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High-momentum oscillating tails of strongly interacting one-dimensional gases in a box
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We study the equilibrium momentum distribution of strongly interacting one-dimensional mixtures of particles
at zero temperature in a box potential. We find that the magnitude of the 1/k4 tail of the momentum distribution
is not only due to short-distance correlations, but also to the presence of the rigid walls, breaking the Tan relation
relating this quantity to the adiabatic derivative of the energy with respect to the inverse of the interaction
strength. The additional contribution is a finite-size effect that includes a k-independent and an oscillating part.
This latter, surprisingly, encodes information on long-range spin correlations.

DOI: 10.1103/PhysRevA.107.L061301

I. INTRODUCTION

One-dimensional (1D) quantum systems of particles with
contact interactions have been the playground for theoreti-
cians for many years since they are exactly solvable with
techniques such as Bethe ansatz [1–5] and fermionization
[6,7]. Access to exact solutions was and is essential to im-
proving our understanding of the role of quantum correlations
in low dimensions [8,9]. During the past decades, after be-
ing realized experimentally using different particle species,
trapping geometries, and adjustable interactions [7,10], the
status of such systems has changed considerably. They have
gone from being toy models to one of the paradigms for
quantum simulators [11]. In turn, they can even be considered
as benchmarks for other, more complex, quantum simulators
[12]. Among other examples, it is now possible to synthesize
systems such as the Tonks-Girardeau (TG) gas of strongly
interacting bosons [13,14] or fermionic mixtures of κ compo-
nents with SU(κ ) interaction symmetry [15]. The gas enters
the TG regime when the ratio of the interaction energy to
kinetic energy becomes very large and the probability of
observing two particles in the same position becomes approx-
imately zero.

Due to the diluteness of ultracold gases, atomic interactions
can be well approximated by a zero-range potential, and an
important consequence of strong contact interactions is the
universality of many equilibrium and thermodynamic quan-
tities, most of them being summarized by the Tan relations
[16–20]. In one of them, the interplay between contact inter-
actions and exchange symmetry between N particles leads to
the appearance of a universal algebraic behavior of the tail of
the momentum distribution of the form KN/k4 for momentum
h̄k larger than any other typical momentum scale, such as the
Fermi momentum kF.

KN is usually identified with CN , Tan’s contact, which is
proportional to ∂E/∂g−1, namely, to gEint , the product be-
tween the interaction strength and the total interaction energy
of the system [21–23]. The equivalence KN = CN holds at
equilibrium for both homogeneous systems with periodic-
boundary conditions and smoothly trapped systems, for any
mixture of interacting particles, and any dimension [16–19].

The origin of the 1/k4 decay is the universal way the
many-body wave function has to accommodate the contact
interaction when two particles approach each other. For in-
stance, antisymmetric exchanges neutralize the effects of
contact interactions and do not contribute to KN , while sym-
metric exchanges induce in the many-body wave function,
and thus in the one-body reduced density matrix (OBDM),
a discontinuity of the derivative, a cusp, that contributes to the
∼1/k4 behavior of the momentum distribution tail [22–24].
KN is therefore sensitive to the exchange symmetry and can
be used as observable for symmetry spectroscopy in quantum
mixtures [25,26]. This interplay of contact interactions and
symmetry has repercussions on the spectrum of the finite
interaction system [25,27].

However, violations of the Tan relation have been pointed
out in nonequilibrium scenarios, induced by impurities [28],
particle losses [29], interaction quenches [30,31], three-body
effects [32], and at equilibrium for high temperatures [33].
In this Letter, we show how the presence of a box confining
potential also breaks down the Tan relation for 1D gases at
equilibrium and zero temperature. We find that KN not only
has an average value larger than CN , but also, for strong inter-
actions, develops oscillations (cf. Fig. 1), which are connected
to the spin-coherence properties of the gas from one border of
the box to the other.

Trapping atoms in optical-box potentials is becoming in-
creasingly popular over the last years, and has led to important
results in three-dimensional and two-dimensional gases [34].
Therefore, this work aims to guide future experiments using
box potentials in one dimension.

We exemplify our findings using two canonical systems as
spinless noninteracting fermions and TG bosons (Sec. III),
before generalizing them to arbitrary mixtures of quantum
particles with infinite interactions (Sec. IV).

