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Tailoring dynamical fermionization: Delta-kick cooling of a Tonks-Girardeau gas
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In one spatial dimension, quantum exchange statistics and interactions are inextricably intertwined. As a
manifestation, the expansion dynamics of a Tonks-Girardeau gas is characterized by dynamical fermionization
(DF), whereby the momentum distribution approaches that of a spin-polarized Fermi gas. Using a phase-space
analysis and the unitary evolution of the one-body reduced density matrix, we show that DF can be tailored
and reversed, using a generalization of delta-kick cooling (DKC) to interacting systems, establishing a simple
protocol to rescale the initial momentum distribution. The protocol applies to both expansions and compressions
and can be used for the microscopy of quantum correlations.

DOI: 10.1103/PhysRevA.107.L051302

Introduction. In one spatial dimension, the motion of par-
ticles gives rise to their scattering, in which the effects of
interparticle interactions and quantum statistics are interwo-
ven. This fact makes it possible to describe some strongly
correlated quantum systems in terms of noninteracting models
with different quantum statistics. This is the basis of the Bose-
Fermi duality introduced by Girardeau in 1960 to describe
a gas of one-dimensional (1D) hard-core bosons, which is
now known as the Tonks-Girardeau (TG) gas [1–3]. The latter
can be described in terms of a spin-polarized one-dimensional
Fermi gas with no interactions. The Pauli exclusion principle
in the Fermi gas makes the wave function vanish at contact, a
feature shared by the TG gas due to hard-core interactions.
The wave functions of the two systems are identical for a
given particle ordering and differ only in their symmetrization.
The bosonic TG wave function �TG can be obtained from that
of the Fermi gas �F by explicit symmetrization according to
the Bose-Fermi mapping �TG = ∏

j<k sgn(xk − x j )�F. Sim-
ilar relations exist in systems governed by strongly attractive
p-wave interactions [4–6], general exchange statistics [7–9],
long-range [10,11] and finite-strength interactions [12–14],
mixtures [15], and spinor degrees of freedom [16], among
other examples [3,14].

The TG gas can be considered as the strong-coupling
limit of the Lieb-Liniger (LL) gas, which describes one-
dimensional bosons subject to contact interactions of finite
strength c [17–19]. This model is integrable and solvable by
the Bethe ansatz. The relevance of the LL gas to ultracold
atom physics was established by Olshanii, who showed that
ultracold atoms in tight waveguides are described by the LL
model with a tunable coupling constant c [19]. The strongly
interacting limit c → +∞ leads to the TG regime, realized
experimentally by making use of an optical lattice [20–22].
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The connection between the continuum and lattice version
of hard-core bosons is well understood [22,23], and dynam-
ical correlations are in one-to-one correspondence at low
densities.

Spatially local correlations such as the density profile are
indistinguishable between dual systems [1]. This is not only
true at equilibrium but during the dynamics, in which mean-
field methods [24] overestimate the phase coherence, e.g., in
interference patterns in the density profile [25]. By contrast,
correlations depending on the coherences (off-diagonal ele-
ments) of the quantum state in the coordinate representation
exhibit clear signatures of quantum statistics [26,27], thus dis-
tinguishing dual systems related by the Bose-Fermi mapping.
A prominent example is the momentum distribution. While
that of a 1D Fermi gas in the ground state exhibits a charac-
teristic flat profile [3], that of the TG gas is sharply peaked at
k = 0 [28]. An analytical approximation for the momentum
distribution has been found for a TG gas at equilibrium [29],
indicating a 1/|k|1/2 singularity in a homogeneous system at
k = 0 [27,30], and a 1/k4 power-law decay of the tails [31].
The latter is governed by Tan’s constant [32], which depends
on the temperature of the gas and the energy density [33–36].
Out of equilibrium, it was predicted that a TG gas, after
release from a harmonic trap in a 1D expansion, exhibits dy-
namical fermionization (DF), with the asymptotic momentum
distribution matching that of free fermions in the same initial
trap [23,37]. This phenomenon has been recently observed
in the laboratory for the first time [38]. DF also governs the
asymptotic behavior of an expanding LL gas, which enters the
TG regime [39,40]. While it is conveniently described using
scale invariance, which makes the density profile at different
times self-similar, it does not rely on it, and occurs whether or
not the initial confinement is harmonic [8,41–44]. Generaliza-
tions of this phenomenon have been reported for a fermionic
analog of the TG gas [6], hard-core anyons [8], and spinor
quantum gases [45,46]. DF is generally justified as a result
of free expansion along the axial direction: As the particle
density decreases, the asymptotic momentum distribution is
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that of the rapidities, which are the conserved quantities in
a many-body integrable quantum system [8,23,37,41,42,47–
49].

