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Non-Hermitian zero-mode laser in a nanophotonic trimer
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Non-Hermitian zero modes in arrays of coupled optical elements can be tailored to feature a number of
interesting properties. In addition to being immune to coupling disorders and remaining pinned at the center
of the spectrum, they are not dark modes in general (light intensity does not necessarily vanish in one sublattice),
their energy eigenvalues are not restricted to the center of the complex plane, and they can be brought to laser
oscillation by carefully patterning the spatial pump profile. In this work, we report on the direct observation of
a lasing zero mode in a non-Hermitian three-coupled nanocavity array. We show efficient excitation for nearly
equal pump power in the two extreme cavities. Furthermore, its efficiency can be dynamically controlled by
pumping the center cavity. The realization of zero-mode lasing in large arrays of coupled nanolasers has potential
applications in laser-mode engineering and it opens up promising avenues in optical computing.
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Majorana zero modes are collective excitations pinned at
the middle of a gapped band structure. Their topological and
non-Abelian properties make them immune against certain
types of disorder, and therefore robust for applications in
topological quantum computing [1]. While Majorana zero
modes usually refer to bound state quasiparticules in super-
conducting systems, robust zero modes can also be found in
photonic devices, having been experimentally demonstrated
in a few different platforms, such as flat band structures in
optical waveguide arrays [2,3] and topologically protected
gap modes in a one-dimensional Su-Schrieffer-Heeger (SSH)
chain [4–6]. The zero modes originate, in these experiments,
from the chiral—or sublattice—symmetry, {H,C} = 0, where
H is the Hamiltonian and C a unitary operator. On the other
hand, the zero modes that have been observed in condensed
matter physics and topological superconductors [7–9] result
from particle-hole symmetry (PH, also known as charge-
conjugation symmetry), where the Hamiltonian anticommutes
with an antiunitary operator CT ({H,CT } = 0, where T is the
time reversal operator).

In the Hermitian limit, both chiral and particle-hole sym-
metries ensure that the eigenvalues always appear in pairs,
εi = −ε j [10]. Such a symmetrical band leads to a zero
mode with ε = 0 for i = j. However, in the non-Hermitian
(NH) realm, the eigenvalues are generally complex and the
imaginary parts account for loss/gain rates. Consequently,
the chiral and particle-hole symmetries generally result in
different eigenvalue spectra, i.e., εi = −ε j still holds for the
chiral symmetry case [11], while εi = −ε∗

j takes place in
systems with non-Hermitian particle-hole (NHPH) symme-
try [12], where the ∗ is the complex conjugate. Therefore,
the zero mode features Re[ε] = 0 for the NHPH symmetry,
meaning that the non-Hermitian zero mode is more robust
than its Hermitian counterpart, since no restriction is applied

*alejandro.gacomotti@c2n.upsaclay.fr

to its imaginary part. Recently, NHPH-symmetry protected
zero mode has been demonstrated in photonic systems such as
a PT-symmetric waveguide array with defect and topological
segment [13,14]. However, in those approaches, only one zero
mode can be realized at a given spatial location, for instance,
the defect or the topological boundary. On the other hand,
zero modes warranted by NHPH symmetry in a three-coupled
photonic crystal cavity array have been reported recently [15];
there, the zero modes were revealed through photolumines-
cence experiments and were found to be mainly localized in
one sublattice. However, single-spot pumping conditions pre-
vented efficient excitation and therefore no lasing zero mode
could be observed. In Ref. [16], spatial modulation of the
optical pump in a photonic microring molecule using a knife
edge has enabled laser operation at the zero mode through
PT-symmetry breaking for sensing applications. Let us stress
an important feature of realizing a NHPH-symmetry protected
zero-mode laser in cavity arrays: the laser frequency is pinned
at the center of the spectrum, and it is insensitive to coupling
perturbations.

In this work, we report on the direct observation of a lasing
zero mode in a three-coupled nanocavity array with embedded
quantum wells (QWs). The lasing condition is enabled by
spatially patterning the pump spot by means of a spatial light
modulator (SLM). In our three-cavity case, at least one zero
mode is expected to exist at the frequency of the single cavity
because the number of cavities is odd [10], and it can be effi-
ciently excited above the laser threshold by pumping the two
extreme cavities with similar optical powers. Furthermore,
we dynamically control the emission intensity by varying the
pump power in the center cavity. Ultimately, this building
block could be extended to a two-dimensional (2D) network
supporting an arbitrary number of zero modes warranted by
NHPH symmetry with different intensity distributions [10].