II. GENERAL CONSIDERATIONS

In the following, we briefly recall the definition of the
momentum distribution and explain how its large-momenta
tail is usually related to short-distance correlations in the
system, thus to Tan’s contact [19,23,35,36]. The momentum
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FIG. 1. Normalized momentum distribution n(k)/N , in units of
1/L, as a function of kL for four spinless fermions (magenta) and
four TG bosons (light violet). In the inset, the solid lines are the
same n(k)/N multiplied by k4, in units of L3, while the dashed lines
correspond to the asymptotic analytical expressions given in Eqs. (9)
and (12).

distribution n(k), that is, the average density of particles with
momentum h̄k, can be expressed as the Fourier transform of
the OBDM ρ1(x, y):

n(k) = 1

2π

∫
D2

dx dy ρ1(x, y)e−ik(y−x), (1)

ρ1(x, y) = N
∫

DN−1
dx2 · · · dxN �∗(x, x2, ..., xN )

×�(y, x2, ..., xN ), (2)

where �(x1, x2, ..., xN ) is the many-body wave function of
N particles, which, at this stage, can describe any kind of
mixture. The integration domain D runs over the entire system
and depends on the considered geometry.

In this Letter, we focus on the large-momenta tail of n(k)
given by

n(k) �
k→∞

KN

k4
, (3)

where the power-law decay derives from the type of singular-
ity of ρ1(x, y) or �(x1, . . . , xN ) and its weight KN depends on
the function slope in the vicinity of these singularities and on
their number.

The origin of the 1/k4 tail can be understood by math-
ematical means. According to Watson’s lemma [23,37], the
asymptotics of the Fourier transform of functions which have
a singularity of the type f (z) = F (z)|z − z0|α , with F (z) ana-
lytic, and α > −1 and α �= 0, 2, 4, . . . reads∫

D
dz e−ikzF (z)|z − z0|α =

k→∞
Fα

e−ikz0 F (z0)

|k|α+1
+ O

(
1

|k|α+2

)
,

(4)

where Fα = 2 cos[π (α + 1)/2]�(α + 1) and �(α) is the
Gamma function. Therefore, by looking at Eqs. (1) and (2),
the possible contributions to the 1/k4 tail of n(k) could be
seen as nonanalytic terms of the form (i) |x − y|3 in ρ1(x, y)
[24,38] or (ii) |x − x̄|, with x̄ ∈ D , in �(x, x2, . . . ) [22,23].

A pedagogical example of this behavior is provided by the
TG gas for a smooth trapping potential. Its OBDM behaves
as |x − y|3 around x ∼ y and, consequently, n(k) displays an
algebraic tail [38]. This differs from the case of free fermions

and bosons in the same trap configuration, whose OBDMs
are instead analytical in D and their momentum distributions
do not have any algebraic tail [39]. This can be shown by
expanding the OBDM for the TG gas, ρTG

1 , in terms of the
spinless fermions reduced density matrices ρF

1+ j with j � 1
[40,41], namely,

ρTG
1 (x, y) = ρF

1 (x, y) +
N−1∑
j=1

(−2) j

j!

∫ y

x
dx2 . . . dx1+ j

× ρF
1+ j (x, x2, . . . ; y, x2, . . . ), (5)

for x < y. For a smooth trapping potential, the only term that
contributes to the 1/k4 algebraic decay of n(k) is the first term
of the expansion in Eq. (5), namely, −2

∫ y
x dx2ρ

F
2 (x, x2; y, x2)

[23]. Indeed, by using Eq. (5) and introducing the change of
coordinates xr = y − x and X = (x + y)/2, one has [24,42]

nTG(k) �
k→∞

1

2

∫
2D

dxr e−ikxr
|xr |3

6
C TG

N , (6)

where 1/k4 is given by applying Eq. (4) to the integral in xr

and

C TG
N ≡ 2

π

∫
D

dX lim
ε→0

ρF
2 (X − ε, X ; X + ε, X )

ε2
(7)

is the Tan contact, which is equivalent to KN in this case.
Equation (7) enlightens the role of two-body correlations in
C TG

N .
In the next sections, we will show how the presence of a

box potential adds to the bulk term C TG
N an edge contribution.

This is not only a trivial consequence of the cancellation of
the wave function at the border, but also an interplay between
rigid-border effects and coherence properties of the gas.

III. ONE-COMPONENT GASES IN A BOX

In order to investigate the effect of hard walls, we will
discuss in this section two simple examples of 1D quantum
gases at equilibrium in a box geometry (x ∈ [−L/2, L/2])
and at zero temperature [43]. We begin with a noninteracting
Fermi gas whose momentum distribution does not have any
algebraic tail in the homogeneous ring trap as well as in the
presence of smoothly varying potentials. The second example
will be the TG gas in a box, whose many-body wave function
only differs from the one of spinless fermions by the particle-
exchange symmetry.

