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Finite-range bias in fitting three-body loss to the zero-range model
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We study the impact of finite-range physics on the zero-range-model analysis of three-body recombination
in ultracold atoms. We find that temperature dependence of the zero-range parameters can vary from one set
of measurements to another as it may be driven by the distribution of error bars in the experiment, and not by
the underlying three-body physics. To study finite-temperature effects in three-body recombination beyond the
zero-range physics, we introduce and examine a finite-range model based upon a hyperspherical formalism. The
systematic error discussed in this Letter may provide a significant contribution to the error bars of measured

three-body parameters.
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Introduction. Three-body recombination loss in cold-atom
experiments provides an invaluable tool in fundamental stud-
ies of three-body physics, in particular of the Efimov effect
[1-10]. Although many features of the experimental data are
captured by zero-range models, current experiments also re-
veal finite-range effects [11-13], which require theoretical
analysis of the corresponding physics.

To analyze three-body loss, one considers the number of
particles lost from the system per unit of time, «. In ul-
tracold dilute gases, o depends on a handful of quantities
that characterize particle-particle interactions [6—8]. The first
one is the scattering length a, which can be controlled using
external fields [14]. Minimal zero-range models have two
more parameters that define short-range three-body physics
and the probability to recombine [6], denoted (for a < 0) as
a_ and n. Their values are obtained from experimental data
[7,8] and are often considered to be intrinsic to the few-body
system at hand. However, it was observed that a_ depends on
temperature [11,12], contradicting theoretical expectations.
This dependence attributed to the finite-range physics (always
present in realistic systems) is modeled in our Letter.

We show that the temperature dependence of a_ may be
driven by the distribution of error bars in the experiment,
and not by the underlying three-body physics. This is a con-
sequence of the fact that the parameters a_ and n describe
measurements only from the point of view of an incomplete
(zero-range) theory—they may contain (besides intrinsic few-
body physics) information about the experiment.

Our results add a possible systematic bias to the family
of already known ones caused, for example, by high den-
sities [15] or uncertainties in the trap frequencies and atom
number [16]. However, unlike the previously known issues
with analysis of three-body recombination, one is required
to deepen theoretical understanding of microscopic physics
to mitigate the bias discussed below. This can be important
for studies of the van der Waals universality, which provides
an estimate of a_ at zero temperature, 7 = 0 [17]. To test
it in a laboratory, one performs a number of measurements
at different temperatures and extrapolates the fitted a_ to the
limit 7 — 0 [11,12,15]. As we demonstrate, this procedure
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may be inconclusive. It is an example of a much more general
phenomenon—ambiguity of fits based on universal theories
in the presence of nonuniversal physics. The corresponding
systematic errors are not well understood in the context of
cold-atom setups. Although, they should be analyzed on a
case-by-case basis, some physical intuition can be adopted
from other branches of physics, in particular, from studies of
a few nucleons [18,19].

Illustrative toy model. Before discussing three-body recom-
bination, let us discuss an example that provides insight into
the fact that if a fitting model does not describe every relevant
aspect of the data (incomplete or underfit model), then its
parameters may depend on characteristics of the experiment.
Moreover, the values extracted from different experiments
may not overlap within respective error bars, leading to a
systematic bias in the analysis. To illustrate this rather general
statement, we introduce and discuss a toy model. The model
is linear by design; i.e., the fitting function is a linear function
of the parameters. This will allow us to gain some analytical
insight into the problem.

Consider an artificial physical process described by

Ax) =x+ e_"zx, (D

where x is some parameter, e.g., a dimensionless length scale,
and A(x) is an observable. Interpretation of Eq. (1) is as fol-
lows: (i) for x — oo the system obeys the “universal” physics
(A — x), and (ii) for x — 0, some “nonuniversal” physics
is important, which, for simplicity, is parametrized here by
ex.

Let us assume that there are two experiments that measure
A at different values of x. Each experiment produces a data
st [{Ai(x1), €(xD} {Ai(x2), €(x2)}, ... {Aixw), €(xw ).
Here, the subscript denotes the experiment. ¢; denotes the
corresponding error in the measurement of A. It is assumed
that the value of x is known exactly in each experiment so that
there are no associated error bars. It is also assumed that both
experiments measure at identical values of x. As will become
clear later, these assumptions are not essential.
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FIG. 1. Illustration of the toy model for one representative set
of parameters. The black curves show the exact model of Eq. (1).
The dots with error bars correspond to generated “experimental”
data for x = {2, 2.1, 2.2, ..., 4}. The data are drawn from the normal
distribution with the mean given by Eq. (1) and the standard deviation
by €;/2. The upper panel is for €, = 0.4, and the lower panel is for
€, = 0.4A(x)/ A(x;). The orange curves show the best linear fit to

the experimental data.