In this Letter, we analyze DF in phase space in arbi-
trary scale-invariant processes, involving both expansions and
compressions, that is, whether or not the particle density de-
creases. While the momentum distribution and density profile
of dual systems under DF become equal, the one-body re-
duced density matrix is shown to evolve unitarily, making the
distinguishability of the corresponding quantum states inde-
pendent of time. As a result, DF can be reversed or induced
by a unitary, making use of a generalization of delta-kick
cooling (DKC) to interacting systems, pulsing an external
potential. This allows us to engineer protocols that rescale
the momentum distribution for the microscopy of quantum
correlations.

TG gas in a time-dependent trap. Consider a TG gas
in a harmonic trap, dual to an ideal Fermi gas in the
same confinement [2]. In the ground state, the TG wave
function is the absolute value of the fermionic one, which
is given by a Slater determinant, e.g., �F(x1, . . . , xN) =

1√
N!

detN−1,N
n=0,k=1[φn(xk )] in terms of the single-particle har-

monic oscillator eigenstates. Both systems are scale invariant
with dimensionality D = 1, and their time-dependent coher-
ent states take the form [37,47,50,51]

�(�x, t ) = 1

b
N
2

exp

[
i

mḃ

2h̄b

N∑
i=1

xi
2 − i

∫ t

0

E (0)

h̄b(t ′)2
dt ′

]

×�
(x1

b
, . . . ,

xN

b
, t = 0

)
, (1)

where �x = {x1, . . . , xN} and the scaling factor b(t ) > 0 is
the solution of the Ermakov equation b̈ + ω(t )2b = ω2

0/b3

with the initial conditions b(0) = 1, ḃ(0) = 0. Note that this
scaling law is not restricted to the ground state but it is
shared by any many-body eigenstate �(�x, 0) with energy
eigenvalue E (0). We focus on the one-body reduced density
matrix (OBRDM), that contains all the information required
to analyze one-body observables. It is defined as ρ1(x, x′, t ) =
N

∫
dx2 · · · dxN�(x, x2 · · · xN, t )�∗(x′, x2 · · · xN, t ). From it,

one can determine the density profile ρ(x, t ) = ρ1(x, x, t ), as
well as the momentum distribution, making use of the Fourier
transform n(p, t ) = 1

2π h̄

∫
dxdx′e−ip(x−x′ )/h̄ρ1(x, x′, t ). Quan-

tities derived from |�(�x, t )|2 are shared by dual systems
related by the Bose-Fermi mapping, given that

∏
j<k[sgn(xk −

x j )]2 = 1 as described in Refs. [1,2,25]. Thus, the density
profiles are equal for the TG and Fermi gases, ρTG

1 (x, t ) =
ρF

1 (x, t ). By contrast, those dependent on the coherence in
real space generally differ. Using (1), the OBRDM evolves
according to

ρ1(x, x′, t ) = 1

b
exp

[
i

mḃ

2h̄b
(x2 − x′2)

]
ρ1

(
x

b
,

x′

b
, t = 0

)
.

(2)

Similar relations hold for the time evolution of higher-order
reduced density matrices [52]. In the limit of adiabatic
driving ḃ/b → 0, the OBRDM is rescaled as ρ1(x, x′, t ) =
ρ1(x/b, x′/b, 0)/b. The use of controlled expansions involving

time-dependent traps and engineered by shortcuts to adia-
baticity has been proposed for implementing such scaling
without the requirement of slow driving, but generally in-
volves time-dependent traps [51,53]. Such protocols realize in
essence a dynamical microscope zooming in on correlations in
the OBRDM.