We first consider a three-coupled photonic crystal (PhC)
nanocavity array [see Fig. 1(a)] that supports a zero mode. The
two extreme cavities (sublattice A) are evanescently coupled
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FIG. 1. (a) Schematic of the three-coupled cavity system. The
yellow arrays represent the barriers. (b) FDTD simulations showing
the mode structure as a function of barrier size h. (c) Coupling and
cavity detuning extracted from the hybrid mode frequency splitting
and average of two-coupled PhC cavities’ 3D FDTD numerical sim-
ulation. Solid lines are third-order polynomial fittings, which are
subsequently used for CMT calculation with three-coupled cavities
in the main text. (d) Evolution of eigenvalues; the arrows indicate the
direction of trajectories, and the black dashed line represents the laser
threshold Im[ε] = 0. Here, P increase from 0 to P0 and 1.45P0 (where
P0 is the threshold of a single cavity) for pumping two extreme
cavities (red curves) and pumping a single cavity (blue curves),
respectively. The diamonds represent the end point. Here the param-
eters are τ = 7.1 ps, β = 0.017, α = 3, γ‖ = 2.2 GHz, γtot = 5 GHz,
K = 10/τ , n0 = 1018 cm−3 × Va, with Va = 0.016 × 10−12 cm3 be-
ing the volume of active material.

to the central one (sublattice B). The coupling K can be
controlled using the so-called barrier engineering technique
[15,17], namely, the radius of the barrier holes [yellow holes
in Fig. 1(a)] is modified as rb = r0(1 + h), where r0 = 0.266a
is the radius of the ordinary air holes and a is the lattice
constant. Note that such barrier modulation also introduces
additional frequency detunings �ω j . Given the fact that the
central cavity is surrounded by two barriers, we can assume
that the detuning in the center is twice the one in the two
extreme cavities, �ω1,3 = �ω,�ω2 = 2�ω, the sublattice
detuning being �ω2 − �ω1,3 = �ω. Three-dimensional (3D)
finite-difference time-domain (FDTD) simulations, as dis-
played in Fig. 1(b), are performed to reveal the mode structure
of the optical trimer as a function of the barrier size. To
further study the impact of the barrier perturbation h on the
coupling K and the sublattice detuning �ω, we carried out
another simulation using two-coupled PhC cavities and fit-
ted the mode-frequencies with linear coupled mode theory
(CMT) [see Fig. 1(c)]. The results can be divided into two
different regions: weak cavity coupling, where |�ω(h)| >

|K (h)| (purple), and strong cavity coupling, where |�ω(h)| <

|K (h)| (green background). A particularly interesting domain
(dashed background) is −20% � h � −10%, where the cou-
pling approaches zero (|K| ≈ 0). In this region, the center

cavity is effectively decoupled from the other two and the zero
mode becomes one of the eigenmodes of an effective dimer
formed by sublattice A; such a parameter regime will be used
later on to relate the zero-mode frequency to the single-cavity
one.

We model our system using carrier-dependent coupled
mode theory (CD-CMT) [15,18] that governs the time evo-
lution of coupled complex filed amplitudes a = [a1, a2, a3]T

in the semiconductor cavities, in the presence of carrier popu-
lations n j, j = 1, 2, 3:

da

dt
= iHa + F (t ), (1)

H =
⎛
⎝ω0 + αg1 + �ω1 K 0

K ω0 + αg2 + �ω2 K

0 K ω0 + αg3 + �ω3

⎞
⎠

− i

⎛
⎜⎜⎝

g1 − 1
τ

0 0

0 g2 − 1
τ

0

0 0 g3 − 1
τ

⎞
⎟⎟⎠, (2)

dn j

dt
= Pj − n jγtot − βγ‖(n j − n0)|a j |2, (3)

where ω0 and τ are the resonant frequency and cavity-
damping time of a single transparent cavity, respectively,
g j = βγ‖(n j − n0)/2 are the gain rates, β is the spontaneous
emission factor, γ‖ is the two-level radiative recombina-
tion rate, α is linewidth enhancement—or Henry—factor,
n0 represents the carrier number at transparency, Pj are the
pump rates, and γtot is the total carrier recombination rate.
F (t ) = [F1(t ), F2(t ), F3(t )]T represent Langevin noise terms
accounting for spontaneous emission. Here, 〈Fμ(t )F ∗

