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We develop an analytical model for calculation of optical spectra for metal nanostructures of arbitrary
shape supporting localized surface plasmons (LSPs). For plasmonic systems with characteristic size below the
diffraction limit, we obtain an explicit expression for optical polarizability that describes the lineshape of optical
spectra solely in terms of the metal dielectric function and LSP frequency. The amplitude of the LSP spectral
band is determined by the effective system volume that, for long-wavelength LSPs, can significantly exceed
the physical volume of metal nanostructure. Within the quasistatic approach, we derive the exact LSP Green’s
function and establish general spectral properties of LSPs, including the distribution and oscillator strength of the
LSP states. These results can be used to model or interpret the experimental spectra of plasmonic nanostructures
and to tune their optical properties for various applications.
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I. INTRODUCTION

Localized surface plasmons (LSPs) are collective elec-
tron excitations resonantly excited by incident light in metal
nanostructures with characteristic size below the diffrac-
tion limit [1–3]. Optical interactions between the LSPs and
excitons in dye molecules or semiconductors underpin nu-
merous phenomena in the plasmon-enhanced spectroscopy,
such as surface-enhanced Raman scattering [4], plasmon-
enhanced fluorescence and luminescence [5–12], strong
exciton-plasmon coupling [13–23], and plasmonic lasers
(spasers) [24–27]. Optical properties of metal nanostruc-
tures of various sizes and shapes are of critical importance
for numerous plasmonics applications [28–30], and were
therefore extensively studied experimentally and theoretically
[31–37]. The optical polarizability tensor α(ω) of a plasmonic
nanostructure determines its response to an incident electro-
magnetic (EM) field E ine−iωt , where ω is the incident field
frequency and, at the same time, defines the optical inter-
actions between the LSPs and excitons. If the characteristic
system size is much smaller than the radiation wavelength, so
that E in is nearly uniform on the system scale, the induced
dipole moment of a plasmonic nanostructure has the form
p(ω) = α(ω)E in, where α(ω) can be calculated, with a good
accuracy, within the quasistatic approach [3]. Fully analytical
models for α(ω) have long been available for systems of
highly symmetric shapes, such as spherical, ellipsoidal, or
cylindrical structures [32]. For example, a metal nanosphere
of radius a placed in the air is characterized by the scalar
polarizability:

α(ω) = a3 ε(ω) − 1

ε(ω) + 2
, (1)

where ε(ω) = ε′(ω) + iε′′(ω) is a complex dielectric function
of the metal. For more complicated shapes, several models
have been suggested as well which, however, contain some
parameters to be calculated numerically [32–36].

On the other hand, due to uncertainties in the shape and
size of actual structures explored in the experiment, the analyt-
ical or numerical models describing both the LSP frequency
and the lineshape of optical spectra, as Eq. (1) does, are not
even necessary. Typically, the spectral position of the LSP
resonance peak is measured with a reasonably high accuracy,
and so the main challenge is to describe or interpret the spec-
tral lineshape [37,38]. Here, we present an analytical model
describing accurately the optical spectra of plasmonic nanos-
tructures of arbitrary shape with LSP frequencies treated as
input parameters.

Specifically, the optical polarizability tensor of a small
metal nanostructure supporting LSP resonance at a frequency
ωn has the form αn(ω) = αn(ω)enen, where

αn(ω) = Vn
ε(ω) − 1

ε(ω) − ε′(ωn)
(2)

is the scalar polarizability, en is the unit vector for LSP mode
polarization, and Vn = Vm|χ ′(ωn)|sn is the effective volume.
Here, Vm is the metal volume, χ ′(ω) = [ε′(ω) − 1]/4π is the
real part of susceptibility (we use Gaussian units), and the
parameter sn � 1 depends on the system geometry. Thus, for
any geometry, the lineshape of optical spectra is determined
only by the metal dielectric function and the LSP frequency,
while the spectral peak amplitude depends on the system ef-
fective volume. The polarization (2) can be extended to larger
systems by including the LSP radiation damping.