A. Spinless fermions

We now consider 1D spinless fermions trapped in a box of
size L. In this case, the many-body wave function is simply the
Slater determinant of N lowest energy single-particle orbitals
and the OBDM takes the form [44,45]

ρF
1 (x, y) = 1

2L

[
sin[(2N + 1) π

2L (x − y)]

sin
[

π
2L (x − y)

]
− sin

[
(2N + 1) π

2L (x + y + L)
]

sin
[

π
2L (x + y + L)

]
]
, (8)
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with |x|, |y| � L/2. As explained in Sec. II, the calculation of
the momentum distribution tail boils down to the investigation
of nonanalyticities in the OBDM. In this case, they are only
located at the edges, and the momentum distribution of the
spinless Fermi gas develops an algebraic oscillating tail such
that [46,47]

K F
N = BN + (−1)N+1AN cos(kL), (9)

with AN = N (N + 1)π/L3 and BN = (2N + 1)AN/3. The
k-independent part BN comes from contributions where x and
y are close to the same edge. Roughly speaking, the effect
of a hard wall in L/2 (−L/2) introduces a half cusp, with
respect to the coordinates x and y, of the form |x − L/2| and
|y − L/2| (|x + L/2| and |y + L/2|). Instead, the oscillating
part is given by contributions of half cusps at opposite walls
(x → ±L/2, y → ∓L/2). At first sight, it could be seen as an
effect of diffraction by the box. However, its interpretation is
more subtle and will become clearer when we will consider
the case of a general mixture in Sec. IV. To support our
conclusions, we have computed numerically the momentum
distribution of a spinless Fermi gas of N = 4 particles, and
we have compared it with the asymptotic behavior given in
Eq. (9) (see Fig. 1).

B. Tonks-Girardeau bosons

In order to calculate the asymptotic behavior of the mo-
mentum distribution for N TG bosons trapped in a box, we
start from the OBDM expressed as an expansion in terms of
the spinless fermions n-body density matrices, as shown in
Eq. (5). In the presence of smooth trapping potentials, we
have already seen that only the first term of the series con-
tributes to the contact. For the TG in a box, we can individuate
three different contributions to the 1/k4 tail of the momentum
distribution. The first contribution comes from ρF

1 (x, y) and
gives the terms in Eq. (9). This contribution is similar to
the result found in Ref. [29] showing that the discrepancy
between KN and CN in a Lieb-Liniger gas with losses is due
to the contribution of the rapidities. The second contribution
comes from −2

∫ y
x dx2ρ

F
2 (x, x2; y, x2) and gives the usual Tan

contact CN [Eq. (7)], connected to the short-distance two-body
correlations. For N TG bosons in a box, we obtain

C TG
N = N (N2 − 1)(2N + 1)

3L3
π = (N − 1)BN . (10)

Indeed, the two half cusps in (+L/2,+L/2) and
(−L/2,−L/2) contributing to BN have the same weight
and scaling as the (N − 1) interparticles TG cusps of the bulk
contribution C TG

N .
Remarkably, there is a third, nonlocal contribution entering

the momentum distribution tail which can be derived by inte-
grating all the higher-order fermionic density matrices of the
second term in Eq. (5) over all the system. Indeed, it can be
shown that [47]

lim
x→− L

2

y→ L
2

N−1∑
j=1

(−2) j

j!

j+1∏

=2

∫ y

x
dx
 ρF

1+ j (x, x2, . . . ; y, x2, . . . )

= −2ρF
1 (x, y)|x∼− L

2 ,y∼ L
2
, (11)

if N is even and 0 otherwise. Such a term changes the sign of
the oscillating part, with respect to the fermionic case if the
number of particles is even. This means that for the TG gas,
the sign of the oscillating part does not depend on the number
of trapped bosons. Ultimately, we find that the asymptotic
behavior of the momentum distribution for N TG bosons in
the box can be written as

K TG
N = C TG

N + BN + AN cos(kL)

= N

N − 1
C TG

N + AN cos(kL). (12)

The average effect of the border (BN ) is equivalent to the
addition of a boson to the system. Moreover, it induces os-
cillations of the same amplitude as for a spinless Fermi gas,
but with a phase that does not depend on the particle number
parity. In order to elucidate this result, we plot in the inset
of Fig. 1 the comparison between Eq. (12) and the numerical
calculation of KN for the case of N = 4 particles. Notice that,
in the thermodynamic limit, we recover the known result for
the contact density C TG

N /L of a homogeneous TG gas with
density = N/L: limN,L→∞ K TG

N /L = limN,L→∞ C TG
N /L =

2
3

4
π [48].