ν (t ′)〉 =
2Dμνδ(t − t ′) and 〈Fμ(t )Fν (t ′)〉 = 0. The coefficient is Dμν =
Rspδμν/2, with Rsp being the spontaneous emission rate Rsp =
βFpBn2

1,2/Va, where Fp is the Purcell factor, B is the bimolec-
ular radiative recombination rate, and Va is the volume of the
active medium (parameter values are given in the captions of
Figs. 1 and 3; more details can be found in Ref. [18]).

We start with a simple case where �ω j = 0, Fj (t ) = 0
and carrier-induced refractive index change effect is neglected
(α = 0). When the two extreme cavities are equally pumped
we set g1 = g3 = g and g2 = 0. Below the laser threshold
(|a1|2 = |a2|2 = |a3|2 → 0), the eigenvalues read

ε0 = ω0 − i

(
g − 1

τ

)
, (4)

ε± = i

(
1

τ
− g

2

)
± 1

2

√
8K2 − g2 + ω0, (5)

where ε0 is the NH zero mode with eigenvector being
(1, 0,−1)T . Hence, the zero mode is a dark one, i.e., the
intensity in one of the sublattices (here sublattice B—the
central cavity) vanishes; as a result, a necessary condition to
excite it is to pump sublattice A, while pumping sublattice
B alone would be inefficient. Noticeably, there is a π -phase
difference between the two extreme cavities, due to frus-
tration. This π -phase difference proves to be robust against
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FIG. 2. Experimental characterizations of zero-mode laser.
(a) Experiment setup with the SLM; (b) Light-in/light-out curve of
the zero-mode laser. The inserts are the near and far fields of the
zero-mode laser; (c) Experimental measurement and the Lorentz fit
of zero-mode laser.

pump unbalancing, and it is a useful fingerprint to identify it
experimentally [15].

Figure 1(d) shows the real and imaginary parts of the
eigenvalues of the full—i.e., including α-induced blue-shift
effects—Hamiltonian in Eq. (2). When a single extreme cavity
is pumped (blue curves), the highest-frequency mode is more
efficiently excited and reaches the laser threshold [Im(ε) = 0]
first. This can be explained by the spectral overlap between
the excited cavity photons and the hybrid modes; namely,
the carrier-induced blue-shift of the excited cavity resonance
better overlaps with the blue-detuned hybrid mode [15]. In
contrast, the zero mode reaches the threshold before the two
others and becomes the lasing mode as long as the two ex-
treme cavities are pumped equally (see red curves).

In order to observe the zero-mode laser experimentally,
we fabricated the three-coupled PhC cavities in an indium
phosphide (InP) suspended membrane, with four embedded
InGa0.17As0.76P QWs [19]. We performed photoluminescence
(PL) experiments to study the emission properties of the
zero mode. We choose a pulsed pump laser (100 ps duration
and 10 MHz repetition rate) as the pump source in order
to reduce thermal effects. As we discussed before, the zero
mode cannot be efficiently excited using only one spot, hence
we employ a SLM to reshape the pump configuration. Our
liquid-crystal-based SLM is operated in amplitude modulation
mode [Fig. 2(a)]. This configuration requires two half-wave
plates; the first one (close to the acousto-optic modulator,
AOM) is used to maximize the transmission through the PBS,
and the second one (close to the SLM), whose optic axis is
rotated 22.5◦ with respect to the horizontal plane, maximizes
the contrast between the pump pattern and the background.
Such a modulation allows us to control the pump intensities