To obtain Eq. (2), we employed the LSP Green’s-function
approach in the quasistatic regime [39–42]. Within this ap-
proach, we have also established several exact relations
characterizing the distribution of LSP states.

II. LSP GREEN’S FUNCTION

We consider a metal nanostructure supporting a LSP that
is localized at a length scale much smaller than the radiation
wavelength. In the absence of retardation effects, each region
of the structure, metallic or dielectric, is characterized by the
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dielectric function εi(ω), so that the full dielectric function is
ε(ω, r) = ∑

i θi(r)εi(ω), where θi(r) is the unit step function
that vanishes outside of the region volume Vi. We assume
that dielectric regions’ permittivities are constant, and adopt
ε(ω) for the metal region. The LSP modes are defined by the
lossless Gauss equation as [3]

∇ · [ε′(ωn, r)∇�n(r)] = 0, (3)

where �n(r) and En(r) = −∇�n(r) are the mode’s po-
tential and electric field, which we chose real. Note that
the eigenmodes of Eq. (3) are orthogonal in each re-
gion (see Supplemental Material [39]):

∫
dViEn(r) · En′ (r) =

δnn′
∫

dViE2
n(r).

The EM dyadic Green’s function D(ω; r, r′) satisfies (in
the operator form) ∇ × ∇ × D − (ω2/c2)εD = (4πω2/c2)I,
where I is the unit tensor, while the longitudinal part of D
is obtained by applying the operator ∇ to both sides. In the
near field, we switch to the scalar Green’s function for the
potentials D(ω; r, r′), defined as D(ω; r, r′) = ∇∇′D(ω; r, r′),
which satisfies [compare to Eq. (3)]

∇ · [ε(ω, r)∇D(ω; r, r′)] = 4πδ(r − r′). (4)

We now adopt the decomposition D = D0 + DLSP, where
D0(r − r′) = −|r − r′|−1 is the free-space Green’s function
and DLSP(ω; r, r′) is the LSP contribution. The latter is ex-
panded over the eigenmodes of Eq. (3) as [39–42]

DLSP(ω; r, r′) =
∑

n

Dn(ω)�n(r)�n(r′), (5)

where the coefficients Dn(ω) have the form

Dn(ω) = 4π∫
dV E2

n(r)
− 4π∫

dV ε(ω, r)E2
n(r)

. (6)

The first term in Eq. (6) ensures the boundary condition for
ε = 1 and will be omitted in the following. While the ex-
pansion in Eq. (5) runs over the eigenmodes of the lossless
Gauss equation (3), the coefficients Dn depend on com-
plex ε(ω, r) = ε′(ω, r) + iε′′(ω, r) [39]. Accordingly, the LSP
dyadic Green’s function for the electric fields has the form
DLSP(ω; r, r′) = ∑

n Dn(ω)En(r)En(r′).
We now note that, in the quasistatic regime, the frequency

and coordinate dependencies in the LSP Green’s function can
be separated out. Using the Gauss equation (3) in the integral
form

∫
dV ε′(ωn, r)E2

n(r) = 0, the volume integral in Eq. (6)
can be presented as∫

dV ε(ω, r)E2
n(r) = [ε(ω) − ε′(ωn)]

∫
dVmE2

n(r), (7)

where integration in the right-hand side is carried over the
metal volume Vm, while the dielectric regions’ contributions,
characterized by constant permittivities, cancel each other out.
The LSP Green’s function takes the form

DLSP(ω; r, r′) = −
∑

n

4π∫
dVmE2

n

En(r)En(r′)
ε(ω) − ε′(ωn)

, (8)

which represents the basis for our further analysis of the
optical properties of metal nanostructures. Note that near
the LSP pole the denominator of Eq. (8) can be expanded
as ε(ω) − ε′(ωn) = [∂ε′(ωn)/∂ωn](ω − ωn + iγn/2), where

γn = 2ε′′(ωn)/[∂ε′(ωn)/∂ωn] is the LSP decay rate [3], and
we recover the Lorentzian approximation for the LSP Green’s
function [40–42].