Shared unitary evolution of the OBRDMs and its con-
sequences. Equation (2) indicates that the evolution of
OBRDMs for both the TG gas and the spin-polarized
ideal Fermi gas is unitary. More precisely, we introduce
a generic label A = {TG, F} for any of the dual sys-
tems and define the corresponding quantum state σ A =
1
N

∫
dxdx′ρA

1 (x, x′)|x〉〈x′| such that Tr(σ A) = 1. Then Eq. (2)
implies σ A(t ) = U (t )σ A(0)U †(t ), where

U (t ) = exp

[
i

mḃ

2h̄b
x2

]
exp

[
−i

ln b

2h̄
(xp + px)

]
, (3)

and the rightmost term is the dilatation operator implementing
a scaling transformation in real space by a factor b. Note
that U (t ) is the same for both A = {TG, F}. In fact, under
scale-invariant dynamics, the evolution of the quantum state
associated with any k-body reduced density matrix is also
unitary [52]. The identical unitary evolution of the OBRDMs
has several consequences:

(i) The spectral decomposition of the OBRDM is of
the form ρ1(x, x′, t ) = ∑

μ λμ(0)φμ(x, t )φμ(x′, t ), where the
eigenvalues λμ(0) of the OBRDM, which correspond to
the occupation numbers of the instantaneous natural orbitals
φμ(x, t ), are constant in time. It follows that the dynam-
ics is isentropic, i.e., it preserves the von Neumann entropy
S(σ A) = −Tr[σ A log σ A]. The situation in the continuum is
thus in contrast with that reported for hard-core bosons in an
optical lattice, where Rigol and Muramatsu first pointed out
the distinct character of the OBRDMs of dual systems [23].
They reported a small variation of the occupation numbers,
consistent with the fact that scale invariance is approximate in
the presence of a longitudinal lattice. In addition, we note that
the time-dependent natural orbitals fulfill the scaling property
φμ(x, t ) = exp[i mḃ

2h̄bx2]φμ(x/b, 0)/
√

b.
(ii) Even if the density profile, and the momentum dis-

tribution under DF, are shared by both dual systems, their
quantum states remain equally distinct at all times. To see
this, consider the Uhlmann fidelity defined as F (σ, σ ′) =
Tr(

√√
σσ ′√σ ) [54,55] as a similarity measure between the

quantum states σ and σ ′. Given that the Uhlmann fidelity is
invariant under the action of a unitary, it follows that

F [U (t )σ TG(0)U †(t ),U (t )σ F(0)U †(t )] = F [σ TG(0), σ F(0)].
(4)

Thus, σ TG does not approach σ F during time evolution.
(iii) The unitary evolution of the OBDRM under scale

invariance allows describing DF as the result of a canonical
transformation in phase space [56], making it possible to
control and reverse DF by pulsing an external potential, as
we next discuss.

Phase-space analysis of DF. The Wigner function associ-
ated with the OBRDM can be represented as a function of
the coordinate x and the canonically conjugated momentum
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p [57,58],

W (x, p, t ) = 1

π h̄

∫ ∞

−∞
ρ1(x − y, x + y, t )e2ipy/h̄dy. (5)

The marginals of W (x, p, t ) correspond to the density pro-
file ρ(x, t ) = ρ1(x, x, t ) = ∫

W (x, p, t )d p and the momentum
distribution n(p, t ) = ρ1(p, p, t ) = ∫

W (x, p, t )dx. From the
dynamics (2) of the OBRDM, following an arbitrary modula-
tion of the trapping frequency ω(t ), the exact time evolution
of the Wigner function reads [52,59]

W (x, p, t ) = W
(x

b
, bp − mḃx, t = 0

)
, (6)

where we note that W does not need to be positive, i.e.,
it can describe a nonclassical state. Note that this evolution
is common to all scale-invariant systems, e.g., in harmonic
and anharmonic traps [53,60,61]. The Wigner function is
rescaled, stretching (compressing) the density profile along
the x axis, and compressing (stretching) the momentum
distribution along the p axis if b(t ) > 1 [b(t ) < 1]. The sup-
plementary term −mḃx involves a shift in phase space, which
induces DF.

Both for the TG and Fermi gas, the density profile ex-
hibits explicitly the scale invariance, while the asymptotic
momentum distribution can be related to the initial density
profile [52]:

ρ(x, t ) = 1

b
ρ
(x

b
, 0

)
, n(p, t ) ≈ 1

mḃ
ρ

(
p

mḃ
, 0

)
. (7)

