ZI (ρCQ; ρAB) = �ZS(ρCQ) + �ZS(ρAB) − �ZS(ρCQAB)

= �ZS(ρCQ), (72)

where the difference �Z is taken before and after the operation
of UZ , UZA , or UZB , they increase the system-environment cor-
relations, or non-Markovian memory, I (ρCQ

t1 ; ρAB
t1 ). Note that

�ZS(ρCQAB) = 0 as entropy does not change under unitary

FIG. 7. System-environment correlations or quantum mutual in-
formation I (ρCQ

t2 ; ρAB
t2

) at time step t2 after the equilibration operation
Nt1→t2 . It is largest for negative values of xA and xB, implying in-
creased non-Markovianity memory at those values. It decreases with
increasing γ , which controls the strength of the equilibration, until
γ = 1 where all correlations are destroyed as the bath qubits return
back to the thermal state.

operations, and �ZS(ρAB) = 0 as ρAB is diagonal without any
gain in coherence, and thus does not change under σz oper-
ations. In other words, the presence of phase-flip operations
for negative values of xA or xB, or both, in the �ext

PF regime
can grant additional non-Markovian memory to the system as
compared to the �ext

no PF regime. We plot I (ρCQ
t2 ; ρAB

t2 ) as a color
map in Fig. 7, illustrating the increased system-environment
correlations in the second, third, and fourth quadrants, as well
as its decrease with increasing γ , up until γ = 1 where all
correlations are lost, achieving the fully Markovian case of
�traj.

While for a bipartite mixed state ρXY , quantum discord
with respect to the measurement on Y was shown to be a lower
bound to daemonic ergotropy where X is measured [32], we
note that in our case, the quantum discord of ρCQ with respect
to a measurement on Q was found to be zero, rendering it
unviable to be a lower bound for daemonic ergotropy with
measurement on C. Instead, we note that their mutual infor-
mation I (ρC

t3 ; ρQ
t3 ) is a better predictor for daemonic ergotropy,

achieving the maximum daemonic ergotropy for values of xA

and xB that gives maximum I (ρC
t3 ; ρQ

t3 ) in the �ext
PF regime, and

for most cases in the �ext
no PF regime, which we show in Fig. 8.

The relationship between I (ρC
t3 ; ρQ

t3 ) and ergotropy are known

FIG. 8. Mutual information between systems C and Q at t3 at the
end of the �ext operation, I (ρC

t3
; ρQ

t3 ). It reveals the dependence of
daemonic ergotropy on the correlations between C and Q.
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FIG. 9. Maximum correlations between C and Q at t3 against
maximum system-environment correlations, or non-Markovian
memory at t2. The system-environment correlations at t2 enhance the
correlations between C and Q, and the enhancement is stronger in
the �ext

PF regime. However, this is only true if the system-environment
correlations are above a certain threshold, below which there is an
inverse relation instead.

for locally thermal systems [58], i.e., states that have thermal
states as their reduced states, but are nontrivial for general
mixed states [55] and for daemonic ergotropy [32]. Here, we
will simply note that since

�t2→t3 I (ρC ; ρQ) = �t2→t3 S(ρC ) + �t2→t3 S(ρQ)

+ �t2→t3 S(ρAB) − �t2→t3 I (ρCQ; ρAB),

(73)

where the difference �t2→t3 is taken as the values at t3
minus the values at t2, the change in system-environment
correlations, or non-Markovian memory, �t2→t3 I (ρCQ; ρAB),
has a negative contribution to �t2→t3 I (ρC ; ρQ). This means
that by leveraging the resource of non-Markovian mem-
ory I (ρCQ

t2 ; ρAB
t2 ), such that it is decreased from t2 → t3,

i.e., �t2→t3 I (ρCQ; ρAB) � 0, one can grant enhancement to
�t2→t3 I (ρC ; ρQ), increasing I (ρC

t3 ; ρQ
t3 ) for increased produc-

tion of daemonic ergotropy. We show this numerically in
Fig. 9, revealing that this effect is stronger for the �ext

PF regime,
and that a threshold has to be reached, before which there is an
inverse relation between I (ρCQ

t2 ; ρAB
t2 ) and I (ρC

t3 ; ρQ
t3 ) instead.