III. LDOS, DOS, AND MODE VOLUME

Using representation (8) for the LSP Green’s function, we
can establish some general spectral properties of LSPs. In
the following, we consider metal nanostructures of arbitrary
shape in a dielectric medium with permittivity εd (we set εd =
1 for now). We assume that ω lies in the plasmonics frequency
domain, i.e., |ε′′(ω)/ε′(ω)| � 1, and so the LSP quality factor
Qn = ωn/γn = ωn[∂ε′(ωn)/∂ωn]/2ε′′(ωn) is sufficiently large
[3]. An important quantity that is critical in many applica-
tions is the local density of states (LDOS), which describes
the number of LSP states in the unit volume and frequency
interval:

ρ(ω, r) = 1

2π2ω
Im TrDLSP(ω; r, r) =

∑
n

ρn(ω, r). (9)

Here, ρn(ω, r) is the LDOS for an individual LSP mode
which, using the Green’s function (8), takes the form

ρn(ω, r) = 2

πω

E2
n(r)∫

dVmE2
n

Im

[ −1

ε(ω) − ε′(ωn)

]
. (10)

Integration of the LDOS over the volume yields the LSP
density of states (DOS) ρn(ω) = ∫

dV ρn(ω, r), describing the
number of LSP states per unit frequency interval. To elucidate
the distribution of LSP states in the system, let us compare the
LSP DOS inside the metal, ρm

n (ω) = ∫
dVmρn(ω, r), and in

the surrounding dielectric medium, ρd
n (ω) = ∫

dVdρn(ω, r).
From Eq. (10), ρm

n (ω) is readily obtained as

ρm
n (ω) = 2

πω
Im

[ −1

ε(ω) − ε′(ωn)

]
. (11)

To evaluate ρd
n (ω), we use the Gauss equation to present

the integral over the dielectric region outside the metal as∫
dVdE2

n = −ε′(ωn)
∫

dVmE2
n, yielding

ρd
n (ω) = 2

πω
Im

[
ε′(ωn)

ε(ω) − ε′(ωn)

]
. (12)

Since for typical LSP frequencies |ε′(ωn)| � 1, we have
ρd

n (ω) = |ε′(ωn)|ρm
n (ω) � ρm

n (ω), implying that the LSP
states are primarily distributed outside the metal. The full LSP
DOS ρn(ω) = ρm

n (ω) + ρd
n (ω) has the form

ρn(ω) = 2

πω
Im

[
ε′(ωn) − 1

ε(ω) − ε′(ωn)

]
, (13)

which is valid for any nanostructure shape.
Let us now evaluate the number of LSP states per mode,

Nn = ∫
dωρn(ω). Performing the frequency integration in the

Lorentzian approximation, we obtain

Nn = 2|ε′(ωn) − 1|
ωn∂ε′(ωn)/∂ωn

. (14)

For the Drude form of ε(ω), Eq. (14) yields Nn ≈ 1, implying
that the LSP states saturate the mode’s oscillator strength.
However, for the experimental dielectric function, Nn can be
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substantially below its maximal value, which has implications
for the optical spectra (see below).

Another important quantity that characterizes the field con-
finement is the LSP mode volume Vn, which is related to
the LDOS as V−1

n = ρn(r) = ∫
dωρn(ω, r), where ρn(r) is

the LSP spatial density [40,41]. Performing the frequency
integration, we obtain

1

Vn
=

∫
dωρn(ω, r) = 2E2

n(r)

[ωn∂ε′(ωn)/∂ωn]
∫

dVmE2
n

. (15)

While the LSP mode volume is a local quantity that can be
very small [i.e., the density ρn(r) can be very large] at hot
spots, its integral is bound as

∫
dV/Vn = Nn � 1.

