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Detecting the relative phase between different frequency components
of a photon using a three-level � atom coupled to a waveguide
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We study the scattering inside a waveguide of a single photon with a single three-level � atom, both of which
are in a superposition state. The photon is in a superposition state of two frequencies, whereas the atoms are in a
superposition state of two nondegenerate ground states. We find that the scattering depends on both the relative
phase between the photon frequencies and the relative phase between the atomic ground states. Our results show
that a three-level � atom coupled to a waveguide can be used as a photon phase filter that could detect the relative
phase between the two frequencies of the photon superposition state.
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Introduction. There have been many studies on the genera-
tion [1–3] or manipulation [4–10] of a single photon in a su-
perposition of two frequencies (or “colors”). These frequency-
superposition states have been called “color qubits” [3],
bichromatic photons [2], or frequency-bin qubits [6]. Such
states can be generated in the process of quantum frequency
conversion, where a photon’s frequency is converted while
its quantum information is maintained, as experimentally
demonstrated three decades ago [11]. These states also arise
in quantum frequency mixing (where different superposi-
tion states are converted to and from each other) which
has been demonstrated using χ (2) nonlinearities [12,13],
χ (3) nonlinearities [2,14,15], as well as electro-optic
modulation [7,9].

The manipulation of frequency-superposition states at the
single-photon level has generated interest for its potential
applications in quantum information processing [6]. Build-
ing on the work in linear optical quantum computation [16],
frequency-bin qubits have been proposed as an alternative to
other photonic qubits such as those based on polarization.
Polarization-based qubits can only have a two-dimensional
Hilbert space, whereas frequency qubits can have a Hilbert
space with much higher dimension. Frequency qubits may
also be scalable for on-chip photonics [17]. In recent years,
it has been theoretically proposed and experimentally veri-
fied that it is possible to achieve arbitrary single-qubit gates
in frequency space [7,8]. Aside from quantum information
processing applications, frequency-superposition states may
also be useful for quantum metrology [18] or phase spec-
troscopy [19] at the low-light level.

Although the generation and manipulation of single-
photon frequency-superposition states has been well stud-
ied [1–10,20], there is less attention devoted to the mea-
surement of the relative phase between different frequency
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components of such states. Most existing works focus on
measuring the amplitude spectrum of the state, where the
phase information is lost. The relative phase of two fre-
quency components of a single photon was measured in
Ref. [2] using single-photon Ramsey interference. Here,
they generated arbitrary frequency-superposition states us-
ing Bragg scattering four-wave mixing which is a χ (3)

nonlinear process. The relative phase between different fre-
quency components could be measured because the outcome
of their projective measurement depends on this relative
phase. A related study uses electro-optic modulators in-
stead of nonlinear processes [7]. Their setup also allows
them to achieve arbitrary frequency qubit rotations on the
Bloch sphere and the output state can then be measured
using quantum state tomography, where the relative phase
between frequency components can be determined using Pauli
measurements.

In this Letter, we propose a way to measure the relative
phase of different frequency components of a single photon
using a setup in waveguide quantum electrodynamics [21–24].
Our proposed setup consists of a three-level atom coupled
to a one-dimensional waveguide as seen in Fig. 1(a). The
atom is of the � type with a two-dimensional ground state
manifold spanned by eigenstates |1〉 and |3〉 at energy E1 and
E3, respectively, and an excited state |2〉 at energy E2. It has
been shown that one can prepare the atom to be in an arbitrary
ground state in this two-dimensional manifold [25–27]. Here,
we scatter a single photon with two frequency components
near E2 − E1 and E2 − E3 (where h̄ = 1) against the atom. We
show that with a suitable choice of the atomic ground state, the
outcome of the scattering process can be used to determine
the relative phase of the two photon frequency components.
Scattering for a � atom in a superposition of ground states was
studied in Ref. [28]. Quantum state transfer [29] and quantum
frequency conversion [30] has also been studied in a �-type
atom. However, none of these studies specifically study the
dependence of the relative photon phase on the transport for
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a � atom coupled to a waveguide, which is the focus of this
Letter. While the measurement of the relative photon phase
of two frequency-superposition states has been done using
electro-optic modulator (EOM) and Ramsey interference se-
tups [2], the benefit of using our setup over these methods,
is that our waveguide quantum electrodynamics system can
compare the quantum information of two objects. That it is,
the scattering output of our system can allow us to measure
both the relative phase of the frequency-superposition states
as well as the relative phase of the atomic ground states in the
same platform, as opposed to just one of these phases as in
Refs. [2,7].