Finally, we summarize these results of Figs. 5, 7, and 8
in Fig. 10, where we plot the maximum daemonic ergotropy,
max ED, the range of values of I (ρCQ

t2 ; ρAB
t2 ) and I (ρC

t3 ; ρQ
t3 )

(shaded regions), as well as the corresponding values of
I (ρCQ

t2 ; ρAB
t2 ) and I (ρC

t3 ; ρQ
t3 ) that give maximum daemonic er-

gotropy (solid and dashed lines), against the parameter γ .
Figure 10 makes clear the advantage of the �ext

PF regime,
which decreases with increasing γ until a certain threshold of
γ ≈ 0.4, where it can no longer produce positive daemonic
ergotropy. More importantly, it is able to surpass the dae-
monic ergotropy of �indep, achieving the maximum daemonic
ergotropy in the quantum switch case of γ = 0. This means
that there are operational regimes where the quantum switch
can outperform a superposition of independent channels if it
is part of the �ext

PF regime with non-Markovian backflow of
information, as well as increased system-environment corre-
lations.

On the other hand, the operational regime of �ext
no PF has

an inverse relation where the upper bound of the daemonic

FIG. 10. Maximum daemonic ergotropy, max ED, system-
environment correlations at t2, I (ρCQ

t2 , ρAB
t2

), and correlations between
C and Q at t3 against γ . The shaded regions are the range of values for
each regime as shown in Figs. 5, 7, and 8, while the solid and dashed
lines are the corresponding values for points that give maximum
daemonic ergotropy. There is a clear advantage of the �ext

PF oper-
ation regime, which decreases with decreasing non-Markovianity
until a point where it has no advantage over �indep. Furthermore,
the fully Markovian case of �traj cannot perform better than �indep.
The difference between �ext

PF and �ext
no PF is that �ext

PF enhances the
system-environment correlations, or non-Markovian memory, which
in turn enhances the correlations between C and Q at t3 greatly. Note
that in the second and third plots, the corresponding values that give
maximum ED for �ext

PF (solid lines) are truncated after γ ≈ 0.4. This
is because their daemonic ergotropy is zero above γ ≈ 0.4, and thus
there are no corresponding values of I (ρCQ

t2 ; ρAB
t2

) and I (ρC
t3

; ρQ
t3 ) that

give maximum ED for �ext
PF .

ergotropy increases with decreasing amount of system-
environment correlations. In this regime, the presence of
system-environment correlations offers no advantage, which
can be attributed to the lack of backflow of information, as
well as the decreased system-environment correlations. Ad-
ditionally, we note that the maximum daemonic ergotropy
cannot surpass that of the superposition of independent chan-
nels �indep, and is only equal to it for the fully Markovian
case of �traj. Therefore, the superposition of trajectories �traj

cannot grant any advantages that are not already granted by
the superposition of independent channels �indep.

In the second plot, we can see that the �ext
PF regime can

grant increased non-Markovian memories I (ρCQ
t2 ; ρAB

t2 ) that are
unachievable by the �ext

no PF regime, which can in turn grant
increased I (ρC

t3 ; ρQ
t3 ) in the third plot. The third plot also re-

veals the possibility of a threshold for I (ρC
t3 ; ρQ

t3 ) of around 0.1

that is reached when γ ≈ 0.4. Values of I (ρC
t3 ; ρQ

t3 ) below this
threshold cannot grant positive daemonic ergotropy for �ext

PF .
We can also see this by comparing Figs. 5 and 8, where the
daemonic ergotropy ED

ext(ρ
CQ
t3 ) for the �ext

PF regime (negative
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xA or xB, or both) decreases to zero when I (ρC
t3 , ρ

Q
t3 ) decreases

to below a threshold.
Since the key difference between �sw and �traj when

comparing against �indep is the non-Markovian operation of
�sw

t2→t3 , as opposed to the Markovian �
traj
t2→t3 (see Sec. II B),

Fig. 10 reveals the advantage of the presence of non-
Markovianity in the system, especially with the presence of
backflow of information for the �ext

PF regime. Furthermore, this
non-Markovianity does not have to be completely preserved
as in the case of the quantum switch. That is, we can allow
some equilibration of the bath qubits (as parametrized by γ ),
and still grant advantages that surpass the superposition of
independent channels. Experimentally, this translates to some
leeway in the short timescales between the interactions of
U sw

t0→t1 and U sw
t2→t3 .