FIG. 3. Experimental observation of zero-mode laser in the
strong coupling region (h = 0% and lattice constant is a = 408 nm).
(a) PL map when the pumps in the two extreme cavities are unbal-
anced; (b) PL map when the pump in the center cavity is increased.
Dashed boxes indicate location of zero-mode laser. (c) and (d) are
the simulations of (a) and (b), respectively. Here in the simulations
we use K = 12.5/τ , �ω1 = �ω3 = −3.38/τ, �ω2 = 2�ω1,3, ω0 =
195.81 THz, P1 + P2 = 3P0, with P0 being the threshold for the
single cavity. For Langevin noise terms, the Purcell factor and the
bimolecular radiative recombination rate are taken as Fp = 1.03 and
B = 3 × 1010 cm 3s−1, respectively.

in three cavities independently. Two typical pump patterns are
depicted in the insets of Fig. 2(a). The modified pump laser
is then focused down on the sample through a microscope
objective (100× IR with 0.95 NA) and the radiated PL is
spectrally resolved with a spectrometer.

We characterize the nanolaser emission under nearly equal
pumping of the two extreme cavities. The light-in/light-out
emission [Fig. 2(b)] together with the emission linewidth
[Fig. 2(c)] are strong evidences of a zero-mode laser obtained
in the strong intercavity coupling region (h = 0%, for which
|K| 
 |�ω|), at λ ≈ 1531.11 nm. In Fig. 2(b) a clear laser
threshold is observed for an average pump power of about
6 µW. To verify that such a mode is indeed a zero mode,
we measure its near- and far-field patterns using an InGaAs
infrared camera. In the near field, no energy is detected in the
center; in addition, the far-field image shows vanishing inten-
sity in the center, revealing an antisymmetric field distribution
[20] [insets in Fig. 2(b)]. As discussed before, a π phase
difference between the two extreme cavities is compatible
with the frustration mechanism at the origin of the zero mode.

With the aim of further testing the robustness of the
zero-mode laser, we define a control parameter �P = (P3 −
P1)/(P1 + P3) that conserves the total pump power (P1 + P3 =
const). Panel (a) in Fig. 3 shows the spectral intensity as a
function of both wavelength and �P. Note that only one of
the extreme cavities is pumped when �P = ±1, and both of
them are pumped equally when �P = 0. The zero-mode laser
is efficiently excited in the range |�P| � 0.15. Figure 3(c)
depicts the numerical calculation results using Eqs. (1)–(3),
showing very good agreement with the experiment.
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Interestingly, we can control the zero-mode laser by inject-
ing power in the center cavity (P1 = P3, P2 = 0 → 1.2P1); the
experimental results are displayed in Fig. 3(b). Figure 3(d)
shows the corresponding simulation results, which are in good
agreement with the experiment. We observe that the zero per-
sists as long as the center cavity is absorptive, namely, g2 � 0,
which takes place for P2/P1 < 0.5; yet, at the onset of net gain
in the center cavity (g2 > 0), the zero mode switches off and
the energy is transferred to side modes. This result implies
that the visibility of the zero-mode laser can be dynamically
controlled by varying the pump power in the center cavity.

A most important property of a lasing zero mode is that
its frequency should correspond to the single-cavity one, in
this case modified by the presence of a barrier, ω0 + �ω.
However, it is difficult to directly compare the zero mode with
the single cavity nanolaser experimentally because the latter
would belong to a different lithographic realization, therefore
it is likely to be detuned with respect to the coupled cavity
central frequency. In order to cope with this, we move to a
weaker coupling regime in which we can effectively decouple
the system by unbalancing the optical pumping.

As predicted in Fig. 1(c), the coupling is near zero in the
range of −20% � h � −10%, the center cavity (sublattice
B) becomes decoupled from sublattice A, and therefore the
system can be treated as an effective optical dimer given by
the two-coupled extreme cavities [15]. In order to compute the
effective coupling parameters we apply the Schrieffer-Wolff
transformation [21,22] to the Hamiltonian in Eq. (2) (here,
for the sake of simplicity, we take α = 0 and only consider
Hermitian terms). As long as K � �ω, we have

Heff=Û †HÛ ≈
⎛
⎝ω0 + �ωeff Keff 0

Keff ω0 + �ωeff 0
0 0 ω0 + �ω′

eff

⎞
⎠,

(6)

with the eigenvectors being [a1, a3, a2]T . Here Û is a unitary
operation used to decouple the center cavity from the rest
of the system. The effective coupling strength reads Keff =
K2/�ω, and the effective detunings for the extreme and center
cavities are �ωeff = K2/�ω + �ω and �ω′

eff = 2K2/�ω +
2�ω, respectively. The eigenvalues of the 2 × 2 block
of Heff are

ε− = �ω + ω0, (7)