Model. To treat the system of Fig. 1(a), we use a real-space
formalism originally developed in Ref. [31] and applied to
three-level atoms in Ref. [32]. Let g1, g3 be the atom-photon
coupling constants for the |1〉 → |2〉 and |3〉 → |2〉 transitions
and assume the |1〉 → |3〉 transition is forbidden. The Hamil-
tonian for this system is given by [22,30–33]

Ĥ = Ĥp + Ĥa + Ĥi, (1)

where

Ĥp =
∫

dx ĉ†
R(x)

(
ω0 − ivg

∂

∂x

)
ĉR(x)

+
∫

dx ĉ†
L(x)

(
ω0 + ivg

∂

∂x

)
ĉL(x),

Ĥa =
∑

n=1,2,3

En|n〉〈n|,

Ĥi =
∫

dx δ(x)

⎛
⎝ ∑

n=1,3

gn(ĉ†
R(x) + ĉ†

L(x))|n〉〈2| + H.c.

⎞
⎠,

(2)

are the photonic, atomic, and interaction terms of the Hamilto-
nian, respectively. In this Letter, we set h̄ = 1. Here, vg is the
group velocity of the photons traveling in the waveguide, and
ĉ†

R(x) and ĉ†
L(x) are the creation operators for a right-going

and left-going photon at position x in the waveguide. We
have chosen to linearize the dispersion relation of the waveg-
uide around the frequency ω0 = E2 − E1. The Hamiltonian of
Eq. (1) describes a three-level atom coupled to a single-mode
waveguide. In a three-level atom, the two transitions may cou-
ple to different polarizations. For a single-mode waveguide,
however, as long as the waveguide mode has nonzero compo-
nents in both polarizations, the waveguide mode will couple to
both transitions and our theory will be applicable. Moreover,
there are experimental platforms of three-level atoms such as
in superconducting qubits [34] or quantum dots [35], where
these three-level system can be designed to couple with a
single-mode waveguide.

The total excitation number operator N̂ = ∫
dxc†

L(x)cL(x)
+ ∫

dxc†
R(x)cR(x) + |2〉〈2| commutes with the Hamiltonian

Ĥ . The basis states corresponding to the eigenstates of the
number operator N̂ in the single-excitation regime are

{ĉ†
R(x)|1, vac〉, ĉ†

L(x)|1, vac〉, ĉ†
R(x)|3, vac〉, ĉ†

L(x)|3, vac〉,
|2, vac〉}. (3)

FIG. 1. (a) A �-type three-level atom interacting with a photon
propagating in a single-mode waveguide (highlighted as gray). The
photon is in the frequency-superposition state. The photon frequen-
cies k, k − � are in resonance with the atomic transition frequencies
E2 − E1 and E2 − E3. (b) Transmission and reflection pathways for
the atom initially in |k, 1〉 and |k − �, 3〉, where k is kept general.
Note that both scenarios have two scattering output channels, in
which the atoms are in either the |1〉 or |3〉 state. Here, t1, r1, t3, r3

is the transmission and reflection of the scattering where the atomic
final state is the |1〉 and |3〉 state, respectively, and the initial atomic
state is |1〉. Similarly, t ′

1, r′
1, t ′

3, r′
3 is the transmission and reflection

where the atomic final state is the |1〉 and |3〉 state, respectively, and
the initial atomic state is |3〉.

Since [H, N] = 0, we also use these basis states in Eq. (3)
to expand the scattering eigenstate of the Hamiltonian with a
total energy E in the single-excitation regime as [31]

|E〉 =
∫

dx [(φ1,R(x)ĉ†
R(x) + φ1,L(x)ĉ†

L(x))|1, vac〉

+ (φ3,R(x)ĉ†
R(x) + φ3,L(x)ĉ†

L(x))|3, vac〉]
+ ek|2, vac〉. (4)

Here, the φ’s are the single-photon field amplitudes. The sub-
scripts of φ denote whether the photon is right or left going,
and the state of the atom. For example, φ1,R describes the case
where the photon is right going, and the atom is in state |1〉.
ek is the probability amplitude of the three-level atom being in
the excited |2〉 state. |n, vac〉 is a vacuum state with zero pho-
tons and the atom is in state |n〉. Using Eqs. (4) and (1) with the
time-independent Schrödinger equation H |E〉 = E |E〉 gives
the following set of linear differential equations:

Eφ1,R(x) = −ivg
∂φ1,R(x)

∂x
+ φ1,R(x)(E1 + ω0) + ekg1δ(x),

(5)

Eφ1,L(x) = ivg
∂φ1,L(x)

∂x
+ φ1,L(x)(E1 + ω0) + ekg1δ(x),

(6)

Eφ3,R(x) = −ivg
∂φ3,R(x)

∂x
+ φ3,R(x)(E3 + ω0) + ekg3δ(x),

(7)
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Eφ3,L(x) = ivg
∂φ3,L(x)

∂x
+ φ3,L(x)(E3 + ω0) + ekg3δ(x),

(8)

Eek = E2ek +
∑

n=1,3

gn(φn,R(0) + φn,L(0)). (9)

We first consider a scenario where the atom is initially in the
|1〉 state and a right-going photon is incoming from the left.
Our photon wave-function ansatz is

φ1,R(x) = eik1x[	(−x) + t1	(x)], (10)

φ3,R(x) = eik3xt3	(x), (11)

φ1,L(x) = e−ik′
1xr1	(−x), (12)

φ3,L(x) = e−ik′
3xr3	(−x). (13)

|t1|2, |t3|2 (|r1|2, |r3|2) gives the probability that a photon
will be transmitted (reflected) leaving the atom in the |1〉
or |3〉 state, respectively, when the atom was initially in
|1〉. Here, 	(x) is the Heaviside function with 	(0) = 0.5.
Using our ansatz and Eq. (5) with x < 0 and Eq. (7) with
x > 0, we find that k1 = (E − E1 − ω0)/vg, and k3 = (E −
E3 − ω0)/vg. Substituting these photon wave functions into
Eqs. (5)–(9) gives k1 = k′

1, k3 = k′
3 as well as the following

solutions:

t1(E ) = 1 − γ1

i(E2 − E ) + γ1 + γ3
, (14)

r1(E ) = −γ1

i(E2 − E ) + γ1 + γ3
, (15)

t3(E ) = −√
γ1γ3

i(E2 − E ) + γ1 + γ3
, (16)

r3(E ) = −√
γ1γ3

i(E2 − E ) + γ1 + γ3
, (17)

ek (E ) = −i
√

γ1vg

i(E2 − E ) + γ1 + γ3
. (18)

Here, γ1,3 = g2
1,3/vg are the decay rates of the state |2〉 into

state |1〉 and state |3〉, respectively [32,36].
In the second scenario, we consider the case where the

atom is initially in the |3〉 state and a right-going photon
incoming from the left. Our photon wave-function ansatz is

φ1,R(x) = eik1xt ′
1	(x), (19)

φ3,R(x) = eik3x[	(−x) + t ′
3	(x)], (20)

φ1,L(x) = eik′
1xr′

1	(−x), (21)

φ3,L(x) = eik′
3xr′

3	(−x). (22)

|t ′
1|2, |t ′

3|2 (|r′
1|2, |r′

3|2) gives the probability that a photon will
be transmitted (reflected) leaving the atom in the |1〉 or |3〉
state, respectively, when the atom was initially in |3〉. We can
obtain our solutions by substituting this ansatz into the linear
differential equations in Eqs. (5)–(9) or by simply replacing

the labels 1 ↔ 3 (due to parity symmetry [37]) in Eqs. (14)–
(18):

t ′
1(E ) = −√

γ1γ3

i(E2 − E ) + γ1 + γ3
, (23)

r′
1(E ) = −√

γ1γ3

i(E2 − E ) + γ1 + γ3
, (24)

t ′
3(E ) = 1 − γ3

i(E2 − E ) + γ1 + γ3
, (25)

r′
3(E ) = −γ3

i(E2 − E ) + γ1 + γ3
, (26)

e′
k (E ) = −i

√
γ3vg

i(E2 − E ) + γ1 + γ3
. (27)

We can now summarize the scattering process for a right-
going photon of energy ω0 + vgk interacting with a � atom
initially in the |1〉 state,

|k, 1〉R → t1(E )|k, 1〉R + t3(E )|k − �, 3〉R

+ r1(E )|k, 1〉L + r3(E )|k − �, 3〉L, (28)

where E = E1 + vgk + ω0, � = (E3 − E1)/vg, and the label k
inside the ket denotes a plane wave of the form eikx. Similarly,
for a right-going photon of energy ω0 + vg(k − �) interacting
with a � atom initially in the |3〉 state,

|k − �, 3〉R → t ′
1(E )|k, 1〉R + t ′

3(E )|k − �, 3〉R

+ r′
1(E )|k, 1〉L + r′

3(E )|k − �, 3〉L. (29)

The scattering processes for both cases are shown in Fig. 1(b).
We note that there are two transmission and reflection output
channels for both scenarios.