We note, however, that these are only true for the case of
NQ < N , where the main system Q is initialized in a bath that
is colder than the baths used in the �ext operation, as �ext is
unable to produce positive daemonic ergotropy for the case of
NQ > N . Conversely, the superposition of independent chan-
nels �indep can still grant positive daemonic ergotropy even in
the case of NQ > N (see Fig. 10), and is thus one advantage
of �indep that cannot be achieved by the other operations. In
the next section, we will look into these conditions for the
production of positive daemonic ergotropy for �indep, �sw,
and �traj.

B. Conditions for positive daemonic ergotropy

The choice of thermalizing strength, or regimes, as
parametrized by xA and xB is important in determining the
production of daemonic ergotropy as evidenced in Fig. 5. Fur-
thermore, the choice of bath temperatures can also determine
the magnitude of daemonic ergotropy produced. Naturally, we
expect the thermalizing regimes to be dependent on the choice
of bath temperatures; e.g., if a working body is initialized at
a temperature far from the temperature of an interacting heat
bath, then we expect a great change to the state of the working
body even for short interaction time. On the other hand, if the
working body temperature is very close to the temperature of
the heat bath, then the converse is true, and a long interaction
time is needed to change the state of the working body. In this
regard, we attempt to find the conditions that xA and xB must
fulfill for positive daemonic ergotropy given some arbitrary
fixed bath temperatures parametrized by NQ and N .

1. Prethermalization

The effects of the thermalizing regimes, as parametrized
by xA and xB, to daemonic ergotropy manifests nontrivially in
Eq. (62), but can be gleaned in the special cases of the quan-
tum switch �sw, in the superposition of trajectories �traj, and
in the superposition of independent channels �indep, allowing
us to derive the conditions for positive daemonic ergotropy
production. First, for the case of �indep, by setting Eq. (61) to
be greater than zero and simplifying, we have

N − NQ

N (1 − N )(1 − 2NQ)
>

(1 − xA)(1 − xB)

1 + xAxB − x2
A − x2

B

, (74)

FIG. 11. Daemonic ergotropy ED
indep(ρCQ

t1 ) of the case of super-
position of independent channels �indep against xA and xB, for both
NQ < N and NQ > N . For NQ < N , we take βQ = 2β, and for NQ >

N , we take βQ = β/2.

where the left-hand term is positive when NQ < N , and nega-
tive when NQ > N . The right-hand term can also be positive or
negative depending on the values of xA and xB; this means that
even in the case of NQ > N , there are thermalization regimes,
as parametrized by xA and xB, where a positive daemonic
ergotropy is possible for �indep as long as Eq. (74) is fulfilled.
In fact, as shown in Fig. 10, the maximum possible daemonic
ergotropy can be greater with NQ > N than with NQ < N .
We plot the daemonic ergotropy ED

indep(ρCQ
t1 ) as a color map

against xA and xB for both N > NQ and N < NQ in Fig. 11.
On the other hand, in the case of the quantum switch �sw,

setting γ = 0 and simplifying Eq. (62) to be greater than zero
gives

N − NQ

N (1 − N )(1 − 2NQ)
>

(1 + xA)(1 + xB)

1 − xAxB
, (75)

where the left-hand term is the same as in Eq. (74). However,
different from the case of �indep in Eq. (74), the right-hand
term in Eq. (75) is always positive. This means that it cannot
produce positive daemonic ergotropy in the case of NQ > N
where the left-hand term is negative. In other words, the
initializing bath for the main system Q has to be at a lower
temperature than the baths used in the operation of �sw for
production of positive daemonic ergotropy. This is also true
for the general case of γ > 0 for �ext, which can be verified
numerically.

For the fully Markovian case of a superposition of tra-
jectories �traj, the bath qubits are completely thermalized by
the equilibration operation Nt1→t2 with γ = 1. The necessary
conditions for �traj to have positive daemonic ergotropy are
nontrivial in general. However, by taking the special case
of xA = 1 or xB = 1, we can obtain a less general condition
instead. Without loss of generality, substituting xA = 1 and
γ = 1 into Eq. (62) and setting it to be greater than zero, we
have

N − NQ

N (1 − N )(1 − 2NQ)
>

1 − xB

1 + xB
. (76)

Therefore, �traj can produce positive daemonic ergotropy if
Eq. (76) holds in the case of xA = 1. Similar to the case of
the quantum switch in Eq. (75), the right-hand term is al-
ways positive, and thus �traj can only grant positive daemonic

012201-11



CHEONG, PRADANA, AND CHEW PHYSICAL REVIEW A 108, 012201 (2023)

ergotropy for the case of NQ < N where the left-hand term is
also positive.

