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Atomtronic multiterminal Aharonov-Bohm interferometer
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We study a multifunctional device for cold atoms consisting of a three-terminal ring circuit pierced by a
synthetic magnetic flux, where the ring can be continuous or discretized. The flux controls the atomic current
through the ring via the Aharonov-Bohm effect. Our device shows a flux-induced transition of reflections from
an Andreev-like negative density to positive density. Further, the flux can direct the atomic current into specific
output ports, realizing a flexible nonreciprocal switch to connect multiple atomic systems or sense rotations.
By changing the flux linearly in time, we convert constant matter wave currents into an ac modulated current.
This effect can be used to realize an atomic frequency generator and study fundamental problems related to
the Aharonov-Bohm effect. We experimentally demonstrate Bose-Einstein condensation into the light-shaped
optical potential of the three-terminal ring. Our work opens up the possibility of atomtronic devices for practical
applications in quantum technologies.
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Precise control over quantum systems has led to the rapid
development of quantum technologies for applications in
quantum simulation [1], quantum communication [2], and
metrology [3]. These latter fields are fundamental to atomtron-
ics [4], an emerging quantum technology of propagating cold
atoms in matter-wave circuits [3–5]. Inspired originally by
electronics, atomtronics exploits the advancement in optical
traps and cooling to precisely move ultracold atoms to realize
novel and practical quantum devices [6–9]. Indeed, simple
atomtronic circuits with Bose-Einstein condensates (BECs)
or degenerate fermions that mimic classical transport have al-
ready exhibited interesting physics with potential applications
[10–22].

The construction of atomtronic circuits requires an in-
depth understanding of cold-atom transport both theoret-
ically and experimentally [1,16,23–28]. Analogs of one-
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dimensional mesoscopic conductors also have been investi-
gated [29–33], with transport now possible over macroscopic
distances [34]. In particular, BECs trapped in ring shaped
potentials [35–38] and Y-shaped junctions [7,39,40] augurs
potential practical applications due to its subtle similarity to
integrated photonic chips.

A promising geometry for cold atom devices is the ring-
shaped circuit. Such systems can exhibit superfluid current
flows [20,41–43] and can realize effective two-level dynamics
for a potential atomtronic qubit [44,45]. Here, the transport
can be controlled by the Aharonov-Bohm effect where the
magnetic flux through the ring changes the interference of
matter [46]. The static Aharonov-Bohm effect controls the
conductance in mesoscopic electronic rings [47–50], while
the nature of the time-dependent Aharonov-Bohm effect is
still controversially discussed [51–54]. Through the applica-
tion of suitable synthetic fields [19,20,55–59], cold atoms can
harness the Aharonov-Bohm effect with a high degree of con-
trol and coherence that is difficult to reach in other systems.
An important example is the transport through two-terminal
Aharonov-Bohm rings with bosonic atoms [37,39,40].

Here, we study the transport in a three terminal circuit
in which a bosonic condensate is guided from a source lead
through a Aharonov-Bohm ring attached to two drains—
see Fig. 1(a). We simulate this system with extensive leads
coupled to a continuous 2D ring or a discretized ring of
three sites. We show an experimental demonstration of the
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FIG. 1. (a) Three-terminal Aharonov-Bohm circuit with source lead (left) attached to a ring with two drain leads (right). A synthetic
Aharonov-Bohm flux � through the ring controls the current flowing from source to the drains, which can be used for multiple functionalities.
(b) An initial experimental demonstration of the setup with a BEC. 6 × 104 rubidium atoms are cooled to 50 nK by atom evaporation into an
optical potential created by a DMD. We show the in situ atomic density measured with absorption imaging. (c) Potential of a two-dimensional
ring-lead system simulated with GPE with ring diameter R = 30 μm. (d) Sketch of lattice ring-lead system for Bose-Hubbard simulations.
Source and drain leads consist of an extensive number of lattice sites, connected to an L = 3 site ring.

continuous setup by loading a Bose-Einstein condensate
(BEC) of 87Rb atoms in a digital micromirror device (DMD)
generated optical potential—see Fig. 1(b). We demonstrate
that our scheme provides a useful concept for a multifunc-
tional device. The applications of our work are summarized in
Fig. 2. We show that our system can (i) control density waves,
(ii) realize a nonreciprocal switch and sense rotations, and (iii)
convert a direct current (dc) matter-wave into an alternating
current (ac) modulation of the dc matter wave.