Results. Let us now consider a separable input state where
the photon is in a superposition state A|k〉 + Beiφp |k − �〉
which is a frequency-superposition state with two frequencies
ω0 + vgk and ω0 + vg(k − �) and the atom is in a superposi-
tion state of the two ground states C|1〉 + De−iφa |3〉. With our
choice of ω0 the two frequencies are on resonance with the
two atomic transitions when k = 0. A, B,C, D are assumed to
be real without any loss of generality. φa is the relative phase
between the atomic states and φp is the relative phase between
the two photon frequencies. Our input state is then made of the
tensor product of the photon state |ψp〉 and the atomic state
|ψa〉,

|ψin 〉 = ∣∣ψp
〉 ⊗ |ψa〉

= (A|k〉R + Beiφp |k − �〉R) ⊗ (C|1〉 + De−iφa |3〉)

= AC|k, 1〉R + ADe−iφa |k, 3〉R + BCeiφp |k − �, 1〉R

+ BDei(φp−φa )|k − �, 3〉R, (30)

as depicted in Fig. 1(a). The energies of the four components
in Eq. (30) are E1 + ω0 + vgk, E1 + ω0 + vg(k − �), E3 +
ω0 + vgk, and E3 + ω0 + vg(k − �), respectively. However,
with the choice of the two photon frequencies as described
above, the |k, 1〉R and |k − �, 3〉R components in the in-
put state have the same energy Eint ≡ E1 + ω0 + vgk = E3 +
ω0 + vg(k − �).
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FIG. 2. Output transmission and reflection for interference terms Eqs. (31)–(34) as a function of normalized total energy (E2 − E )/γ and
initial relative photon phase φp between the two frequency-superposition terms. Here, A = B = C = D = 1/

√
2, φa = 0, ω0/γ = 10, E1 = 0,

E2/γ = 10, E3/γ = 5, γ1 = γ3 = γ /2.

Applying the scattering processes in Eqs. (28) and (29) to
each of the four terms in Eq. (30) gives an output state |φout 〉
with 12 different terms that have the following probabilities:

p|k,1〉R
= |ACt1(Eint ) + BDei(φp−φa )t ′

1(Eint )|2, (31)

p|k,1〉L
= |ACr1(Eint ) + BDei(φp−φa )r′

1(Eint )|2, (32)

p|k−�,3〉R
= |ACt3(Eint ) + BDei(φp−φa )t ′

3(Eint )|2, (33)

p|k−�,3〉L
= |ACt3(Eint ) + BDei(φp−φa )r′

3(Eint )|2, (34)

p|k+�,1〉R
= |ADe−iφat ′

1(E+)|2, (35)

p|k+�,1〉L
= |ADe−iφat ′

1(E+)|2, (36)

p|k,3〉R
= |ADe−iφa t ′

3(E+)|2, (37)

p|k,3〉L
= |ADe−iφa r′

3(E+)|2, (38)

p|k−�,1〉R
= |BCeiφpt1(E−)|2, (39)

p|k−�,1〉L
= |BCeiφpr1(E−)|2, (40)

p|k−2�,3〉R
= |BCeiφpp t3(E−)|2, (41)

p|k−2�,3〉L
= |BCeiφpr3(E−)|2. (42)

The subscript of p refers to the outgoing states. For ex-
ample, p|k,1〉R corresponds to the probability of |k, 1〉R. Here,
E+ = E3 + ω0 + vgk, E− = E1 + ω0 + vg(k − �). The main
result of this Letter is that when the input photon frequency
states match the atomic resonance levels, both the |k, 1〉R and
|k − �, 3〉R input terms can result in the |k, 1〉R output term.
Interference between these two channels causes a dependence
of the scattering output on the relative phase (φp − φa). A
similar logic applies to the |k − �, 3〉R output state. Thus,
our scattering output can allow us to compare the effects of
both φa and φp in the same platform. This is the advantage
of our setup as this phase information is normally lost when
it is squared in intensity measurements. The probability am-
plitudes in Eqs. (31)–(34) can be measured by joint projective
measurements on any of the |k, 1〉R, |k, 1〉L , |k − �, 3〉R, or
|k − �, 3〉L states. Experimentally, the measurement of the
photon state can be carried out with a spectrometer [38,39].