The case of xA = 1 corresponds to an identity operation,
such that we have a controlled superposition of �B ◦ I and
I ◦ �B, which reduces to the superposition of independent
channels of �indep where xA = xB, i.e., a superposition of
independent �B operations. We can see this by setting xA = xB

in Eq. (74) which gives the same condition as Eq. (76).
On the other hand, this is not true for the quantum switch

operation �sw. That is, if we set xA = 1 for �sw in Eq. (75),
we obtain 2(1 + xB)/(1 − xB) on the right-hand side, different
from the cases of �traj and �indep. This is despite the fact
that the operation also reduces to a controlled superposition
of �B ◦ I and I ◦ �B. This is because in the quantum switch
case, the �B operations in each path of the superposition are
not independent of each other due to the presence of coherent
non-Markovian memory in the bath qubit B.

Equations (75) and (76) also hint at the presence of the two
operational regimes �ext

PF and �ext
no PF. For example, to produce

positive daemonic ergotropy in �sw, we need to minimize the
right-hand side of Eq. (75), which is achieved for negative xA

or xB or both, which is in the �ext
PF regime. On the other hand, in

the case of �traj, the right-hand side of Eq. (76) is minimized
for large values of xB, which is in the �ext

no PF regime.

2. Full thermalization

One might also be interested in the full thermalization case
of xA = xB = 0, where the interaction fully thermalizes the
interacting qubit into a thermal state, which is a completely
passive state with zero ergotropy. It was shown, however, that
the quantum switch can grant nonzero daemonic ergotropy
or perform refrigeration tasks even with full thermalization
[21,22], which was touted as the advantage granted by the
quantum switch’s indefinite causality. However, we note that
such an advantage can also be achieved with the superposition
of independent channels �indep, despite the absence of indefi-
nite causality in �indep.

Substituting the full thermalization case of xA = xB = 0
into the �indep case of Eq. (74), we have

1 − 2N > N2

(
1

NQ
− 2

)
, (77)

which after substituting N = 1/(1 + eβω ) and NQ = 1/(1 +
eβQω ), and simplifying, gives

−1 − eβω

1 + eβω
> − 1 − eβQω

(1 + eβω )2
,

(1 − eβω )(1 + eβω ) > 1 − eβQω,

1 − e2βω > 1 − eβQω,

⇒ 2β < βQ. (78)

That is, the superposition of independent channels �indep can
grant positive daemonic ergotropy even in the full thermaliza-
tion case, as long as the heat bath in the operation is at least
twice that of the initializing heat bath.

Likewise, substituting the full thermalization case of xA =
xB = 0 into the quantum switch �sw case of Eq. (75) and

FIG. 12. Upper bound of NQ against N required for positive
daemonic ergotropy in the �traj operation for the case of full ther-
malization. The upper bound is only positive for large values of N ,
which means that the heat baths used in the operation of �traj must
be at a very high temperature.

simplifying, we have

1 − 2N > N2

(
1

NQ
− 2

)
, (79)

which is the same as Eq. (77), and hence leads to the same
condition of

2β < βQ. (80)

We note that this condition for the quantum switch was also
shown in Ref. [22]. Interestingly, �sw and �indep have the
same condition to generate positive daemonic ergotropy with
full thermalization. In fact, the amount of daemonic ergotropy
generated for both are also the same of −μ + (N − NQ)/2,
which can be shown simply by substituting xA = xB = 0 into
Eqs. (61) and (62). This means that in the case of full ther-
malization there is no need to implement indefinite causal
order with the quantum switch, because a superposition of
independent channels, where the working system interacts
with two heat baths in a superposition, can achieve the same
daemonic ergotropy.

The condition for the superposition of trajectories �traj to
generate positive daemonic ergotropy with full thermalization
is more complicated. We substitute the full thermalization
case of xA = xB = 0 into the �traj case of Eq. (62) along with
γ = 1, and set it to be greater than zero, giving us

NQ <
N (1 − N )(3N − N2 − 3) + N

2N (1 − N )(N − N2 − 2) + 1
, (81)

which we can rewrite with NQ = 1/(1 + eβQω ) and N =
1/(1 + eβω ) to obtain

1

1 + eβQω
<

1 + 2eβω(1 − eβω )(1 + eβω )

1 + e4βω
. (82)

Solving for βQ will then give us

βQ > β + 1

ω
log

(
e2βω(2 + eβω ) − 2

2eβω(1 + eβω )(1 − eβω ) + 1

)
. (83)

The condition of Eq. (83) is a difficult one. We can see this
by plotting the upper bound of NQ, i.e., the right-hand side
of Eq. (81), against N in Fig. 12. The upper bound is only
positive for very large values of N . Furthermore, it is much
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smaller than N until N approaches 0.5, e.g., it is close to zero
when N ≈ 0.45, but approaches 0.5 when N → 0.5. Since
N → 0.5 implies a T → ∞ or β → 0, and assuming a fixed
ω, these translate to β � 1 and βQ 
 β; i.e., we require the
heat baths to be at a very high temperature.