We first introduce the system together with an experimental
demonstration of the setup. We then analyze the low energy
and highly nonequilibrium dynamics of the system as well as
the dynamics under a time-dependent driving of the flux. We
finally discuss the applications of our work.

Model. A sketch of the three-terminal ring pierced by flux
� is shown in Fig. 1(a). We experimentally demonstrate the
feasibility of this setup by loading a BEC into a static opti-
cal potential generated by a digital micromirror device [see
Fig. 1(b) and the Supplemental Material (SM) F [60] for
details]. In the dilute limit with weak interactions, we simulate
the setup with the 2D Gross-Pitaevskii equation (GPE)

ih̄∂tψ =
[
− h̄

2m

(
∂2

x + ∂2
y

) + V (x, y) + g2DN |ψ |2 + ωLz

]
ψ,

where ψ ≡ ψ (x, y, t ) is the wave function, m is the mass
of the atoms, g2D is the atom-atom interaction strength for
rubidium atoms in two dimensions [61], ω is the rotation of
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FIG. 2. Applications of three-terminal cold atom Aharonov-
Bohm circuit. (a) Control reflections of density waves from negative
(Andreev-like) to positive with flux �. (b) Directional switch of the
current to one of the output terminals by adjusting �, which can also
be used as a rotation sensor. (c) Atomic frequency generator with
a sinusoidal output current J (t ) of period T by linearly increasing
�(t ) = t/T in time or via a periodic ramp.

the system to induce flux, Lz = −i(x∂y − y∂x ) is the angular
momentum operator, and N is the number of atoms. The
potential V (x, y) is shown in Fig. 1(c).

In the limit where leads and ring are strongly confined,
we can treat the system as effectively one dimensional. Here,
we simulate this system numerically for different interaction
strengths with the Bose-Hubbard model by dividing the sys-
tem into the source lead, two drain leads, and the ring with
L sites [see Fig. 1(d)]. The source lead s and the two drains
b, c are connected to the ring in a symmetric manner with
xs = 1, xb = L/3, and xc = 2L/3. We choose an extensive
number of source and drain sites, while the ring is assumed
to be small with L = 3 sites. The system Hamiltonian H =
Hr + H� + Hr� with N bosons is given by

Hr =
L∑

j=1

[
U

2
n̂ j (n̂ j − 1) − J (e−i2π�(t )/Lâ†

j+1â j + H.c.)

]
,

Hr� = − K
∑

α={b,c,s}
(α̂†

1 âxα
+ H.c.),

H� =
∑

α={b,c,s}

Lα∑
j=1

[
Uα

2
n̂α

j (n̂α
j − 1) − Jα (α̂†

j+1α̂ j + H.c.)

]
,

(1)

where â j (â
†
j ) is the bosonic annihilation (creation) operator

at site j on the ring, n̂ j = â†
j â j is the corresponding number

operator, J is the intraring coupling strength, and U is the
interaction strength of the ring. We impose periodic boundary
conditions in the ring âL+1 = â1. For the leads, α̂ j is the
annihilation operator, n̂α

j the number operator, Lα the number
of sites, Uα the interaction strength, and Jα the intrareservoir
couplings for the source and drains with α ∈ {s, b, c}.

�(t ) represents the flux through the ring which can be
dependent on time t . This flux can be generated for neutral
atoms via rotation, where the Coriolis flux mimics the effect of
the magnetic field [20,62]. A suitable approach is to rotate the
whole potential with rotational frequency ω = �h̄

mR2 , where R
is the radius of the ring, yielding ω = 5.1� Hz for the param-
eters of Fig. 1(b) [20,35]. The undesired centrifugal potential
can be removed with the correction potential V (r) = 1

2ω2r2,
where r is the distance to the rotation center. As an alter-
native approach, synthetic magnetic fields can be achieved
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FIG. 3. Dynamics of low-energy excitations in a three-terminal
ring device for L = 3 ring sites. (a) Change of density relative to
average density 	n(t ) = 〈n(t )〉 − n0 as a function of time and sites of
source, ring, and drain 1 and 2 for � = 1