IV. OPTICAL POLARIZABILITY

Consider now a metal nanostructure in the incident EM
field E ine−iωt that is nearly uniform on the system scale.
The system’s induced dipole moment is obtained by vol-
ume integration of the electric polarization vector, p(ω) =
χ (ω)

∫
dVmE(ω, r), where E(ω, r) is the local field inside the

metal, given by

E(ω, r) = E in + χ (ω)
∫

dV ′
mDLSP(ω; r, r′)E in. (16)

Using the LSP Green’s function (8), we obtain

E(ω, r) = E in −
∑

n

cnEn(r)
ε(ω) − 1

ε(ω) − ε′(ωn)
, (17)

where the coefficient cn is given by

cn =
∫

dVmEn · E in∫
dVmE2

n

. (18)

Expanding the incident field E in in Eq. (17) over the LSP
eigenmodes as E in = ∑

n cnEn(r), we obtain the local field
inside the metal as

E(ω, r) = −
∑

n

cnEn(r)
ε′(ωn) − 1

ε(ω) − ε′(ωn)
. (19)

Integrating Eq. (19) over the system volume, multiplying the
result by χ (ω) = [ε(ω) − 1]/4π , and using Eq. (18), we ob-
tain the plasmonic system’s induced dipole moment as p(ω) =∑

n αn(ω)E in, where

αn = |χ ′(ωn)|
( ∫

dVmEn
)( ∫

dVmEn
)

∫
dVmE2

n

ε(ω) − 1

ε(ω) − ε′(ωn)
(20)

is the LSP mode polarizability tensor [here, ε′(ωn) − 1 =
−4π |χ ′(ωn)|]. We now introduce the LSP mode polarization
unit vector as en = ∫

dVmEn/|
∫

dVmEn| and the effective sys-
tem volume Vn as

Vn = Vm|χ ′(ωn)|sn, sn =
(∫

dVmEn
)2

Vm
∫

dVmE2
n

. (21)

Then, using Eqs. (20) and (21), we obtain the polarizabil-
ity tensor αn(ω) = αn(ω)enen, where the scalar polarizability
αn(ω) is given by Eq. (2).

The parameter sn in the effective volume (21) depends on
the system geometry and characterizes the strength of LSP
coupling to the external EM field. Namely, it describes the
relative variation of the LSP mode field inside the metal
structure, while being independent of its overall amplitude.
For the dipole LSP modes, which have no nodes inside the
nanostructure, sn is nearly independent of the metal volume.
For nanoparticles of spherical or spheroidal shape, its exact
value is sn = 1 [39], while smaller values sn � 1 are expected
for other geometries. For higher-order LSP modes, whose
electric fields oscillate inside the structure and, hence, have
small overlap with the incident field, the parameter sn is small.

The polarizability (2) is valid for small nanostructures
characterized by weak LSP radiation damping as compared
to the Ohmic losses in metal. For larger systems, to sat-
isfy the optical theorem, the LSP radiation damping must
be included by considering the system’s interaction with the
radiation field, which leads to the replacement αn → αn[1 −
(2iω3/3c3)αn]−1, where c is the speed of light [43,44]. For
such systems, after restoring the permittivity of surrounding
medium εd , the scalar polarizability takes the form

αn(ω) = Vn
ε(ω) − εd

ε(ω) − ε′(ωn) − 2i
3 k3Vn[ε(ω) − εd ]

, (22)

where k = √
εdω/c is the light wave vector, while the system

effective volume is now given by

Vn = Vm|ε′(ωn)/εd − 1|sn/4π. (23)

The optical polarizability (22) is the central result of this
Letter which permits accurate description of optical spectra
for diverse plasmonic structures, including those of irregular
shape, using, as input, only the basic system parameters and
the LSP frequency. In terms of αn, the extinction and scatter-
ing cross sections have the form [44]

σext (ω) = 4πω

c
|εn|2α′′

n (ω), σsc(ω) = 8πω4

3c4
|εn|2|αn(ω)|2,

(24)
where εn = en · E in/|E in| is the LSP polarization relative to
the incident light.