Ultimately, in the full thermalization case, there are no
additional advantages that the quantum switch �sw or the
superposition of trajectories �traj can grant that the superpo-
sition of independent channels �indep cannot. Therefore, the
presence or absence of non-Markovianity plays little role for
full thermalization.

V. CONCLUSION

We have demonstrated how the quantum switch opera-
tion �sw can have intrinsic non-Markovianity in the second
half of its operation, due to the possibility for the viola-
tion of CP divisibility which results from the generation of
system-environment correlations. As non-Markovianity can
be a resource and was recently shown to explain some com-
munication advantages of the quantum switch [31], we asked
how non-Markovianity might also play a role in offering
advantages in terms of work extraction as quantified by dae-
monic ergotropy.

By constructing an extended quantum switch process �ext,
we are able to control the amount of non-Markovianity in
terms of system-environment correlations, such that it re-
duces to the quantum switch operation �sw in the fully
non-Markovian case. For the fully Markovian case, the pro-
cess reduces to the case of a superposition of trajectories
�traj, which the quantum switch was often shown to triumph
over in terms of communication advantages due to the lack of
indefinite causality for �traj [27,28]. From this perspective,
the difference between �sw and �traj is thus the presence
or absence of non-Markovianity, rather than indefinite causal
orders.

We identified two operational regimes for �ext where, for
some choices of channels or thermalizing regimes, we have
the regime �ext

PF where non-Markovian backflow of infor-
mation is present, and exhibits behaviors where daemonic
ergotropy is dependent on the amount of system-environment
correlations. For other choices of thermalizing regimes, we
have the regime �ext

no PF where there is no non-Markovian
backflow of information, and it exhibits behaviors where the
amount of system-environment correlations are lesser and
does not offer any advantage. The quantum switch operation
�sw can only generate positive daemonic ergotropy in the first
regime, while the operation �traj can only do so in the second
regime.

We compared both regimes to the case of a superposition
of independent channels �indep, which was often shown to
replicate or surpass the quantum switch [15,26]. We showed
that max ED

indep � max ED
traj � max ED

ext, no PF, while there are
possibilities for ED

ext, PF � max ED
indep for small γ where the

presence of non-Markovianity is strong. That is, we can only
surpass �indep for the operational regime that depends on the
presence and amount of non-Markovianity, achieving the best
advantage in the quantum switch case of �sw where non-
Markovianity is maximum. Finally, we derived the conditions

that must be fulfilled to generate positive daemonic ergotropy
for �sw, �traj, and �indep given arbitrary fixed bath tempera-
tures, for the case of prethermalization, as well as for the case
of full thermalization, revealing the restriction of NQ < N , i.e.,
a lower temperature for the initializing bath βQ > β, in order
for �sw and �traj to produce positive daemonic ergotropy,
which does not apply for �indep. These conditions also restrict
�sw and �traj to the �ext

PF and �ext
no PF regimes, respectively, for

positive daemonic ergotropy production.
The presence and advantages of non-Markovianity in

the quantum switch were shown recently in Ref. [31] in
the context of communication capacities, but are still rel-
atively unexplored. The manifestation of non-Markovianity
in quantum compositions of channels due to the creation of
system-environment correlations in intermediate time steps
of the operation is a topic of interest, and its effects on the
overall operation of the channel should be explored to uncover
untapped quantum resources.

Furthermore, we note that non-Markovianity is only
present when the superposition remains coherent, and that the
quantum switch is not simply a superposition of different non-
Markovian operations. Rather, the non-Markovian memory
acts across different paths of the superposition. We suggest
that this coherent non-Markovianity plays an important role
in the operations of the quantum switch and indefinite causal
orders in general, contributing to their various quantum ad-
vantages. Therefore, future works can study and quantify the
resource of coherent non-Markovianity, generalizing to a mul-
tiparty quantum switch or even to systems without indefinite
causal orders. Identifying the various quantum resources in
different compositions of quantum processes would benefit
quantum information and quantum thermodynamical appli-
cations in enhanced computation, communication, and work
extraction tasks.