4 + k, where k is an integer.
The forward propagating wave is transmitted into the drains, as well
as reflected back into the source. (b) 	n in source (bottom) and first
drain (top) measured at positions shown as dashed lines in (a). We
show N = 80 hard-core bosons with J = 1, K = 0.5 and in total L =
160 lattice sites (L = 3, Ls = 79, and Lb = Lc = 39).

by counterpropagating Raman beams [56,57] or driving the
optical potential in time [63], which has been demonstrated
for lattice systems [64]. Due to flux quantization in the ring,
the spectrum of H (�) is periodic with � → � + k, k being
integer, with the flux quantum set to 1. The current operator
between lead α and ring is given by Jα = −iK (α̂†

1 âxα
− H.c.).

Low-energy dynamics. First, we study the dynamics close
to the ground state using the Bose-Hubbard model. We perturb
the local potential in the source He = −εs

∑Ls
j=1 exp[−( j −

D)2/2σ 2]n̂s
j , with D = Ls/2, σ = 2, and εs = 0.3, We prepare

the ground state of the Hamiltonian H + He, where now He

leads to a locally raised density in the source. At t > 0, we
evolve the system with H only, resulting in two density waves
traveling in positive and negative direction (the negative di-
rection can be ignored for a sufficiently large source). We
investigate the change in density 	n(t ) = 〈n(t )〉 − n0, where
n0 is the average density. The dynamics is calculated using
matrix product states with the ITensor library [65]. In Fig. 3(a)
we show 	n(t ) for � = 1

4 + k as a function of time t and
the sites of source, ring, and drain (see SM B [60] for other
values of �). The forward propagating density wave moves
from the source to the ring, then is transmitted into the drains
as well as reflected back to the source. For any value of
� the transmission into drain 1 and drain 2 is nearly the
same. We show the density 	n at a fixed site in source and
drain in Fig. 3(b). The transmission is maximal for � = k
and minimal for � = 1

2 + k. We observe identical results for
� = 1

4 + k and � = 3
4 + k, which is the result of an emergent

reflection symmetry � → −�. We find that the reflection into
the source at a specific time tr [tr ∼ 27 in Fig. 3(b)] changes in
nature with �. For � = k we find a clear negative reflection,
which is a hallmark of Andreev reflections. With increasing
�, the Andreev reflections turn into positive reflections.

Dynamics far from ground state. We investigate the dy-
namics when the system is far from the ground state via a
quench protocol. At t > 0, the filled source lead injects atoms
into the initially empty ring and drains. We study this highly
nonequilibrium setting for zero, weak, and infinite interaction.

In the limit of zero interaction U = 0, we describe the
dynamics with the Landauer formalism as explained in SM

A [60], which yields a transmission of

Gα = 16

∣∣∣∣∣
1 − √

2 + 2i(2
√

2 − 3) exp[−iπ (2� + α)]

62 − 46
√

2 + 2i cos[π (2� + α)]

∣∣∣∣∣
2

(2)

into the respective drains α ∈ {1, 2}. The resulting transmis-
sion and reflection of the system is shown in Fig. 4(a). For
� = 1

4 we have unit transmission into drain 1 and zero trans-
mission into drain 2, while for � = 3

4 the dynamics of the
drains is interchanged. Thus tuning � can direct the current
either into drain 1 or drain 2, realizing a perfect nonreciprocal
switch with zero backreflection.

Next, we investigate the system in the dilute limit with the
continuous 2D GPE [66]. In Fig. 4(b), we find that physically
rotating the setup with � modulates the average fraction of
atoms in the drains. The flux dependence of the current arises
from interference patterns in the ring, which are modulated
by �. Increasing interaction leads to smaller interference
patterns, which reduces the flux sensitivity. Due to the finite
width of the ring and the radial dependence of the flux, we find
that the system is not perfectly periodic with � in contrast
to the one-dimensional case. By reducing the width of the
ring and leads we expect that the symmetry can be restored.
Further details are shown in SM G [60].