Note that Eq. (22) reproduces the known analytical re-
sults for nanostructures of simple shapes. For a nanosphere
of radius a, we have sn = 1, ε′(ωn) = −2, and we recover
Eq. (1) with the effective volume Vn = a3, which is signif-
icantly smaller than the system volume. The polarizability
(22) also matches the known result for spheroidal nanoparti-
cles [39]. For metal structures with multiple LSP resonances,
including porous structures [45], the polarizability tensor is
α(ω) = ∑

n αn(ω)enen, where Vn can now be considered as
fitting parameters.

Finally, the universal form (22) for the optical polar-
izability is valid for metal nanostructures embedded in
dielectric medium. For more complex layered systems, in-
cluding core-shell structures, the corresponding expressions
for polarizability are more cumbersome and, importantly, no
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FIG. 1. (a) The number of LSP states for Au nanostructures is
plotted against the LSP wavelength. Inset: The LSP quality factor
wavelength dependence. (b) The normalized effective volume is plot-
ted against the LSP wavelength.

longer universal, i.e., the lineshape of optical spectra now
depends explicitly (not just via the LSP frequency) on the
system geometry.

V. NUMERICAL RESULTS

Below we present the results of numerical calculations for
small gold nanostructures to illustrate some general features
of the LSP optical spectra that are common for any system
geometry (we use the experimental gold dielectric function
and set sn = 1). In Fig. 1, we plot the number of LSP states per
mode Nn and the effective volume Vn against the LSP wave-
length λn in the interval from 550 to 1200 nm, i.e., for energies
below the interband transitions onset in gold. With increasing
λn, as the system enters the Drude regime, Nn increases, albeit
slowly, towards its maximal value [see Fig. 1(a)]. However,
for typical LSP wavelengths from 550 to 800 nm, Nn remains
substantially below its maximal value, implying the important
role of interband transitions even for energies well below the
onset. Notably, Nn does not follow the LSP quality factor
Qn, shown in the inset, which peaks at λn ≈ 700 nm due to
the minimum of ε′′ for gold at this wavelength. To eluci-
date the effect of system geometry, in Fig. 1(b), we plot the
effective volume Vn normalized by the metal volume Vm in
the same LSP wavelength interval. The normalized effective
volume increases about tenfold from λn = 550 nm, roughly
corresponding to the LSP wavelength in the gold nanosphere,
to λn = 1200 nm, typical for LSPs in elongated particles

FIG. 2. (a) The imaginary part of polarizability for various Au
structures is shown at different LSP wavelengths. (b) The normal-
ized extinction and scattering spectra are shown for L = 30 nm
structures.

with large aspect ratio. Since Vn/Vm ≈ |χ ′(ωn)|, this implies
that, for nanostructures of different shape but the same metal
volume, both the lineshape and peak amplitude of the optical
spectra are determined by the LSP resonance position.

In Fig. 2, we show the optical spectra of gold nanostruc-
tures in water (εd = 1.77) for different values of characteristic
size L and, accordingly, of metal volume Vm = L3, calculated
using Eqs. (22)–(24) at the LSP wavelength values 550, 610,
670, 730, and 790 nm. The imaginary part of polarizability
normalized by the metal volume increases sharply with the
LSP wavelength [see Fig. 2(a)], consistent with the effective
volume increase in Fig. 1(b). For larger structures, the LSP
peak amplitudes of α′′

n (ω)/Vm drop due to the radiation damp-
ing. Although for full α′′

n (ω) such a decrease would be masked
by larger Vm values, it is clear that, for the same metal volume,
radiation damping is stronger for long-wavelength LSPs since
it is determined by the effective volume Vn [see Eq. (22)].