IV. MIXTURES IN A BOX

We now generalize our results to strongly interacting
bosonic and/or fermionic mixtures.

A. Tonks-Girardeau limit for mixtures

We consider a 1D mixture of N particles with κ compo-
nents and interacting via a two-body contact interaction. The
Hamiltonian for this system is given by

Ĥ =
κ∑

σσ ′

Nσ∑
i

⎡
⎣− h̄2

2m

∂2

∂x2
i,σ

+ gσσ ′

Nσ ′∑
j>i

δ(xi,σ − x j,σ ′ )

⎤
⎦, (13)

where i, j ∈ [1, N] and σ, σ ′ ∈ [1, κ] are the particle and
spin indices, respectively, and gσ,σ ′ is the inter- (σ �= σ ′) or
intraspecies (σ = σ ′) interaction. Remarkably, the latter one
is zero for identical fermions interacting via s-wave contact
interactions. In the limit gσσ ′ → +∞, for any σ, σ ′, the many-
body wave function � vanishes whenever xi = x j . Thus, �

can be written as follows [27,49]:

�(X ) =
∑
P∈SN

aPθP(X )�A(X ), (14)

where X = (x1,σ1 , . . . , xN,σN ) collects particle and spin in-
dices, the index P indicates a permutation inside the
permutation group of N elements, SN , θP(X ) is the generalized
Heaviside function, which is equal to 1 in the coordinate
sector xP(1),σP(1) < · · · < xP(N ),σP(N ) and 0 elsewhere, and �A is
the wave function for N spinless fermions. In particular, �A

is the Slater determinant built from the natural one-particle
orbitals of the box.

Because of the statistics of identical particles, we can re-
strict the sum over P in Eq. (14) to N!/

∏
σ Nσ ! independent

elements instead of N!. These groups of sectors represent all
the possible spin configurations and are usually called snip-
pets [27,50]. They constitute the proper basis for describing
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a multicomponent spin mixture and will be used throughout
this section.

Moreover, in the strongly interacting limit, both for (i) the
SU(κ ) case 1/gσσ = 1/gσσ ′ = 1/g � 1 and (ii) the broken
symmetry one 1/gσσ ′ = 1/g � 1 with 1/gσσ = 0 [51,52], the
Hamiltonian in Eq. (13) can be mapped into the spin Hamil-
tonian

Ĥ →
g→∞ EF1 + Heff (JN ), (15)

where EF is the Fermi energy related to the noninteract-
ing system and Heff = JN (−(N − 1)1 ± ∑

j P̂j, j+1), P̂j, j+1

being the permutation operator exchanging two interact-
ing next-neighboring particles, and JN = (h̄4/m2)αN/g is
the coupling constant with αN = 2EFm/(h̄2L) = BNπ/2 the
nearest-neighbor exchange term [53]. Indeed, in the homo-
geneous system, h̄2LαN/m is twice the total kinetic energy,
which is connected to the slope of the cusps [52,54].

For a multicomponent system, the OBDM can be written
as ρ1(x, y) = ∑

σ Nσ ρ1,σ (x, y) with

ρ1,σ (x, y) =
N∑

i, j=1

c(i, j)
σ ρ (i, j)(x, y), (16)

where ρ (i, j)(x, y) and c(i, j)
σ are the spatial and spin parts cal-

culated on the sector x1,σ1 < · · · < xi−1,σi−1 < x < xi+1,σi+1 <

· · · < x j,σ j < y < x j+1,σ j+1 < · · · < xN,σN [53]. In particular,

c(i, j)
σ = δσ

σi

∑
P∈SN

aPaPi→ j , (17)

where δσ
σi

selects only the sites with spin σi = σ and aPi→ j

is the sector coefficient obtained by starting from the spin
configuration labeled as aP and applying a cyclic permutation
which takes the ith element into the jth position, and vice
versa.