To simulate data measured in each experiment, we draw
random values A; for each x from a normal distribution with
the mean given by Eq. (1) and the standard deviation by
€;/2. The two experiments differ only in the values of ¢;. In
the first experiment, we assume €; = €, and in the second
one we assume €,(x;) = A(x)e/ A(xy). Both choices appear
logical—the first corresponds to a fixed error, and the second
corresponds to an error proportional to the value of A.

To analyze the data, we assume that the functional de-
pendence of the universal physics is known; i.e., it is known
that A;(x;) >~ x; in the limit x; — oo. Therefore, we fit the
data with a;x, where g; is a fit parameter [20] (see Fig. 1). It
is clear that the value of a; depends on the number of data
points, N, as well as on the range of x, i.e., on x; and xy.
For example, if there are “sufficiently” many data points in
the universal regime, i.e., with x >> 1, then the mean values
of a; and a; should approach 1. Here, we are interested in the
scenario in which the parameter g; contains some information
about nonuniversal physics, which is a typical experimental
situation. To take this into account, we fix x; = 2 and xy = 4.
This region is “almost” universal, as e ~ 0.018; however,
it still contains some information about the small-x region.

To determine a;, we minimize x> (“chi squared”) [21,22]:

N 2

Ai(x) — a~xk>

2 1 i

XF = — . 2)
' kgl: < € (xx)

After differentiating Xiz with respect to a;, we derive

o Do LA o) /€ ()]
l Yola/ex?

3)

We assume that x;1; — x; = §x — 0; i.e., the experiment has
a fine grid in x. Furthermore, we assume that € — 0; i.e.,
measurements in both experiments enjoy tiny error bars. With
these assumptions, we write a; = |’ ):N A@x)xdx/ [ )jN x2dx and
a = f;” x A~ (x)dx/ fxf’v [x A~ (x)]?dx. We see that the first
experiment leads to a; ~ 1.0010. The second experiment
yields a; ~ 1.0020 [23]. Even though the two values are very
close to each other, they are different. This reflects the fact that
the first experiment trusts all points equally [e; (x;) = €1 (xy)],
whereas the second has more confidence in nonuniversal
points [e.g., €2(x1)/€2(xy) = x1/xy < 1]. Note that within the
realm of each numerical experiment, the values of a; and
a, are exact as € — 0, and they contradict each other. (It is
easy to check numerically that a; # a, even if we assume that
there is some variation in the error bars, e.g., if € is a random
number drawn from a normal distribution with the mean € and
the standard deviation € /10.)

The systematic error discussed above is based on two facts.
First, the universal model is an underfit model; i.e., it does not
describe the data sufficiently well when ¢ — 0. Second, we
systematically force the fitting procedure to trust nonuniversal
physics more in the second experiment. One can improve the
fitting procedure in this section by introducing other terms,
which mimic nonuniversal physics, to the fitting function.
Alternatively, if one has some knowledge of the second term
in Eq. (1), one can set the upper bound on the error €; [19] or
use the Bayesian parameter estimation [24]. We refrain from
utilizing these options here, as (i) there is limited understand-
ing of finite-range range effects on three-body recombination
at finite temperature and (ii) our aim is to mimic the state-of-
the-art analysis of three-body recombination in cold atoms.

The toy model presented in this section is artificial and
contains assumptions (e.g., € — 0) that might be hard to
satisfy experimentally. In spite of this, it illustrates the fact
that the parameter a corresponds to a physical quantity only
if x; > 1, otherwise a depends on the experimental protocol
even for very accurate and dense data sets. To illustrate how
the corresponding error might enter the analysis of three-body
recombination, we simulate the standard routine for analyzing
experiments. To this end, we introduce a finite-range model to
generate experimental data. Then we fit these data using the
zero-range model of Refs. [25,26].