Now, we investigate the limit of strong interaction with
hard-core bosons, where each lattice site occupies at most one
boson. We use L = 3 ring sites and simplify the source and
drain leads by tracing out all of their sites except the very
first one coupled to the ring (ŝ1, b̂1, and ĉ1). The dynamics
of the reduced density matrix ρ(t ) within the Born-Markov
approximation is described by [39,67]

∂ρ

∂t
= − i

h̄
[H, ρ] − 1

2

∑
m

{L†
mLm, ρ} +

∑
m

LmρL†
m, (3)

with the Lindblad operators L1 = Bsŝ
†
1, L2 = Bbb̂1, L3 =

Bcĉ1, and coupling strength Bα . L1 describes bosons entering
the system at the source site and L2, L3 atoms leaving to
the respective drains. We solve for the steady-state ρss via
∂ρss/∂t = 0 [68]. In Fig. 4(c) we show the steady-state current
J (�). The current in drain 1 and 2 varies strongly with �,
allowing for directional control into either drain. The source
current shows a transition from being flux independent to flux
dependent with intraring coupling J (see SM C [60]).

Time-dependent flux. The flux �(t ) = t/T is now linearly
increased in time by one flux quantum for one period T . As a
result, the current undergoes a periodic modulation. For t > 0,
we inject atoms via the source into the initially empty ring and
drains for the lattice Bose-Hubbard model. We show the case
of T = 2.8 in Fig. 5(a). The current undergoes initial transient
dynamics until it settles into periodic sinusoidal oscillations,
where the currents in the two drains are shifted by T/2. The
drain current oscillates between close to 0 and nearly the
magnitude of the source current. Thus this device realizes
a form of atomic dc/ac converter where a constant source
current converts into ac modulated currents.

We investigate the conversion efficiency C =
	Jdrain/max(Jsource) of the dc/ac converter as a function
of T and J in Fig. 5(b). C = 1 indicates that the
amplitude of the drain current oscillation matches the
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(a) (b) (c)

FIG. 4. Transport through a three-terminal device for the nonequilibrium setting and different interaction strengths. (a) Landauer formalism
for noninteracting bosons. We show the total transmission and reflection of the system, as well as the transmission into drain 1 and 2 as a
function of flux �. (b) Atom fraction n in the drain averaged over time t = 400 ms for a continuous ring-lead system with the 2D GPE.
N = 2000 atoms are initially prepared in the source and evolved in the potential shown in Fig. 1(c), where the physical rotation frequency is
given by ω = �h̄

mR2 . (c) Steady-state current J for hard-core bosons and L = 3 ring sites as a function of flux � for J = 1, L = 3, K = 1, and
Bs = Bd = 1.

source current. We define the drain current amplitude
	Jdrain = maxt/T 	1Jdrain(t ) − mint/T 	1Jdrain(t ) and the
maximal source current max(Jsource) = maxt/T 	1Jsource(t ),
where we take the maximum over the long-time behavior
t/T 	 1. For small T , the driving is much faster than
the system dynamics which suppresses large oscillations.
For large T , the driving is much slower than the system
dynamics, causing it to be dominated by the properties of the
instantaneous steady state as a function of � (see SM D [60]).
We find a sweet spot in the regime of intermediate T ≈ 2.8
with C ≈ 0.88 for J = 1

2 . While increasing the flux linearly
might be experimentally difficult, similar results can achieved
by a simple periodic modulation between � = 0 and � = 1
as shown in SM E [60].

Discussion. We propose a multifunctional atomtronic de-
vice with a three-terminal ring circuit. We study the setup with
a continuous potential as well as a lattice with L = 3 ring sites
and extensive leads. In the low-energy regime for the lattice
setup, transport through the device is realized with density
waves. The flux controls the conductance of the source-ring
interface yielding a maximal current for � = 0 and minimal
for � = 1

2 . By tuning �, our setup controls the type of reflec-
tion with a crossover from negative Andreev-like to a normal

(a) (b)

FIG. 5. Time-dependent flux �(t ) for L = 3 ring sites. (a) Cur-
rent J (t ) in time t for a linearly increasing flux �(t ) = t/T with
driving period T = 2.8 and J = 1

2 . (b) dc/ac conversion efficiency
C = 	Jdrain/〈Jsource〉 measured as the drain current amplitude rel-
ative to the average source current against driving period T of the
flux �(t ) = t/T . We have hard-core bosons with L = 3, K = 1, and
Bα = 1.

