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Extremely narrow sharply peaked resonances at the edge of the continuum
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We report a critical narrowing and sharpening of resonances of a potential well when their eigenfrequencies
approach the edge of the continuum. The resonances also obtain sharply peaked shapes with the discontinuity of
their slopes. The situation can be realized for an electromagnetic wave propagating across dielectric thin films
with a periodically modulated interface(s). We show the phenomenon semianalytically on a general model of
a driven quantum potential well, and also by rigorous numerical analysis of Maxwell equations for the wave
propagation across the thin film with a modulated interface(s). We justify the phenomenon experimentally, by
measurements of light reflection from a dielectric thin film deposited on a periodically modulated surface. The
narrow and sharply peaked resonances can be used for an efficient narrow-band frequency and spatial filtering
of light.
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I. INTRODUCTION

It is well known that the wave functions in a potential well
can form bound states for their energies below the background
of the potential well, and the continuum states for their ener-
gies above the background. Although basic wave behavior in
the potential wells has been established since the beginning
of quantum mechanics [1], new findings are constantly being
reported. One such example is the phenomenon of bound
states in the continuum, recently proposed for the potentials
of a special form [2,3]. Here we report critical narrowing
of the resonances and extreme sharpening of the peaks of
the resonances when their energies approach the background
energy of the potential well, just before crossing the boundary
of the continuum.

The resonances of the discrete states follow the universal
Lorentzian shapes when the energies are deep in the poten-
tial well. What happens when the potential is continuously
deformed so that the energy of one of its discrete states
crosses the edge of the continuum (EOC), as illustrated in
Fig. 1? This Letter shows that the width of the resonances
strongly decreases, and the resonances obtain sharply peaked
shapes at the crossing point. Moreover, the scaling of the
resonance width with the coupling constant also becomes
unusual: whereas the width of the Lorentz resonance scales
as the power of 2 with the coupling constant, the width of the
resonance at the EOC scales as a power of 4. In this way, the
resonances with special properties are reported, which on the
one hand, are intriguing mathematical-physical objects, and
on the other hand, have a practical application potential. The
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effect might be useful to realize extremely narrow-band and
sharp-contrast frequency and angular (spatial) filters.

In this Letter we mathematically relate the problem of
electromagnetic wave diffraction on interface-modulated thin
dielectric films with the problem of a particle’s wave function
in a driven potential well, Fig. 1. The wave propagation across
such thin films has been previously studied, mostly numeri-
cally, by the rigorous coupled wave approach, in the context
of its angle-wavelength transmission peculiarities [4–12], or
Fano-like resonances [13–15]. The analogy between the thin
films and the driven potential well, explored in the present
work, allows us to calculate the energy states in the potential
well, corresponding to the thin film planar modes, and to
explore these resonances semianalytically. We calculate the
asymptotic shapes and estimate the scaling of the width of the
resonances in a simplified model system of a driven poten-
tial well. We apply rigorous numerical methods to calculate
the light reflection or transmission through the modulated
thin films and identify these narrow resonances in reflection
angle-wavelength spectra. Finally, we fabricate a structure by
physical vapor deposition (PVD) on a corrugated surface and
measure the predicted narrow-band sharp resonances in the
reflection angle-wavelength spectra.

II. SIMPLIFIED MODEL

In analytical treatment, we separate the electromag-
netic radiation into the near-to-normal part (correspond-
ing to the incident, reflected, and transmitted modes)
and the guided radiation part (parallel to the film sur-
face). Specifically, we define the near-to-normal wave
as A0(x, z, t ) = A0(z)exp(ik0,zz + ik0,xx − iωt ), where k2

0,x +
k2

0,z = k2
0 = ω2/c2, which can be considered as the Fabry-

Perot (FP) mode of the resonator formed by a thin film of
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FIG. 1. Driven potential well (a,b) is equivalent to the film of
high refraction index with periodically modulated interface (d). The
interface modulation couples the nearly normal FP mode into the
bounded waveguided modes (e) or broadened leaky surface modes
(f), resulting in usual Lorenz or sharply peaked resonances, respec-
tively (c). The modification of the refraction index in the coupling
area is shown by the line in (a).

a refraction index higher than that of the surrounding ma-
terial. We also define the guided radiation as A1(x, z, t ) =
A1(z)exp(ik1,xx−iωt ). Note that the shapes of both radiation
components depend solely on the coordinate z. The near-to-
normal and guided components are mutually coupled due to
the periodic modulation of the thin film interface, with the
period dx of the order of the wavelength of the incident wave:
k1,x = k0,x ± q. For analytical treatment we consider only the
first diffraction order: q = 2π/dx, and also only one diffracted
mode, for instance, the one with k1,x = k0,x + q. Then the
stationary wave equation for the guided radiation component
A1(z) reads