Model to simulate three-body loss. Typically, a three-boson
problem is notoriously difficult to solve. However, in the limit
of low energies and short-range interactions one can obtain
an accurate solution with a single differential equation for the
hyper-radial wave function f in the adiabatic approximation
(for review, see Ref. [4])

d? vi(p)—1/4 2mE
dp? 02

= )f(p>=o, @)

where E is the energy, m is the mass of a boson, and p is the
hyper-radius [27]. The function v(p) determines the effective
three-body potential from two-body interactions. In spite of
the simplicity of Eq. (4), it provides a valuable tool in studies
of universal properties of three-body states [28,29] and asso-
ciated with them losses in cold gases (see, e.g., Refs. [30,31]).
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For a fixed value of p, the parameter v solves the equation

8 1
ﬁsin%—vcos% =«/§p<m +F> sin%, &)

where a is the scattering length, and F' contains information
about finite-range corrections. If F = 0, then Eq. (5) leads
to the “zero-range” model (see, e.g., Refs. [12,25,26]). It de-
scribes three-body recombination rates accurately, assuming
that the fitting parameters a— and n might depend on the
temperature [11,12]. The aim of this section is to provide an
algorithm for generating the experimental data of three-body
recombination using a finite-range model with F' # 0 [32].

To investigate finite-range effects, we use the following
expression of F' [33,34],

RV
F(p):Z;’ (6)

where R is a new length scale in the problem—the effective
range parameter that appears in two-body scattering. It is
worth noting that studies based upon hyperspherical formal-
ism as well as effective field theories suggest the existence
of one more three-body parameter once range corrections are
considered [35-37]. As our aim here is to design a minimal
model for studying systematic errors possible in the experi-
ment, we refrain from introducing this additional parameter.
We note that, in the hyperspherical formalism, its effect is
canceled (at least partially) by nonadiabatic corrections [35].

In one-channel atom-atom scattering, the parameter R is
typically positive (see, e.g., Refs. [38,39]). However, in mul-
tichannel problems, which are more suitable for modeling
ultracold setups, this parameter is negative [40], and thus, we
assume R < 0 (see Ref. [41] for a discussion of the case with
R > 0) [42].

The solution to Eq. (5) as a function of p/|a| is plotted in
Ref. [41]. The main features of the solutions are as follows.
In the zero-range model (R = 0), v?>(0) ~ —1. This leads
to a (super)attractive —1.26/r> potential in Eq. (4), which
supports an infinite number of bound states with the ground
state of infinite negative energy—the Thomas collapse [43]
(for review, see Refs. [4,6,7]). The collapse occurs only for
R = 0. In a finite-range model (R < 0), the solution to Eq. (5)
in the limit p — 0 is determined by R; v?(0) vanishes and
the Thomas collapse does not occur. The long-range part is
determined mainly by the scattering length (see Ref. [41]).

In general if p > /[Ra], then v? is given approximately
by U%R—the solution of Eq. (5) with F = 0. (This estimate is
obtained by comparing 1/|a| and F assuming that v is of the
order of unity.) In this limit we can derive

R [(p
2 2
Ve~ v, + —gl — |, 7
ZR pg<a> (7

where g is given in Ref. [41]. In our numerical simulations,
this expansion is accurate already for p 2 2|R|. Note that
the parameter R enters linearly in this expression. Therefore,
positive (negative) values of R lead to larger (smaller) values
of the effective potential.

Loss coefficient. At p — 00, any solution to Eq. (4) for
E > 0 can be written as a combination of incoming and

TABLE 1. Parameters of the zero-range model (a_ and 7) and
the finite-range model (» and ¢) for R = —55a, from fitting to the
experimental data of Ref. [12]. The last row presents the average
values. The shown values of x2 are normalized by the number of
data points.

T (nK) la_| n x5 r ¢ x?
178 772 0.24 0.5 1.7 22 0.4
192 718 0.22 0.5 1.3 2.1 0.4
286 824 0.25 0.2 2.1 22 0.1
304 769 0.31 0.4 1.9 2.0 0.3
Avg. 771 0.26 1.8 2.1

outgoing waves:
flp = 00) = He V0 4 GelV2¥e, @®)

where k = /mE /R>. It is intuitively clear that information
about losses must be contained in the ratio |G/H|. The WKB
method of hidden crossing theory can be used to confirm this
[9,31,45]. Within this theory, the recombination coefficient for
a given value of k is written as

2

). ©)]

We show in Ref. [41] that the ratio G/H depends on a complex
parameter A that defines short-range three-body physics (not
fixed by the effective range) via

oy (k) = 36(2n)2¢§i4 (1 _ ‘E
mk

H

Fp — 0)~ VkplA +1n (o/IR])]. (10)

This parameter is determined by fitting to the experimental
data; see Table I for typical values of r and ¢ (A = re?).