This relation between n(p, t ) and ρ(x, 0) is complementary
to that under time-of-flight imaging, connecting ρ(x, t ) to
n(p, 0) [62]. The results in (7) are consistent with previ-
ous studies limited to sudden expansions [40,42] and require
that the initial Wigner function decays over the characteristic
spread 	p so that 	p � x0mḃb during the dynamics, which
is equivalent to the condition ḃb � 2ω0 taking 	p ≈ 2p0. In
the special case of a harmonic trap, the initial density profile
of the TG gas can be expressed in terms of the rescaled
momentum distribution of the Fermi gas as further discussed
in the Supplemental Material (SM) [52], making the term
“DF” natural in this setting [23,37]. This feature is specific
to the harmonic confinement because single-particle eigen-
states φn(x) are in this case expressed in terms of Hermite
polynomials, which are eigenstates of the Fourier transform.
Yet, despite the coincidence of the marginals (density profile
and momentum distribution) of the Wigner functions of the
TG gas and the Fermi gas at late times, the OBRDMs remain
distinct as discussed above. For the sake of demonstration, we
analyze the phase-space dynamics in an expansion of a TG gas
confined in a harmonic trap with frequency ω0 that is suddenly
released in a wider trap with frequency ω1, illustrated in Fig. 1.
This process leads to a periodic time dependence of the scal-
ing factor b(t ) [37,63]; see SM [52] for other protocols. The
width of the cloud is controlled by b(t ) and oscillates after
the release of the TG gas into the wider trap. This behavior
induces DF periodically, with the nonequilibrium momentum
distribution evolving between that of an equilibrium TG gas
and a Fermi gas, as initially predicted [37] and observed
experimentally [38]. The DF observed in the momentum dis-
tribution results from a linear canonical transformation in

FIG. 1. DF of a TG gas in a sudden expansion in phase space.
Under scale-invariant dynamics, DF results from a canonical trans-
formation that describes the evolution of the Wigner function. The
density profile is scale invariant at all times. In addition, when the rate
of change of the scaling factor is large, the asymptotic momentum
distribution can be related to the initial density profile. The initial
Wigner function is peaked along the axis p = 0, with riddles on
both sides that take negative values. At the time t1 = 3π

4ω1
, the Wigner

function is rotated and dilated in phase space, so that the momentum
distribution corresponds to the rescaled density profile (ω0 = 5ω1

and N = 10).

phase space, familiar in classical mechanics, involving the
rotation and scaling of the Wigner function.

Tailoring and reversing DF with kicks. The momentum shift
in (6) is responsible for DF. Classically, one may expect to
cancel it by applying a conservative force for a short period
of time τk inducing a momentum change δp = −τk∂xV (x),
i.e., pulsing an external potential V (x). This argument, limited
to classical noninteracting systems, is the basis of delta-kick
cooling (DKC) [64–66]. In what follows, we make use of
the extension of DKC for scale-invariant interacting systems.
Under Eq. (2), excitations encoded in the phase factor pro-
portional to ḃ/b, that are responsible for DF, can be explicitly
canceled in an interacting system by applying a kick potential
of appropriate strength. Canceling the phase allows us to tailor
the momentum distribution and reverse DF. Given that the
phase oscillation in Eq. (1) is quadratic in the coordinates, it
can be canceled by pulsing an external harmonic trap with
a given frequency ωk . To this end, consider the Hamiltonian
with a δ kick applied at tk ,

Hk (t ) = H (t ) + δ(t − tk )
1

2
mω2

k

N∑
i=1

xi
2. (8)
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FIG. 2. (a) The frequency modulation leading to the implosion
protocol relies on a sudden compression from the initial frequency ω0

to the final frequency ω1/5 = ω0 = 1. DF is reversed by making use
of a pulsed attractive harmonic potential. For illustration, we chose
the frequency of the kick ω2

k = 1000ω2
0, tk = 3π/4ω1, and the final

frequency determined by bF = √
ω0/ωF = √

1/5. (b) Evolution of
the scaling factor, its derivative, and the product bḃ.

The use of a delta function is justified when the duration of the
pulse τk is short with respect to other timescales [63]. The cor-
responding time-evolution operator admits the factorization

Uδ (tF = tk + τk, 0) = e−iτk
mω2

k
2h̄

∑N
i=1 xi

2
U (tk, 0), where U (t, t ′)

is the propagator associated with H (t ), and τk is a small
timescale during which the kick is applied. Considering the
evolution from t = 0 to time tk + τk , one can choose the pulse
parameters τk and ωk such that

τkω
2
k = ḃ(tk )

b(tk )
. (9)

This requires pulsing a harmonic trap with ωk > 0 in an
expansion with ḃ(tk ) > 0 and an inverted harmonic trap with
purely imaginary frequency iωk in a compression with ḃ(tk ) <

0. In either case, the application of the kick cancels DF, and
brings back the OBRDM to the initial one up to a scaling of
the coordinates with respect to b,

ρ1(x, x′, tk + τk ) = 1

b(tk )
ρ1

(
x

b(tk )
,

x ′

b(tk )
, t = 0

)
. (10)

Consequently, the momentum distribution after the kick is
n(p, t ) = b n(pb, 0), and similarly the Wigner function re-
duces to W (x, p, t ) = W0(x/b, bp, 0) with b = b(tk ). In turn,
DKC prepares the same state that would have been obtained
under adiabatic dynamics, without the requirement of slow
driving.