one. This effect opens up another way to control the transport
of density waves, as well as detect flux in the system. The
value of flux can be obtained by measuring the reflection,
with positive reflection indicating a value of flux close to half
integer. While we studied Andreev reflections of relatively
small density waves, given its wave origin and persistence in
the GPE regime [39], we expect larger density waves to show
similar behavior [69]. The density wave in lattice systems
can be read out via the in situ atom density with state-of-
the-art atom microscopes [70]. For the low-energy transport,
the transport is carried by collective density wave excitations
of the atomic condensate. In contrast to the nonequilibrium
regime, the flux controls only the magnitude, but not the
direction of the current into the leads. For a 1D Bose-liquid
ring coupled to two leads, the low-energy current is known to
be independent of flux [71]. Here, only the persistent current
within the ring couples to the flux, while the transmission is
flux independent. For low-energy currents, we believe this is
also true for three lead systems, yielding the observed nondi-
rectional currents. However, finite-size effects can change the
effective coupling strength between ring and leads [71]. Flux
causes substantial shifts of the energy levels in small rings,
likely leading to a decreased effective ring-lead coupling and
transmission for half flux.

Far from the ground state, the system is characterized by
a substantially different dynamics. We analyze the dynamics
for continuous noninteracting (Landauer formalism), dilute
(continuous 2D GPE), and discrete strongly interacting limit
(Bose-Hubbard lattice with Lindblad). The flux controls the
direction of the current in all three regimes. Our work shows
that control over the directionality is robust, appearing for
zero, weak, and strong interactions, as well as for exactly one-
dimensional and finite two-dimensional systems. By choosing
the flux around � = (2k + 1)/4, k being integer, we find
a nonreciprocal behavior where we can direct the flow into
either of the drains. With this effect we can switch the matter-
wave between different output terminals to realize a transistor
or a rotation sensor.

By sweeping the flux in time, the matter-wave experi-
ences a time-dependent Aharonov-Bohm effect. This could
be experimentally achieved by a constant acceleration of the
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rotation affecting the ring or ramping the flux periodically
up and down. This driving generates a sinusoidal modulation
of the current in time. As a result, a constant source current
is converted into an ac modulated current in the drains. We
control the frequency and amplitude of the modulation via
the change of the flux, with maximal conversion efficiency
C ≈ 0.88. In a reverse operation, this remarkable feature can
be used as a sensor for time-dependent rotations �(t ) by
measuring the frequency of the current.

The time-dependent flux also allows us to study the
time-dependent Aharonov-Bohm effect with cold atoms in
a controlled environment, which has remained an open
problem in other systems [51–54]. Depending on the cold-
atom implementation, additional terms can appear in the
effective Hamiltonian for the time-dependent driving of
the flux, which have to be carefully studied in future
work.

We provide the cold atom system that integrates switch-
like and frequency generating capabilities. Our work relies
on current experimental capabilities of the field, where we
experimentally demonstrate the feasibility of the parameters
of our simulations. Note that our setup is a special case of
a much larger class of possible atomtronic setups. Inspired
by vast applications of classical ring wave guides for elec-
tromagnetic fields [72–74], analogous atomtronic devices for
directional couplers, frequency filters, or wave splitters could
be designed. We hope to draw attention to this rich field for ap-
plication in cold atom technologies, which to our knowledge
has been barely explored.

We thank many participants of the Atomtronics conference
in Benasque for fruitful discussions. This work is supported
by the Singapore Ministry of Education (MOE) and the Sin-
gapore National Research Foundation (NRF).
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quium: Artificial gauge potentials for neutral atoms, Rev. Mod.
Phys. 83, 1523 (2011).

[58] T. Haug, R. Dumke, L.-C. Kwek, C. Miniatura, and L. Amico,
Machine-learning engineering of quantum currents, Phys. Rev.
Res. 3, 013034 (2021).

[59] G. D. Pace, K. Xhani, A. M. Falconi, M. Fedrizzi, N. Grani, D.
H. Rajkov, M. Inguscio, F. Scazza, W. J. Kwon, and G. Roati,
Imprinting Persistent Currents in Tunable Fermionic Rings,
Phys. Rev. X 12, 041037 (2022).

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.107.L051303 for details on the Landauer
formula, experiment and Gross-Pitaevskii equation.

[61] W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution
of the gross–pitaevskii equation for bose–einstein condensation,
J. Comput. Phys. 187, 318 (2003).