The measurement of the atomic state can then be carried out
by scattering a weak classical beam of light against the atom,
and by measuring the resulting extinction coefficient [40,41].

Since the total energy is conserved for each term after
scattering, we focus only on the subspace with energy Eint. In
Fig. 2, we plot the various probabilities in Eqs. (31)–(34) as
a function of the normalized total energy (E − E2)/γ and the
input photon phase φp. In Fig. 3, we plot a cross section from
Fig. 2 at φp = 0, π/2 for the two transmission terms Eqs. (31)
and (33) to highlight the φp dependence. Here,

A = B = C = D = 1/
√

2, φa = 0, ω0/γ = 10,

E1 = 0, E2/γ = 10, E3/γ = 5, γ1 = γ3 = γ /2.

(43)

Note that we have picked φa = 0 but that changing the initial
φa only results in a phase shift of the results in Eqs. (31)–(34)
(shifting the plots in Fig. 2 left or right). Experimentally,
a three-level atom can be prepared in a superposition with
control over the phase φa in processes such as fractional
stimulated Raman adiabatic passage [42]. The sum of the
panels in Fig. 2 do not add to 1 because the noninterference
terms must also be included. We see that the reflection terms
are symmetric about φp = 0 while the transmission terms are
asymmetric about φp = 0. This can be understood by decom-
posing the input photon state into the scattering mode that
maximally excites the atom and the nonscattering mode that

FIG. 3. Transmission for the scattering output terms (a) p|k,1〉R

and (b) p|k−�,3〉R that exhibit interference as a function of normalized
total energy (E − E2)/γ where A = B = C = D = 1/

√
2, φa = 0,

ω0/γ = 10, E1 = 0, E2/γ = 10, E3/γ = 5, γ1 = γ3 = γ /2 for φp =
0 and π/2.
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does not excite the atom. For arbitrary φa, φp, A,C (B and
D are constrained to be B =

√
1 − |A|2 and D =

√
1 − |C|2),

and in the subspace with energy Eint, we can solve for the
nonscattering mode by setting the total excitation probability
to be zero,

ek,total = AC(ek (Eint ) + BDei(φp−φa )e′
k (Eint )) = 0, (44)

from which one obtains

−AC
√

γ1 =
√

1 − |A|2
√

1 − |C|2ei(φp−φa )√γ3. (45)

For our parameter set in Eq. (43), this becomes −1 = eiφp .
Hence, the nonscattering mode |ψn〉 is

|ψn〉 = 1√
2
|k, 1〉R − 1√

2
|k − �, 3〉R. (46)

Applying the scattering transformations in Eqs. (28) and (29)
to |ψn〉 gives back the same state:

|ψn〉 → 1√
2
|k, 1〉R − 1√

2
|k − �, 3〉R. (47)

We see that the nonscattering mode has no contribution to the
reflection, and its transmission has no frequency dependence.
The scattering mode is orthogonal to the nonscattering mode,
so for this parameter set in Eq. (43), it corresponds to when
φp = 0 and can be written as

|ψs〉 = 1√
2
|k, 1〉R + 1√

2
|k − �, 3〉R. (48)

The scattering output of |ψs〉 is

|ψs〉 → 1√
2

[(
1 − γ

i(E2 − E ) + γ

)
|k, 1〉R

− γ

i(E2 − E ) + γ
|k, 1〉L

+
(

1 − γ

i(E2 − E ) + γ

)
|k − �, 3〉R

− γ

i(E2 − E ) + γ
|k − �, 3〉L

]
. (49)

We see that the transmission coefficient of |ψs〉 is a constant
minus a Lorentzian and the reflection is a Lorentzian.

In the subspace with the energy E = Eint, any arbitrary
input state can be decomposed into a linear superposition of
|ψs〉 and |ψn〉, as they also form a basis of the Hilbert space
for an incoming right-going photon. In this parameter set of
Eq. (43) when φp = 0, the contribution is only from |ψs〉.
Thus, the transmission is symmetric about (E2 − E ), and the
reflection is a Lorentzian as expected from Eq. (49). As |ψn〉
does not contribute to the reflection, the reflection remains a
Lorentzian for all φp. On the other hand, when φp 
= 0,±π ,
the transmission has components from both |ψs〉 and |ψn〉.
The interference of the transmission from the scattering mode
|ψs〉 and the transmission from the nonscattering mode |ψn〉
gives rise to a Fano line shape [43]. This explains the asym-
metric transmission about (E2 − E ) = 0 for φp 
= 0,±π . The
antisymmetry about φp for the transmission plots in Fig. 2 is
because changing the sign of φp changes the sign of contribu-
tion from |ψs〉.