Imploding TG gas. Intuitively the DF occurs for an ex-
pansion as the particle density decreases. This is the case
considered in most theoretical studies, in which it is possible
to suppress DF by DKC as we show in the SM [52]. Yet, DF
is also possible during a compression, as demonstrated exper-
imentally in Ref. [38]. Indeed, the phase-space dynamics (6)
yields DF in a compression process with b(tF ) < b(t = 0) =
1 if the rate of change of the scaling factor is fast enough
so that ḃb is large. We consider a sudden compression pro-
tocol, where the trap of initial frequency ω0 is compressed to
a frequency ω1 > ω0, leading to the periodic scaling factor
b(t ) displayed in Fig. 2. Large values of ḃb induce a high-
frequency phase modulation in the coordinate representation.
For the prescribed protocol, applying at the time tk a kick of
duration τk , the required pulse parameters to reverse DF are

FIG. 3. DKC of an imploding TG gas. (a) Momentum distribu-
tion of a trapped TG gas at t = 0, after the implosion at tk = 3π

4ω1
, after

the implosion followed by a pulse of shorten duration 0.7τk (green
dashed-dotted line), and with the DKC duration τk satisfying (11)
(turquoise blue dashed line); N = 7. In the dashed green line the kick
strength is chosen as τkω

2
k in order to cancel DF, with ω2

k = 1000ω2
0.

In choosing the strength of the kick differently one can modulate DF.
The implosion protocol corresponds to the sudden compression of
the trap from ω0 to ω1 = 5ω0.

set by

τkω
2
k = ω1

(
ω2

0 − ω2
1

)
sin(ω1tk ) cos(ω1tk )(

ω2
0 − ω2

1

)
sin2(ω1tk ) + ω2

1

. (11)

The evolution of the momentum distribution at different
stages of the protocol is shown in Fig. 3, for an initially
confined TG gas undergoing an implosion engineered by a
sudden frequency increase. The oscillatory time dependence
of b(t ) shown in Fig. 2 yields associated oscillations of the
momentum distribution, which exhibits DF exactly at the
characteristic times tm = (2m+1)π

4ω1
with integer m. The required

pulse strength takes then the maximum value |ḃ(tm)b(tm)| =
|ω2

0 − ω2
1|. Application of a pulse satisfying the generalized

DKC condition (11) gives rise to the reversal of DF, rescal-
ing the initial momentum distribution by a factor 1/b(tk );
see Fig. 3. DF can thus be tailored and controlled both in
expansions and compressions. We conclude by noting that DF
can also be induced, even in a static trap, by applying a DKC
pulse, with either an attractive or a repulsive quadratic poten-
tial, i.e., keeping the confining harmonic potential constant in
time ω(t ) = ω0.

In summary, we have established the unitary character
of the dynamics of the OBRDM of a TG gas in a driven
harmonic trap and pointed out its far-reaching consequences.
The time evolution is isentropic and preserves the occupation
numbers of the natural orbitals. As a result, DF does not affect
the distinguishability between the OBRDMs of the dual sys-
tems, which is independent of time, e.g., as quantified by the
Uhlmann fidelity. For arbitrary driving of the trap frequency,
DF can be described by a canonical transformation in phase
space, that relates the asymptotic momentum distribution to
the initial density profile under rapid acceleration of the width
of the atomic cloud. This relation holds for expansions as well
as compressions leading to an increase of the interparticle
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density. DF can thus be further tailored, induced, or com-
pletely reversed by applying a kick with a pulsed external
potential, generalizing DKC to interacting systems. This al-
lows us to rescale the initial momentum distribution for the
microscopy of quantum correlations. Our findings open the
way to control nonequilibrium correlations in driven ultra-
cold gases and can be tested in laboratory settings used in
recent experiments [38]. They should be generalizable to

atomic mixtures, systems with p-wave interactions, finite cou-
pling strength, fractional exchange statistics, and spinor gases,
among other examples.
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