∂2A1(z)

∂z2
+

[
ε(z) ω2

c2
− (k0,x + q)2

]
A1 = 0. (1)

Equation (1) is rigorous for the case of s-polarized
waves, when the electric field oscillates along the modula-
tion grooves, i.e., along the coordinate y (the p-polarized
waves also allow a semianalytical treatment (see Sec. B in the
Supplemental Material [16]), resulting in the same qualitative
physical picture). Equation (1) is identical to the stationary
Schrödinger equation for the quantum particle with the energy
E = k2

0 − (k0,x + q)2 in the potential well with the profile
V (z) = [1−ε(z)]k2

0 as illustrated in Fig. 1(a). Such a potential
supports the bound states, which correspond to the planar

modes of the thin film. Coupling between the FP radiation
A0(z) to these planar modes A1(z) results in the Fano-type
resonances, studied, for instance, in [13–15]. We introduce
the coupling between FP radiation and the guided radiation
by additional external driving for the latter component:

∂2A1(z)

∂z2
+ [E − V (z)]A1(z) − iγ (z)eik0,zzA0(z) = 0. (2)

γ (z) is the normalized coupling profile along z; see Fig. 1(b).
For analytical treatment, we consider the uniform coupling
over the area in z of thickness h0, γ (z) = γ0/h0, γ0 being
a dimensionless net coupling coefficient, and γ (z) = 0 else-
where. The estimation of γ0 in the limit of a shallow harmonic
modulation of the interfaces has been provided, for instance,
in [13]: γ0 ≈ h0�n/λ, where h0 is the amplitude of the surface
modulation of the film: h(x) = h0/2cos(qx), and �n is the
difference in the refractive indices of materials forming the
modulated interface. To maximally fit the quantum-potential-
based model to the experiment we also modify the potential
V (z) by deforming its bottom on the interaction section: V1 =
f V0 + (1− f )Vs, i.e., considering the f -weighted average of
the bottom and right-background potentials, V0 and Vs. The
presence of a step, indicated by the line in Fig. 1(a), is not
essential to the main results.

Equation (2) can be solved by finding piecewise the wave
function in each sector of the potential, s, along z: A1,s(z) =
a0,seik0,zz + a+seikz,sz + a−se−ikz,sz with k2

z,s = (E − Vs), a0,s =
iγsA0,s/(E − Vs − k2

0 ), and matching the solutions and their
derivatives on the interfaces between the sectors to determine
the a+,s and a−,s. The solutions were obtained in an explicit
analytical form for the driven potential shown in Fig. 1; how-
ever, they are not analytically tractable due to their algebraic
complexity.

To calculate the transmission/reflection of the incident field
through the film, it is convenient to introduce the gain of the
FP mode (see Sec. C in the Supplemental Material [16]):

g0 = i

A0

∫
γ (z)A1(z)e−ik0,zzdz. (3)

The physical sense of gain g0 is the feedback from the
guided modes back to the FP mode. The transmission and
reflection of the incident wave through the thin film then read:
tFP = (1 − g0/t2)−1, rFP = g0/t2(1 − g0/t2)−1. (We consider
that the transmission coefficient through the interfaces, t , is
equal for both interfaces.) The reflection and transmission
of the incident radiation obeys the relation T + R = |tFP|2 +
|rFP|2 = 1.

The analysis model above identifies the Fano-type reso-
nances [17], with the asymptotical (at their peak) parabolic
shapes. We varied the depth of the potential well V0 to tune
the frequencies of the resonances to explore the crossing of
the highest energy resonance through the EOC. The width of
the resonance remains nearly constant for its frequency deep
in the potential well but starts decreasing when approaching
the EOC. Meanwhile, the maximum value of the reflection
coefficient remains unity. The top reflection coefficient de-
creases after crossing the continuum boundary, as indicated in
Fig. 2(a). The shape of the resonance curve becomes sharply
peaked at the EOC, as expected.
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FIG. 2. (a) The maximum of reflection coefficient from the
potential well, max[R(E )], and the half-width of the reflection res-
onance �E0 depending on V0. γ0 = 0.75. (b) The half-width of the
reflection resonance �E0 depending on the coupling constant γ0

at the EOC: V0 = −1, yellow line, slightly below the EOC; V0 =
−1.05, red line, and deep below the EOC; V0 = −2, blue line. Other
parameters are a = π/2, h0 = π/10.