We note that the existence of a nonscattering input mode
that does not excite the atom can be alternatively argued as
follows: The atomic excitation ek,total is a linear function of
the amplitudes in the states of p|k,1〉R and p|k−�,3〉R . Therefore,
there is always a particular choice of the amplitudes for which
ek,total = 0.

Conclusion. In summary, we have shown that the scattering
of a single photon in a superposition of two photon frequen-
cies with a � atom in a superposition of two nondegenerate
ground states depends on the initial photon phase between the
two photon frequencies (and the initial atomic phase between
the ground states). Our results show that three-level � atoms
can be used as a relative photon phase detector for single
photons in a superposition state, offering a simpler alternative
to other experimental platforms using nonlinear optics [2] and
electro-optic modulators [7]. It also allows us to compare the
relative phases of two different objects containing quantum
information (the relative phase of the frequency-superposition
states and the relative phase of the atomic ground states) in
the same platform. As applications of quantum information
increases, it is of practical relevance to have a platform that
can compare the effects of both these phases. Furthermore,
as waveguide quantum electrodynamics has a wide range of
experimental realizations including superconducting qubits,
quantum dots, and cold atoms, the theoretical result in this
Letter may also allow for more versatility and tunability to
make this relative photon phase measurement.
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APPENDIX: EFFECT OF DEPHASING OR OTHER LOSSES

Various environmental factors such as random fluctuations
in the magnetic or electric field, interactions with other parti-
cles or quasiparticles or or other defects and coupling with
other electromagnetic modes can result in a loss of coher-
ence and hence a decrease in the visibility of transmission
or reflectance spectra. In waveguide QED systems, it is typ-
ical to phenomenologically add in a pure dephasing rate
γd to account for both dissipative and decoherence effects
[29,44–46] to the atomic decay rates in the transmission and
reflection terms. In Ref. [37], they use a simple derivation
to prove that damping and decoherence effects can be ac-
counted for by making the atomic transition energy complex.
For simplicity, we assume the dephasing rate from |2〉 → |1〉
and |2〉 → |3〉 are the same. The transmission and reflection
coefficients become

t1 = 1 − γ1

i(E2 − E ) + γ1 + γ3 + γd
, (A1)

r1 = −γ1

i(E2 − E ) + γ1 + γ3 + γd
, (A2)

t3 = −√
γ1γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A3)

r3 = −√
γ1γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A4)

L051702-5



ZHONG, RITURAJ, DINC, AND FAN PHYSICAL REVIEW A 107, L051702 (2023)

ek = −i
√

γ1vg

i(E2 − E ) + γ1 + γ3 + γd
, (A5)

t ′
1 = −√

γ1γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A6)

r′
1 = −√

γ1γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A7)

t ′
3 = 1 − γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A8)

r′
3 = −γ3

i(E2 − E ) + γ1 + γ3 + γd
, (A9)

e′
k = −i

√
γ3vg

i(E2 − E ) + γ1 + γ3 + γd
, (A10)

by adding the dephasing rate in the denominator [21]. We plot
the transmission as in Fig. 3 for two different dephasing rates
in Fig. 4. We only include the p|k,1〉R plot as the dephasing
effect on p|k−�,3〉R is equivalent. We pick the ratio of the pure
dephasing rates over the atomic decay rates γd/γ1,3 = 1, 2,

FIG. 4. Transmission for the scattering output term p|k,1〉R as a
function of normalized total energy (E − E2)/γ where A = B =
C = D = 1/

√
2, φa = 0, ω0/γ = 10, E1 = 0, E2/γ = 10, E3/γ =

5, γ1 = γ3 = γ /2 for φp = 0 and π/2. The ratio of the pure dephas-
ing rates over the atomic decay rates are γd/γ1,3 = 1, 2, respectively.

respectively. We see that when losses are added, the spectra
broaden as expected. The peak size of the φp = 0 transmission
dip decreases by 11% and 27%, respectively, compared to the
case with no dephasing rate in Fig. 3. In general, the effect
that we report in this Letter remains the same if γd � γ1,3.
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