ε+ = �ω + 2K2

�ω
+ ω0. (8)

Equations (7) and (8) are the hybrid frequencies of the effec-
tive dimer. Equation (7) implies that the effective zero mode
in the dimer is lasing at the frequency of the uncoupled ex-
treme cavity. Note that, unlike the conventional two-coupled
cavities, where the eigenfrequencies are split symmetrically
with respect to the uncoupled cavity frequency, here the two
eigenvalues of the effective dimer are not equally distant
from the single-cavity frequency. Table I displays the param-
eters of the effective dimer.Clearly, in the range −20% � h
� −10%, the effective coupling is much smaller (in absolute
value) compared to the actual one. Thus, unlike Figs. 3(a)
and 3(c), unbalancing the pumping may effectively decouple

TABLE I. Comparison of the couplings and detunings between
actual and the effective two-coupled cavities. Parameters are normal-
ized to the single-cavity loss rate 1/τ .

h −20% −15% −10% −5%

K (actual two cavities) −7.44 −0.84 4.57 8.96
Keff 1.08 0.018 0.80 5.51
�ω (actual two cavities) −50.91 −38.16 −26.09 −14.56
�ωeff −104.00 −76.35 −53.79 −40.14

the extreme cavities, and therefore the single-cavity frequency
can be directly compared with that of the zero mode.

In the following we measure the PL maps in the small
coupling region. We point out that the zero mode is only
warranted for nonzero coupling, therefore vanishing coupling,
predicted for h = −15% (Fig. 1), must be avoided; we then
choose, for this experiment, h = −20%. The results are dis-
played in Fig. 4(a). As the unbalanced pump parameter �P
decreases from �P = 0 to �P = −1, the leftmost mode red
shifts and its wavelength approaches that of the zero mode.
This observation implies that the zero-mode frequency is
close to the one corresponding to a single, uncoupled cavity,
albeit perturbed by the presence of the barrier (ω0 + �ω).
Figure. 4(b) shows the simulation results of the effective dimer
model, which agrees with the experimental result nicely.

The lasing zero mode demonstrated here is of geometrical
nature, i.e., it arises from geometrical frustration. In future
realizations, another NH zero mode could be created in similar
trimers through, for instance, PT symmetry breaking [16]
or the spontaneous restoration of NHPH symmetry [10] at
exceptional points.

In conclusion, we have experimentally demonstrated
a lasing zero mode in a three-coupled photonic crystal
nanocavity array. Such a NH zero mode can be efficiently
excited by pumping the two extreme cavities with nearly equal
power, surviving within a range of pump power unbalance
of 15%. Furthermore, the intensity of the lasing zero mode
can be dynamically controlled by pumping the center
cavity, which eventually transfers the energy to side modes;

FIG. 4. Observation of zero mode laser in the weak coupling
region (h = −20%, a = 422 nm). (a) Experimental comparison be-
tween the zero-mode laser and the single cavity; the PL map is
plotted in logarithmic scale. (b) Simulation result using the ef-
fective two-coupled system model. Here the parameters are K =
1.08/τ, �ω1 = 0, �ω2 = 1.2K , and ω0 = 190.28 THz.
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noteworthy, we have observed that the zero mode is robust
upon increase of the central cavity pump power up to 50%
of the extreme cavity pump level. We attribute the observed
flexibility in exciting the laser zero mode to the NHPH
symmetry protection. This is expected as long as the coupling
strength largely overcomes linear and nonlinear detunings,
which is verified, in our system, for small barrier perturbations
(h ∼ 0) [15]. We have also shown that the three-coupled
cavities can be reduced to an effective dimer when the
coupling is weak compared to the sublattice detuning, which
is used to actively decouple the system and confirms that the
central mode oscillates at a frequency close to that of a single
cavity. Our work provides a flexible way to excite and control

the lasing zero mode via SLM pump patterning, whose
manipulation and symmetry protection features may be of
interest in potential applications such as optical computing
[23] and spatial profile tuning of laser arrays [10].
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