III. RESONANCES

The potential well in Fig. 1 did not lead to simple algebraic
expressions. To maximally simplify the problem and to get
analytic estimations, we further simplified the model. We con-
sidered a semi-infinite potential well, with V → ∞ for z < 0,
and constant driving force throughout the entire bottom of
the potential well 0 < z < h0. The analysis (see Sec. C in the
Supplemental Material [16]) leads to the tractable expressions
of the gain function in a limiting case of the narrow and deep
potential well (ak0,z � 1, |V0| � 1):

g0 = γ 2
0

a2

i
√

V0

k3
1k2

2k2
2 + (

k2
1 − 2k2

2

)
cos(ak1)

cos(ak1 + φ)
. (4)

Here tan(φ) = ik2/k1, k1 = √
E − V0, and k2 = √

E are the
wave numbers of the wave function in the potential well and
outside the well, respectively. For the bounded states E < 0
the k2 is imaginary valued, whereas k1 remains real valued.

The poles of (4), cos(ak1 + φ) → 0, indicate the reso-
nances, which occur for (ak1 + φ) → π (2n + 1)/2, where
the integer n counts the resonances starting from n = 0. We
simplify (4) in two different asymptotics:

(1) The lowest energy-bound state lies deep in the po-
tential well, E ,V0 → −∞. Then |k1| � |k2|, φ → −π/2,
cos(ak1 + φ) → 0, ak1 → π (for the lowest energy bound
state):

g0 = 2iγ 2
0

a2

1√
a2 − π2/V0

1

�E
. (5)

In the limit V0 → −∞, the half-width of the gain line
simplifies to �E0 = 2γ 2

0 /a3, and scales with the coupling co-
efficient as �E0 ∼ γ 2

0 . This case corresponds to the Fano-like
resonances of the discrete states.

(2) The lowest energy-bound state coincides with the
background level on the right side of the potential well at z >

a, E = 0. Then |k2| � |k1|, φ → 0, cos(ak1) → 0, ak1 →
π/2, and we obtain

g0 = −8γ 2
0

πa2

1√
�E

. (6)

FIG. 3. The map of the reflection coefficient in the plane of angle
wavelength (θ, λ) (a), and its cross section at a given angle θ (b).
The arrows indicate the points corresponding to the resonance at
the EOC. The top reflection coefficient and the resonance width of
the highest frequency (smallest wavelength mode), depending on θ

(c). The zoom of the reflection profile around the continuum edge
(d). The calculations were performed by RCWA with the following
parameters: modulation depth h0 = 200 nm, modulation period dx =
625 nm, layer thickness dz = 460 nm, refraction indices nfilm = 2.25,
nsubstr. = 1.5.

The half-width of the gain line becomes �E0 =
64γ 4

0 /(π2a4), and scales with the coupling coefficient as
�E0 ∼ γ 4

0 .
Equation (6) is the main result of our analytical study.

For the positive detuning, �E > 0, i.e., within the contin-
uum, the gain is real valued, whereas for negative detuning,
�E < 0, i.e., below the EOC, the gain is imaginary. This
has consequences for the reflection coefficient. For both
positive and negative �E , the reflection coefficient asymp-
totically decreases as RFP ≈ 1 − |�E |/�ER, with �ER =
64γ 4

0 /(π2t4a4), which results in a sharply peaked shape of
the resonance.

These analytic predictions were checked by numerically
calculating the driven potential model, shown in Fig. 1. The
sharply peaked resonances at the edge of the continuum were
identified. The calculated width of the resonances (Fig. 2)
indeed shows the predicted scaling. We recover the standard
scaling of Lorenz resonances �E0 ∼ γ 2

0 for the energies deep
below the EOC and justify the �E0 ∼ γ 4

0 scaling at the EOC.

IV. FULL MODEL

To prove the validity of the results obtained on simplified
models, we performed the analysis using the rigorous coupled
wave analysis (RCWA) [18,19]. Our own solver was devel-
oped for that purpose [16]. The results are summarized in
Fig. 3.

The full model accounts for both (right or left prop-
agating) guided modes. Therefore in Fig. 3 the pattern
of the left- and right-inclined resonances in the parameter
space of the incidence angle, and the wavelength (θ, λ), are
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FIG. 4. (a) The map of the reflection coefficient in the plane of
modulation depth versus wavelength. The width of the resonances
versus modulation depth is shown in (b). The parameters are the same
as in Fig. 3.

observed. The physical parameter space of the thin film (θ, λ)
relates with the parameter space of the potential (V0, E )
via the above-presented relations: E = k2

0 − [k0sin(θ ) + q]2,
V0 = (1 − εfilm )k2

0 . The EOC corresponds to a particular set
of parameters in (V0, E ), and equivalently in (θ, λ0). These
points are indicated in Fig. 3(a) by arrows for left- and
right-guided waves. The inset shows the sharply peaked asym-
metric resonance by crossing the EOC point along a particular
θ = const.