In Fig. 2(b), we plot the extinction and scattering spectra,
normalized by their respective maxima, for L = 30 nm gold
nanostructures calculated for the same LSP wavelengths as in
Fig. 2(a). For shorter wavelengths (<700 nm), the scattering
spectra exhibit apparent redshift relative to the extinction
spectra. Note that, for such system size, the extinction is
dominated by the absorption, implying the prominent role of
non-LSP excitations in this frequency region. This behavior is
consistent with a relatively low fraction (about 50% at such
wavelengths) of the LSP states per mode [see Fig. 1(a)]. In
the Drude regime (larger LSP wavelengths), the difference
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between the extinction and scattering spectra disappears as the
LSP states saturate the oscillator strength.

In summary, we have developed an analytical model for
optical polarization of plasmonic nanostructures of arbitrary
shape whose characteristic size is below the diffraction limit.
For such systems, the lineshape of optical spectra is deter-
mined by the metal dielectric function and LSP frequency
while their amplitude depends on the system effective volume

that increases with the LSP wavelength. We have also estab-
lished some general spectral properties of the LSPs valid for
any system geometry.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants No. DMR-
2000170, No. DMR-1856515, and No. DMR-1826886.

[1] S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101
(2005).

[2] E. Ozbay, Science 311, 189 (2006).
[3] M. I. Stockman, in Plasmonics: Theory and Applications, edited

by T. V. Shahbazyan and M. I. Stockman (Springer, New York,
2013).

[4] E. C. Le Ru and P. G. Etchegoin, Principles of
Surface-Enhanced Raman Spectroscopy (Elsevier, Amsterdam,
2009).

[5] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J.
Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt,
M. Moller, and D. I. Gittins, Phys. Rev. Lett. 89, 203002 (2002).

[6] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S.
Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Nano
Lett. 2, 1449 (2002).

[7] P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96,
113002 (2006).

[8] S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys.
Rev. Lett. 97, 017402 (2006).

[9] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Nano
Lett. 7, 496 (2007).

[10] R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas,
ACS Nano 3, 744 (2009).

[11] T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C.
Yan, Nano Lett. 9, 3896 (2009).

[12] V. N. Pustovit and T. V. Shahbazyan, Phys. Rev. Lett. 102,
077401 (2009).

[13] J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, Phys. Rev.
Lett. 93, 036404 (2004).

[14] Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and
P. N. Bartlett, Phys. Rev. Lett. 97, 266808 (2006).

[15] G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W.
Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower,
Nano Lett. 7, 1297 (2007).

[16] N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P.
Nordlander, and N. J. Halas, Nano Lett. 8, 3481 (2008).

[17] T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H.
Tikkanen, H. Kunttu, and P. Torma, Phys. Rev. Lett. 103,
053602 (2009).

[18] A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, Nano
Lett. 11, 2318 (2011).

[19] A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M.
Sukharev, Phys. Rev. Lett. 109, 073002 (2012).

[20] A. Gonzalez-Tudela, P. A. Huidobro, L. Martin-Moreno, C.
Tejedor, and F. J. Garcia-Vidal, Phys. Rev. Lett. 110, 126801
(2013).

[21] T. Antosiewicz, S. P. Apell, and T. Shegai, ACS Photonics 1,
454 (2014).

[22] A. De Luca, R. Dhama, A. R. Rashed, C. Coutant, S. Ravaine,
P. Barois, M. Infusino, and G. Strangi, Appl. Phys. Lett. 104,
103103 (2014).

[23] T. V. Shahbazyan, Nano Lett. 19, 3273 (2019).
[24] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402

(2003).
[25] M. I. Stockman, Nat. Photonics 2, 327 (2008).
[26] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M.

Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and
U. Wiesner, Nature (London) 460, 1110 (2009).

[27] T. V. Shahbazyan, ACS Photonics 4, 1003 (2017).
[28] K. A. Willets and R. P. van Duyne, Annu. Rev. Phys. Chem. 58,

267 (2007).
[29] A. B. Taylor and P. Zijlstra, ACS Sens. 2, 1103 (2017).
[30] J. Zhou, A. I. Chizhik, S. Chu, and D. Jin, Nature (London) 579,

41 (2020).
[31] S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem.