APPENDIX A: PROOFS OF THE ENVIRONMENTAL
REPRESENTATIONS FOR �SW, �TRAJ, AND �INDEP

1. Quantum switch �sw

In Sec. II B, we have the quantum switch operation of

�sw(ρC ⊗ ρQ) =
∑
i, j

K sw
i j (ρC ⊗ ρQ)K sw†

i j , (A1)

where

K sw
i j = |0〉〈0| ⊗ BjAi + |1〉〈1| ⊗ AiBj, (A2)

and we noted that it has an environmental representation of

�sw(ρC ⊗ ρQ) = TrA,B[U sw(ρC ⊗ ρA ⊗ ρQ ⊗ ρB)U sw†],

(A3)

where

U sw = U sw
t1→t2U

sw
t0→t1

= [|0〉〈0|C ⊗ (
IA ⊗ U QB

B

) + |1〉〈1|C ⊗ (
U AQ

A ⊗ IB
)]

× [|0〉〈0|C ⊗ (
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

IA ⊗ U QB
B

)]
= |0〉〈0|C ⊗ (

IA ⊗ U QB
B

)(
U AQ

A ⊗ IB
)

+ |1〉〈1|C ⊗ (
U AQ

A ⊗ IB
)(

IA ⊗ U QB
B

)
. (A4)
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Note that we consider general U AQ
A and U QB

B here. Taking the environmental states to be pure states of ρA = |a〉〈a| and
ρB = |b〉〈b|, the minimum number of dimensions of the environments A and B to describe arbitrary CPTP operations on the
main system Q is d2, where d is the dimension of the main system Q [59]. We show that this environmental representation
indeed gives the quantum switch operation:

�sw(ρC ⊗ ρQ) = TrA,B[U sw(ρC ⊗ ρA ⊗ ρQ ⊗ ρB)U sw†]

= TrA,B
[(|0〉〈0|C ⊗ (

IA ⊗ U QB
B

)(
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

U AQ
A ⊗ IB

)(
IA ⊗ U QB

B

))
× (ρC ⊗ |a〉〈a| ⊗ ρQ ⊗ |b〉〈b|)(|0〉〈0|C ⊗ (

IA ⊗ U QB
B

)(
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

U AQ
A ⊗ IB

)(
IA ⊗ U QB

B

))†]
=

d2−1∑
i, j=0

[|0〉〈0|C ⊗ (IQ ⊗ 〈 j|B)U QB
B (IQ ⊗ |b〉B)(〈i|A ⊗ IQ)U AQ

A (|a〉A ⊗ IQ)

+ |1〉〈1|C ⊗ (〈i|A ⊗ IQ)U AQ
A (|a〉A ⊗ IQ)(IQ ⊗ 〈 j|B)U QB

B (IQ ⊗ |b〉B)
]
(ρC ⊗ ρQ)

× [|0〉〈0|C ⊗ (〈a|A ⊗ IQ)U AQ†
A (|i〉A ⊗ IQ)(IQ ⊗ 〈b|B)U QB†

B (IQ ⊗ | j〉B)

+ |1〉〈1|C ⊗ (IQ ⊗ 〈b|B)U QB†
B (IQ ⊗ | j〉B)(〈a|A ⊗ IQ)U AQ†

A (|i〉A ⊗ IQ)
]

=
d2−1∑
i, j=0

(|0〉〈0|C ⊗ BjAi + |1〉〈1|C ⊗ AiBj )(ρ
C ⊗ ρQ)(|0〉〈0|C ⊗ A†

i B†
j + |1〉〈1|C ⊗ B†

j A
†
i )

=
d2−1∑
i, j=0

K sw
i j (ρC ⊗ ρQ)K sw†

i j , (A5)

where we obtained the quantum switch operations with Kraus operators of Eq. (A2), with

Ai = (〈i|A ⊗ IQ)U AQ
A (|a〉A ⊗ IQ), (A6)

Bj = (IQ ⊗ 〈 j|B)U QB
B (IQ ⊗ |b〉B). (A7)

2. Superposition of independent channels �indep

Likewise, we noted in the main text that by terminating the quantum switch operation after �sw
t0→t1 , we will obtain the

superposition of independent channels �indep with Kraus operator

K indep
i j = η0|0〉〈0| ⊗ Ai + η1|1〉〈1| ⊗ Bj . (A8)