The recombination coefficient for a fixed temperature can
now be obtained by thermally averaging with the Boltzmann

50

10

a (10722 cmb/s)

e experimental data
—— finite-range model
1

— zero-range model

500 1000 2000 5000

|a| (units of ag)

FIG. 2. Recombination coefficient o from the experiment of
Ref. [12] at T = 178 nK (dots with error bars). The figure also
shows the fit to the zero-range model (black) and to the finite-range
model (orange) with R = —55ay (ay is the Bohr radius). The value
of |R| is chosen close to the corresponding van der Waals length
Ryaw = 64.53a, [44].
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FIG. 3. Peak of recombination, |apq|, as a function of tempera-
ture for different values of the effective range. Ay, = fi//2mrmkgT
(cf. Ref. [11]), so 10 |Ryaw|/Am o A/T. Parameters of the finite-
range model are as follows: r = 1.8 and ¢ = 2.1; the zero-range
model has |a_| = 771ag and n = 0.26 (cf. Table I).

distribution [9,46]:
1
o =
2(ksT)?

Here, we have assumed that a Bose gas forms a thermal cloud
and that it is so dilute that many-body effects can be neglected.
a from Eq. (11) fits well the experimental data. We illustrate
this in Fig. 2 using the data from Ref. [12]. The figure shows
the fit based upon the finite-range model from Eq. (11) to-
gether with the zero-range model (obtained with R = 0, see
also Refs. [12,26]). Both fits describe the data equally well;
i.e., they lead to similar values of x? (see Table I).

Equation (11) will be used in this work only to simulate
“experimental” data, which are “realistic” in the sense that
they contain beyond-zero-range effects. However, note that
the finite-range model can be used to understand beyond-
zero-range physics in the context of finite-temperature effects.
To motivate further analysis of the model, we present the
temperature dependence of the recombination peak location
|apeak | extracted from Eq. (11) (see Fig. 3). |apeak| increases
for smaller temperatures, in agreement with previous studies
(see, e.g., Ref. [15]). This behavior is affected by the value
of R. We observe that |apeak | (R1) — |apeak |(R2) ~ 10(R; — R»)
for the considered parameters. In-depth investigation of this
scaling, which resembles the van der Waals universality, is left
for future studies.

Fitting the finite-range model. Using the finite-range model,
we generate experimental data for 3°K (see a sketch in Fig. 4).
As for the toy model, we consider here two experiments that
measure {{«;(ay), €;(ar)}, ..., {a;(ay), €;(ay)}} at different
temperatures; i = 1 (i = 2) is for the first (second) experi-
ment. For each T and a, we draw values of «; from a normal
distribution whose mean is given by Eq. (11) with r = 1.8

/ oaxE2e EIRT gE . (11)

and ¢ = 2.1 (motivated by Table I). The standard deviation
is given by ¢€;/2, which implies that the experimental (2-0)
error bar is ;. We assume that the two experiments measure
identical values of the scattering length (chosen in agree-
ment with experimental points of Ref. [12]), which can be
determined exactly. The difference between the experiments
is only in the values of ¢;. Similarly to the toy model, we
work with €;(a), which is independent of a, and €;(a), which
is proportional to «(a).

We use €;(a) = 10’23cm6/s and €3(a) = a(a)/20. This
implies that all points are equally trustworthy in the first
experiment, and the second experiment has the strongest con-
fidence in the measurements in the nonuniversal region.

The resulting data are fitted using the zero-range model
[12,25,26] with the standard parametrization a_ and 7. The
former parameter is shown in Fig. 5 as a function of tempera-
ture for different values of the effective range R.