B. KN for a mixture in the TG limit

All the elements required to compute the generalization of
Eqs. (9) and (12) have been presented. For mixtures, the devel-
opment is similar and is detailed in Ref. [47]. The asymptotic
behavior of the momentum distribution in the case of spin
mixtures assumes the form

K mix
N = C mix

N + BN + (−1)N+1AN

∑
σ

Nσ

N
c(1,N )
σ cos(kL)

= S + 1

N − 1
C TG

N + (−1)N+1AN

∑
σ

Nσ

N
c(1,N )
σ cos(kL).

(18)

The quantity

S =
∑

P

N−1∑
i=1

[
1

4
(aP − aPi,i+1 )2

(
1 − δσi+1

σi

) + ηaPaPi,i+1δ
σi+1
σi

]
(19)

takes into account the number of symmetric exchanges be-
tween particles [52] and is proportional to the eigenvalue
of the rescaled effective Hamiltonian H ′

eff = Heff/JN [see
Eq. (15)]. P runs over the snippets and η is equal to 1 for

FIG. 2. The solid lines stand for normalized momentum distri-
bution n(k)/N multiplied by k4, in units of L3, for the case of 2 + 2
SU(2) bosons (i) in the ground state (violet, upper curve), (ii) in the
first excited state (orange, central curve), and (ii) in the third excited
state (yellow, lower curve). The dashed lines stand for the analytical
expression of K mix

N /N , Eq. (18), evaluated for cases (i), (ii), and (iii)
(same color code).

identical bosons and 0 otherwise. As expected, we can recover
Eqs. (9) and (12) for the cases of spinless fermions and TG
bosons, respectively. Indeed, it can be shown [47] that for
spinless fermions S = 0 and c(1,N )

σ = 1, and for a TG gas
S = N − 1 and

∑
σ

Nσ

N c(1,N )
σ = (−1)N+1.

As for the one-component cases, the large-k tail of n(k)
is not given solely by the Tan contact, but includes two ad-
ditional terms. The first, the k-independent contribution BN ,
does not depend on the type of particles or mixture and
counts such as an extra symmetric exchange in the mixture.
The second, the oscillating part, is more intriguing, since the
amplitude of the oscillations depends, remarkably, on long-
distance spin correlations. Indeed, the only term of Eq. (16)
that does not vanish in the limit x → −L/2 and y → +L/2
corresponds to the cyclic permutation P1→N [47]. Therefore,
c(1,N )
σ can be interpreted as the one-body spin correlation

through the whole system.
For the case of SU(κ ) bosonic or fermionic mixtures, the

oscillation amplitude is maximal when the spin correlation is
maximal, that is, when the state of the system is equivalent
to a single-component gas [52] (meaning the ground state
for bosonic and the most excited state for fermionic mix-
tures). Contrarily, as shown in Fig. 2, it vanishes for some
particular cases where long-distance spin correlation is absent
[47]. The oscillation phase fluctuates by a factor π depending,
among other things, on the number of particles, for almost
all states, except for the ground state of a SU(κ ) bosonic
mixture [47].

V. CONCLUDING REMARKS

In conclusion, we have shown that the presence of a hard
wall trapping potential breaks down the Tan relation connect-
ing the 1/k4 decay of the momentum distribution of a 1D gas
characterized by repulsive contact interactions to the adiabatic
derivative of the energy with respect to the inverse of the
interaction strength, even if the system is at equilibrium. In
the strongly interacting limit, the presence of the two hard
walls has a double effect. The first is rather trivial: it mimics
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the presence of an additional boson or impurity in the system.
The second is more subtle: the tails develop oscillations whose
amplitude depends on the nonlocal spin correlations over
the whole system size. The sign of this contribution depends
generally on the number of particles, except for the ground
state of a bosonic SU(κ ) mixture. This can be of particular
interest for experiments. In ultracold gases, the momentum
distribution can be measured by switching off the trapping
potential and imaging the cloud after a ballistic expansion
[14,15], and these measurements are obtained by averaging
over system realizations where the number of particles fluctu-
ates shot to shot. Therefore, the observation of oscillating tails
in n(k) of SU(κ ) bosonic mixtures could be used to determine
whether the system is mainly cooled down in its ground state
or not. Indeed, only in the first case the oscillation amplitude

will be not vanishing. Let us remark that identifying the exact
populated state might be experimentally difficult since the
spectrum of a strongly interacting mixture is characterized by
the presence of a large number of states very close in energy
to the ground state [25,55].

Finally, our study can be extended to finite temperatures
and different dimensions, and out-of-equilibrium scenarios,
such as spin-mixing dynamics [56].
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