That is, we have

�indep(ρC ⊗ ρQ) = �sw
t0→t1 (ρC ⊗ ρQ)

= TrA,B
[
U sw

t0→t1 (ρC ⊗ ρA ⊗ ρQ ⊗ ρB)U sw†
t0→t1

]
= TrA,B

[(|0〉〈0|C ⊗ (
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

IA ⊗ U QB
B

))
(ρC ⊗ |a〉〈a|A ⊗ ρQ ⊗ |b〉〈b|B)

× (|0〉〈0|C ⊗ (
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

IA ⊗ U QB
B

))†]
=

d2−1∑
i, j=0

[|0〉〈0|C ⊗ (〈i|A ⊗ IQ)U AQ
A (|a〉A ⊗ IQ) ⊗ 〈 j|b〉B + |1〉〈1|C ⊗ 〈i|a〉A ⊗ (IQ ⊗ 〈 j|B)U QB

B (IQ ⊗ |b〉B)
]

× (ρC ⊗ ρQ)
[|0〉〈0|C ⊗ (〈a|A ⊗ IQ)U AQ†

A (|i〉A ⊗ IQ) ⊗ 〈b| j〉B + |1〉〈1|C ⊗ 〈a|i〉A

⊗ (IQ ⊗ 〈b|B)U QB†
B (IQ ⊗ | j〉B)

]

=
⎡
⎣|0〉〈0|C ⊗

d2−1∑
i=0

Ai ⊗
d2−1∑
j=0

〈 j|b〉B + |1〉〈1|C ⊗
d2−1∑
i=0

〈i|a〉A ⊗
d2−1∑
j=0

Bj

⎤
⎦(ρC ⊗ ρQ)

× [|0〉〈0|C ⊗ A†
i ⊗ 〈b| j〉B + |1〉〈1|C ⊗ 〈a|i〉A ⊗ B†

j ]

=
⎡
⎣|0〉〈0|C ⊗

d2−1∑
i=0

Ai

⎛
⎝d2−1∑

j=0

1

d2

⎞
⎠ + |1〉〈1|C ⊗

d2−1∑
j=0

Bj

⎛
⎝d2−1∑

i=0

1

d2

⎞
⎠

⎤
⎦(ρC ⊗ ρQ)[|0〉〈0|C ⊗ A†

i + |1〉〈1|C ⊗ B†
j ]
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=
d2−1∑
i, j=0

1

d2
(|0〉〈0|C ⊗ Ai + |1〉〈1|C ⊗ Bj )(ρ

C ⊗ ρQ)(|0〉〈0|C ⊗ A†
i + |1〉〈1|C ⊗ B†

j )

=
d2−1∑
i, j=0

K indep
i j (ρC ⊗ ρQ)K indep†

i j , (A9)

where we obtained the Kraus operators for the �indep operation with η0 = η1 = 1/d . Note that we have
∑

i〈i|a〉 = ∑
j〈 j|b〉 = 1,

and we have inserted
∑

i 1/d2 = ∑
j 1/d2 = 1.

3. Superposition of trajectories �traj

For the operation of the superposition of trajectories �traj, we noted in the main text that we have �traj = �
traj
t1→t2 ◦ �sw

t0→t1 ,
where

�sw
t0→t1

(
ρC

t0 ⊗ ρ
Q
t0

) = ρ
CQ
t1 = TrA,B

[
U sw

t0→t1

(
ρC

t0 ⊗ ρA ⊗ ρ
Q
t0 ⊗ ρB

)
U sw†

t0→t1

]
, (A10)

�
traj
t1→t2

(
ρ

CQ
t1

) = TrA,B
[
U sw

t1→t2

(
ρ

CQ
t1 ⊗ ρA′ ⊗ ρB′)

U sw†
t1→t2

]
, (A11)

such that we have additional environmental subsystems A′ �= A and B′ �= B, resulting in Kraus operators of

K traj
i jkl = α0|0〉〈0| ⊗ BlAi + α1|1〉〈1| ⊗ AkBj . (A12)

Since �
traj
t1→t2 is a CPTP operation similar to �indep, with the only difference being the positions of U AQ

A and U QB
B in U sw

t1→t2 , we
can apply Eq. (A9) simply with some relabeling such that

�
traj
t1→t2

(
ρ

CQ
t1

) =
d2−1∑
k,l=0

K ′indep
kl

(
ρ

CQ
t1

)
K ′indep†

kl , (A13)

where

K ′indep
kl = 1

d
(|0〉〈0|C ⊗ Bl + |1〉〈1|C ⊗ Ak ). (A14)