Figure 5 shows that the extracted value of a_ strongly
depends on the experimental conditions [47]. For the constant-
error experiment, there is a linear dependence of a_ on JT
which agrees with Refs. [11,12], although with a differ-
ent slope. The linear dependence is also seen in the direct
fitting of the finite-range model with the zero-range model
(without generation of experimental data). In the proportional-
error experiment, we observe that a_ is almost temperature-
independent in agreement with Ref. [15]. These results
suggest that the difference between experimental observations
of Ref. [15] and Refs. [11,12] might be explained by the
difference in the experimental setups. Admittedly, other expla-
nations cannot be ruled out at the moment. The experiments
of Refs. [11,15] might reach different conclusions because
they focus on different systems (Cs vs K) and Feshbach reso-
nances. The density of the K cloud in Ref. [12] was probably
too high at low temperatures so that many-body effects could
have played a role (see also a discussion in Ref. [15]).

In any case, the existing experimental data should be rean-
alyzed in light of our results. Indeed, the extraction of a_ at
T = 0 from the data sets in Fig. 5 leads to conflicting results
implying that one needs additional information for identify-
ing the “correct” universal value. The difference between the
extracted values of a_(T = 0) in the present example can be
more than 5%, which is similar to the accuracy of the state-of-
the-art values [15] and, thus, can be decisive in determining
the error bars. This estimate suggests the following rule of
thumb: a systematic error due to fitting with the zero-range
model is of the order of |R/a_| (cf. Ref. [25]).

Finally, we note that the sign of the slope of a_(T) in the
first experiment (see Fig. 5) is determined by the sign of R
(see Ref. [41]). This can be anticipated from the fact that the
contribution of R to the hyperspherical potential has a linear
in R term, which is perturbative [see Eq. (7)].

Summary and outlook. We argued that the temperature
dependence of three-body parameters may reflect certain
characteristics of the experiment, and not the underlying
three-body physics. In particular, it may reflect our confidence
in the accuracy of different data points.

We first considered a toy model in which the universal
parameter (the slope of a line at x — 00) cannot be extracted
reliably by considering only a finite range of x, no matter how
many data points are produced by the experiment and how
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a[R,r, ¢, T)(a)

1 Generate
FRM curve

2 Add noise

‘ apla—,n,T)(a)

3 Fit with ZRM

FIG. 4. Generation and analysis of experimental data. First, the
recombination coefficient is calculated using the finite-range model
(FRM). Second, this curve is used to generate experimental data
points from a normal random distribution. The standard deviation
is given by €;/2, which was predetermined by us. Third, the resulting
artificial experimental data are fitted using the zero-range model
(ZRM), which yields the parameter a_.

accurate they are. Most importantly, different distributions of
error bars in the two considered experiments lead to different
fitting parameters; i.e., the conclusions of these experiments
are conflicting.

Then, we developed a finite-range model of three-body
recombination and showed its good performance in describ-
ing experimental data. We used this model to simulate an
experiment for a user of an (incomplete) zero-range model.
As for the toy model, we showed that the type of error bars
can change the value of the extracted fitting parameter a_ by
a few percent. This leads to a systematic error in the value of
the universal three-body parameters.

Our results might help to reconcile experimental observa-
tions of the dependence of a_ on T [11,12,15]. They may

T (nK)
50 100 200 300 400 500
850
R = —60ay,
+ + + * constant error
+ + + R = —60
800 + + * * { * * proportio‘?a’l error
s
3 R = —55ay,
i) constant error
3750 ++++++ by oy I
Na¥ + it 500,
_ proportional error
o R = —50ay,
700 constant error
batys bt 3 ! R = ~50aq,
° proportional error

103| Ryaw |/ Men

FIG. 5. The three-body parameter a_ obtained from the artificial
experimental data generated using the finite-range model with fixed
parameters (see Fig. 4). Finite-range model parameters: » = 1.8 and
¢ = 2.1. Solid lines correspond to a direct zero-range model fit of
the finite-range model (no added noise and error bars).

also motivate researchers to find approaches for extracting
universal parameters from cold-atom data contaminated by
nonuniversal physics. For three-body loss, the safest way is
to provide measurements at larger scattering length. However,
it is demanding from the experimental point of view. Alterna-
tively, one can focus on available “true” observables, such as
the peak position of losses. To incorporate information about
the finite-range bias, one can assign different weights to the
points with the smallest values of |a| [48]. Finally, one can
use theoretical finite-range models (such as the one presented
above) to model experiments using standard Monte Carlo
techniques [49] and subsequently estimate possible systematic
error bars.
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