[62] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and
E. A. Cornell, Observation of Long-Lived Vortex Aggregates in
Rapidly Rotating Bose-Einstein Condensates, Phys. Rev. Lett.
90, 170405 (2003).

[63] C. Weitenberg and J. Simonet, Tailoring quantum gases by
floquet engineering, Nat. Phys. 17, 1342 (2021).

[64] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D.
Liberto, N. Goldman, I. Bloch, and M. Aidelsburger, Realiza-
tion of an anomalous floquet topological system with ultracold
atoms, Nat. Phys. 16, 1058 (2020).

L051303-6

https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.1223175
https://doi.org/10.1038/nature14049
https://doi.org/10.1126/science.aac9584
https://doi.org/10.1103/PhysRevX.8.011053
https://doi.org/10.1103/PhysRevLett.123.260402
https://doi.org/10.1038/s41586-019-1273-5
https://doi.org/10.1088/2058-9565/aaa8c6
https://doi.org/10.1038/s42005-019-0229-2
https://doi.org/10.1103/PhysRevA.100.041601
https://doi.org/10.1103/PhysRevA.100.013621
https://doi.org/10.1088/2058-9565/ab2e61
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1103/PhysRevA.102.063324
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1103/PhysRevA.97.013633
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.52.129
https://doi.org/10.1103/PhysRevA.30.1982
https://doi.org/10.1103/PhysRevLett.54.2696
https://doi.org/10.1016/j.physletb.2013.05.014
https://doi.org/10.1016/j.physleta.2015.05.007
https://doi.org/10.1016/j.physletb.2017.09.041
https://doi.org/10.1016/j.physleta.2019.05.008
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1038/nature08609
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/PhysRevResearch.3.013034
https://doi.org/10.1103/PhysRevX.12.041037
http://link.aps.org/supplemental/10.1103/PhysRevA.107.L051303
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1103/PhysRevLett.90.170405
https://doi.org/10.1038/s41567-021-01316-x
https://doi.org/10.1038/s41567-020-0949-y


ATOMTRONIC MULTITERMINAL AHARONOV-BOHM … PHYSICAL REVIEW A 107, L051303 (2023)

[65] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITen-
sor Software Library for Tensor Network Calculations, SciPost
Phys. Codebases 2022, 4 (2022).

[66] P. Wittek and L. Calderaro, Extended computational kernels
in a massively parallel implementation of the trotter–suzuki
approximation, Comput. Phys. Commun. 197, 339 (2015).

[67] H.-P. Breuer, F. Petruccione et al., The Theory of Open Quantum
Systems (Oxford University Press on Demand, 2002).

[68] C. Guo and D. Poletti, Dissipatively driven hardcore bosons
steered by a gauge field, Phys. Rev. B 96, 165409 (2017).

[69] A. J. Daley, P. Zoller, and B. Trauzettel, Andreev-Like Re-
flections with Cold Atoms, Phys. Rev. Lett. 100, 110404
(2008).

[70] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I.
Bloch, and S. Kuhr, Single-atom-resolved fluorescence imag-

ing of an atomic mott insulator, Nature (London) 467, 68
(2010).

[71] A. Tokuno, M. Oshikawa, and E. Demler, Dynamics of One-
Dimensional Bose Liquids: Andreev-Like Reflection at Y
Junctions and the Absence of the Aharonov-Bohm Effect, Phys.
Rev. Lett. 100, 140402 (2008).

[72] C. Y. Pon, Hybrid-ring directional coupler for arbitrary power
divisions, IRE Trans. Microwave Theory Tech. 9, 529 (1961).

[73] A. Yariv, Critical coupling and its control in optical waveguide-
ring resonator systems, IEEE Photon. Technol. Lett. 14, 483
(2002).

[74] P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B.
Luff, T. Banwell, A. Agarwal, P. Toliver et al., Ghz-bandwidth
optical filters based on high-order silicon ring resonators, Opt.
Express 18, 23784 (2010).

L051303-7

https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1016/j.cpc.2015.07.017
https://doi.org/10.1103/PhysRevB.96.165409
https://doi.org/10.1103/PhysRevLett.100.110404
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.100.140402
https://doi.org/10.1109/TMTT.1961.1125385
https://doi.org/10.1109/68.992585
https://doi.org/10.1364/OE.18.023784