B 103, 3073 (1999).
[32] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys.

Chem. B 107, 668 (2003).
[33] I. O. Sosa, C. Noguez, and R. G. Barrera, J. Phys. Chem. B 107,

6269 (2003).
[34] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed,

J. Phys. Chem. B 110, 7238 (2006).
[35] C. Noguez, J. Phys. Chem. C 111, 3806 (2007).
[36] R. Yu, L. M. Liz-Marzan, and F. J. Garcia de Abajo, Chem. Soc.

Rev. 46, 6710 (2017).
[37] J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-

S. Chang, and S. Link, Chem. Soc. Rev. 44, 40 (2015).
[38] R. Calvo, A. Thon, A. Saad, A. Salvador-Matar, M. Manso-

Silvan, O. Ahumada, and V. Pini, Sci. Rep. 12, 17231 (2022).
[39] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.107.L061503 for the derivation of the
LSP Green’s function and of the polarizability of spheroidal
nanoparticles.

[40] T. V. Shahbazyan, Phys. Rev. Lett. 117, 207401 (2016).
[41] T. V. Shahbazyan, Phys. Rev. B 98, 115401 (2018).
[42] T. V. Shahbazyan, Phys. Rev. B 103, 045421 (2021).
[43] R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, Opt.

Commun. 261, 368 (2006).
[44] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-

bridge University Press, New York, 2012).
[45] C. Vidal, D. Sivun, J. Ziegler, D. Wang, P. Schaaf, C. Hrelescu,

and T. A. Klar, Nano Lett. 18, 1269 (2018).

L061503-5

https://doi.org/10.1063/1.1951057
https://doi.org/10.1126/science.1114849
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1021/nl025819k
https://doi.org/10.1103/PhysRevLett.96.113002
https://doi.org/10.1103/PhysRevLett.97.017402
https://doi.org/10.1021/nl062901x
https://doi.org/10.1021/nn900001q
https://doi.org/10.1021/nl902095q
https://doi.org/10.1103/PhysRevLett.102.077401
https://doi.org/10.1103/PhysRevLett.93.036404
https://doi.org/10.1103/PhysRevLett.97.266808
https://doi.org/10.1021/nl070284m
https://doi.org/10.1021/nl8024278
https://doi.org/10.1103/PhysRevLett.103.053602
https://doi.org/10.1021/nl200579f
https://doi.org/10.1103/PhysRevLett.109.073002
https://doi.org/10.1103/PhysRevLett.110.126801
https://doi.org/10.1021/ph500032d
https://doi.org/10.1063/1.4868105
https://doi.org/10.1021/acs.nanolett.9b00827
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1038/nphoton.2008.85
https://doi.org/10.1038/nature08318
https://doi.org/10.1021/acsphotonics.7b00088
https://doi.org/10.1146/annurev.physchem.58.032806.104607
https://doi.org/10.1021/acssensors.7b00382
https://doi.org/10.1038/s41586-020-2048-8
https://doi.org/10.1021/jp990183f
https://doi.org/10.1021/jp026731y
https://doi.org/10.1021/jp0274076
https://doi.org/10.1021/jp057170o
https://doi.org/10.1021/jp066539m
https://doi.org/10.1039/C6CS00919K
https://doi.org/10.1039/C4CS00131A
https://doi.org/10.1038/s41598-022-21649-8
http://link.aps.org/supplemental/10.1103/PhysRevA.107.L061503
https://doi.org/10.1103/PhysRevLett.117.207401
https://doi.org/10.1103/PhysRevB.98.115401
https://doi.org/10.1103/PhysRevB.103.045421
https://doi.org/10.1016/j.optcom.2005.12.009
https://doi.org/10.1021/acs.nanolett.7b04875