Since we have ρ
CQ
t1 = �indep(ρC ⊗ ρQ) from Eq. (A9), we have

�traj(ρC ⊗ ρQ) = �
traj
t1→t2

(
ρ

CQ
t1

) =
d2−1∑

i, j,k,l=0

K ′indep
kl K indep

i j (ρC ⊗ ρQ)K indep†
i j K ′indep†

kl

=
d2−1∑

i, j,k,l=0

K traj
i jkl (ρ

C ⊗ ρQ)K traj†
i j , (A15)

where we obtained the Kraus operators for the �traj operation:

K traj
i jkl = K ′indep

kl K indep
i j = 1

d2
(|0〉〈0|C ⊗ BlAi + |1〉〈1|C ⊗ AkBj ), (A16)

with α0 = α1 = 1/d2.

APPENDIX B: NONPOSITIVITY OF p+, tE (ρQ
+, t )

As mentioned in Sec. III B, the daemonic ergotropy is
expressed as

ED
ext

(
ρ

CQ
t

) = p+, tE
(
ρ

Q
+, t

) + p−, tE
(
ρ

Q
−, t

)
, (B1)

where

p+, tE
(
ρ

Q
+, t

) = max
{
0, ωp+, tδρ

Q
+, t

}
, (B2)

p−, tE
(
ρ

Q
−, t

) = max
{
0, ωp−, tδρ

Q
−, t

}
, (B3)

as there are no coherent contributions. Here, we will show that
we have p+, tE (ρQ

+, t ) = 0.

1. At t1

By explicit computation, we have

p+, t1δρ
Q
+, t1 = −N − NQ

2

(
x2

A + x2
B

) − μ(xA + xB)

−
(

N − NQ

2
− μ

)
(xAxB + 1) + 2N − 1,

(B4)

where

μ = N

2
(1 − N )(1 − 2NQ). (B5)
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We will perform a proof by contradiction by first assuming
that p+, t1δρ

Q
+, t1 > 0. After expanding and rearranging, we

have

− (1 − xA)(1 − xB)

1 − xAxB + x2
A + x2

B

<
3N + NQ − 2

N (1 − N )(1 − 2NQ)
. (B6)

We can then check that for xA, xB ∈ [−1, 1] and N, NQ ∈
[0, 0.5], the left-hand side has a range of [−2, 0], and the
right-hand side has a range of [−∞,−2]. Therefore, Eq. (B6)
which implies the condition of p+, t1δρ

Q
+, t1 > 0 will never be

fulfilled for all the possible values of xA, xB, N , and NQ.

2. At t3

Similarly, by explicit computation, at t3 we have

p+, t3δρ
Q
+, t3 = −μN (1 − N )γ 2(1 − xA)2(1 − xB)2

− (μ − ν)(γ − γ
√

1 − γ )xAxB(xA + xB − xAxB)

− μ(γ + γ
√

1 − γ )(xA + xB − 1)

− ν(γ − γ
√

1 − γ )(xA + xB − 1)

− μ(1 − γ )
(
x2

A + x2
B

)

− N − NQ

2

√
1 − γ (xA + xB)(xAxB − 1)

−
(

3
(
N − NQ

)
2

− μ

)
x2

Ax2
B − N − NQ

2
+ μ

+ 2N − 1, (B7)

which we can express in terms of p−, t3δρ
Q
−, t3 as

1
2 p+, t3δρ

Q
+, t3 = N

(
1 − x2

Ax2
B

) + NQx2
Ax2

B − 1
2 − 1

2 p−, t3δρ
Q
−, t3 .

(B8)

Setting 1
2 p+, t3δρ

Q
+, t3 � 0, we have

N
(
1 − x2

Ax2
B

) + NQx2
Ax2

B − 1
2 p−, t3δρ

Q
−, t3 � 1

2 . (B9)

For p−, t3δρ
Q
−, t3 � 0, it is straightforward to see that the in-

equality always holds as the first two terms at the left-hand
side are a convex sum of N and NQ, which has a range of
[0, 0.5]. The case of p−, t3δρ

Q
−, t3 < 0 is more difficult, but

we note that it can be checked numerically that the left-hand
side has a range of [0, 0.5]; therefore the inequality, and thus
p+, t3δρ

Q
+, t3 � 0, always hold.
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