Resonance lines with only the smallest wavelength cross
the EOC in Fig. 3. The other resonances, with the larger wave-
length (lower energies), remain deep in the potential well.
Consequently, their resonances do not develop sharp peaks,
and remain Lorentzian, as Fig. 3(b) indicates.

The dependence of the top reflection coefficient and the
resonance’s width on the angle is shown in Fig. 3(c), in ac-
cordance with the conclusions from the simplified treatment
above.

Finally, the scaling laws of the resonance width with the
coupling coefficient (depth of the film interface modulation)
were checked. If the usual Lorenz resonances show the well-
established power 2 law, the resonances at the edge follow the
power 4 law, as shown in Fig. 4(b).

V. EXPERIMENTAL REALIZATION

For fabricating such a structure, we used a commer-
cially available fused silica surface grating (modulation period
625 nm, modulation depth 220 nm) with a nearly sinusoidal
surface [see Figs. 5(a) and 5(b)]. The grating was used as
a substrate for thin film deposition by PVD [20]. The ion
beam sputtering technology [21] was used for Nb2O5 layer
fabrication (thickness = 530 nm, refractive index 2.23); see
also [22] for technological details. The profile of the thin
film surface remained almost the same as that of the substrate
modulation [see Fig. 5(b)].

Spectrophotometric measurements recorded reflection
maps for the fabricated sample. Linearly polarized light was
used for two perpendicular polarizations: s and p, where s
polarization is parallel to the grating lines on the sample. The
angle between the normal of the grating and the detector was
varied from 0° to 15° by steps of 0.5°. The resulting reflection
maps are presented in Figs. 5(c) and 5(e).

The measured reflection maps of the sample correspond
well to those following from the RCWA simulations. The

FIG. 5. Experimental results, compared with RCWA results:
photo of fabricated samples (arrows indicate polarization directions)
(a), and the SEM image of the specimen sample cross section (b).
Numerical and experimental maps of the reflection in the plane of
angle wavelength for (c),(d) s polarization and (e),(f) p polarization,
with their cross sections at 4 ° of light incidence angle. The arrows
indicate the points where the left and guided modes cross the contin-
uum boundary.

lines of the Fano resonances were observed, narrowing and
terminating at the EOC, and indicating the sharply peaked
shapes; see Figs. 5(c)–5(f).

Remarkably, the sharply peaked resonances were indicated
not only for the s polarization, as predicted by the above analy-
sis, but also for p polarization. Also, both interfaces of the thin
film were modulated. Current technical limitations of thin film
fabrication did not allow us to obtain the modulation of only
one interface, which strictly corresponds to the analytically
studied cases. This indicates that the predicted and observed
effect is generic (which is not restricted to the Schrödinger
equation model), and robust with respect to nonessential mod-
ifications of the geometry of the driven potential.

VI. SUMMARY

We predicted a critical narrowing and the sharpening of the
peak of the resonances when their eigenfrequencies approach
the EOC. Importantly, the maximum reflection coefficient re-
mains unity. We realized the effect for the wave propagation
or reflection through the thin films with periodically mod-
ulated interfaces, and we demonstrated the predicted effect
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measuring reflection coefficients depending on the frequency
and incidence angle.

For the usual Fano resonances, the gain function g0 is
imaginary valued and symmetric, which gives a smooth vari-
ation of the phase delay of the response from 0 to π , with
a value π/2 at the resonance, as well as a smooth peak of
the resonance curve. In the reported case the gain function
g0 changes from imaginary to real at the EOC, which gives an
abrupt π/2 jump of phase delay, as well as an unusual sharply
peaked shape of the resonance.

To demonstrate the essence of the effect, we intended to
isolate the points corresponding to the EOC, which allows us
to interpret the phenomena in frames of a maximally simple
model of only one guided wave. Additional effects could be
expected at the coalescence of such two exceptional points
corresponding to left- and right-guided waves. The crossing
resonance lines in parameter space (θ, λ0), corresponding to
left- and right-guided waves, can form in this plane sharply

edged triangles, which could be used for efficient spatial fil-
tering. For instance, such spatial filtering effects were realized
in [23,24] using the crossings of the usual, symmetric smooth-
top resonance lines of Lorentzian form. Here, the asymmetries
and sharp features of the coalescing resonances at the edge of
the continuum can lead to advanced spatial filters with exotic
characteristics, like sharp edges and flat tops, among others.
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