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Distribution of genuine high-dimensional entanglement over 10.2 km
of noisy metropolitan atmosphere
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Our study investigates the presence of high-dimensional entanglement in a recent demonstration of a
noise-resistant quantum key distribution (QKD) protocol presented in [Phys. Rev. X 13, 021001 (2023)]. We
determined that it is possible to certify the dimensionality of the distributed entangled states to be at least three.
To demonstrate this, we developed an energy-time entanglement discretization technique, as well as an improved
witness for entanglement dimensionality. Our results provide insight into the complex relationship between
high-dimensional entanglement and the noise resistance of QKD protocols operating in high dimensions.
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Introduction. Quantum entanglement [1,2] is arguably one
of the most important phenomena in quantum physics. While
in the early days of quantum mechanics, entanglement raised
the controversial question of the completeness of the theory
[3], today entanglement is revealed as an invaluable resource,
enabling many important quantum communication protocols,
such as quantum teleportation [4], superdense coding [5], and
quantum key distribution (QKD) [6].

In many applied implementations of quantum communica-
tion protocols, photons entangled in the polarization degree of
freedom are favored due to their simple and well-established
way of manipulation and measurement. However, the process
of spontaneous parametric down-conversion (SPDC), which is
used to generate polarization entanglement, natively produces
photons also entangled in other photonic degrees of freedom
(DOFs); see, e.g., [7-9]. Recently, there has been an increased
interest in building setups to control these DOFs [10-17]
with the goal to access higher-dimensional Hilbert spaces.
The possible advantages of higher-dimensional (qudit) over
two-dimensional (qubit) photonic entanglement in quantum
communication were already observed at the beginning of
this century: qudit entanglement was shown to enable higher
key rates and better noise resistance in QKD [18], higher
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communication rates in superdense coding [19], and novel
protocols like the quantum secret sharing [20]. While qudit-
entangled states admit a higher amount of noise before losing
their entanglement completely, it is a challenge to efficiently
use this effect in experimental setups [21,22] and even more
80 to harness this noisy entanglement in communication pro-
tocols [23,24]. The reason for this is that, in experiments
over very noisy channels, such as free-space communication
[25], satellite to ground links [26], or underwater commu-
nication [27,28], the surviving entanglement between two
qudits is restricted to qubit subspaces and thus not gen-
uinely high-dimensionally entangled [21]. Indeed, genuine
high-dimensional entanglement was certified before only for
moderate distances, and additionally, the experiment required
the use of two different DOFs simultaneously [29].

Recently, a high-dimensional QKD protocol was shown to
yield a noise resilience advantage over a 10.2-km metropolitan
horizontal free-space channel [30]. Curiously, increased noise
resistance is not a proof of genuine high-dimensional entan-
glement by itself. Indeed, to experience increased noise re-
sistance, one can imagine a situation where high-dimensional
entanglement is created at the source, but the communicating
parties at the end points can only certify entanglement in
two-dimensional subspaces: this would be fully sufficient for
QKD and the high-dimensional entanglement would therefore
only serve as a resource to provide a noise-resistant distri-
bution of qubit entanglement. This would, however, always
limit the rate to be below one secret bit per photon pair. A
recent experiment [30], indeed showed strictly less key rate
per coincidence, yet exhibited significant noise advantages.

©2023 American Physical Society
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FIG. 1. (a) The setup at the IQOQI laboratory (Alice) with a hyperentangled photon pair source pumped by a *’K stabilized Laser
at 404.532 nm. The hyperentangled state was set by adjusting a combination of half-wave plate (HWP) and quater-wave plates (QWP).
The hyperentangled photons produced at 808.9 nm in a ppKTP crystal are separated and guided to Alice and Bob. A 50:50 beam splitter
(BS), at Alice’s receiver, randomly sends the incoming photons to either the basis measurement or the temporal superposition (TSUP) basis
measurement. The Mach-Zehnder-Interferometer (MZI) in the TSUP basis uses Polarizing beam splitters followed by a measurement in the
D/A-basis. The photon detection events are recorded by single-photon avalanche diodes (SPAD), time stamped by the time-tagging module
and streamed to the server. (b) Receiver at the Bisamberg laboratory (Bob). The received photons are guided to the detection modules after
filtering the background noise with filter combinations. Bob’s setup is identical with that of Alice, with the difference of having two 4 f systems
in the MZI to compensate for the atmospheric turbulence and Bobs MZI is phase locked to a ¥Rb stabilized laser at 780.23 nm. Both MZI's
together form a postselection-free Franson interferometer where each side is separated by 10.2 km.

A natural follow-up question for understanding the role of
high-dimensional entanglement in this context is whether both
sides actually share a genuinely high-dimensional entangled
state after the noisy free-space channel is applied to the high-
dimensional states. In this Letter we reanalyze the data from
an alternative perspective and develop alternative methods for
the certification of genuine high-dimensional time bin entan-
glement. As a result, we report the distribution of genuine
three-dimensional entanglement in a single DOF over a 10.2-
km metropolitan horizontal free-space channel.

Experimental setup. The experimental photon-pair state
is created via SPDC by superposing wavelength-degenerate
Asppc = 808.9nm SPDC photons in a Sangnac interferom-
eter. The SPDC photons are emitted by a type-II ppKTP
crystal, which is bidirectionally pumped with a A, = 404.453
nm continuous wave laser. The produced state is entangled
simultaneously in the time energy and the polarization DOFs
and can be described as

RN =fdtf(t)lt,t)®(lH,H)+e_i¢ v.vh., (@

where f(z) is a continuous function of time ¢, determined
by the coherence time of the laser and H (V') indicates the

horizontal (vertical) polarization state. The generated entan-
gled photon pairs exit either side of the polarizing beam
splitter of the Sagnac source; see Fig. 1. Then one photon
is detected locally at Alice’s laboratory where the source is
located and the other one is guided to the sending platform
and transmitted over a horizontal free-space channel to Bob’s
laboratory at 10.2-km distance. The sending platform consists
of a Newtonian telescope with a mounted achromatic sending
lens (f = 257 mm), where the telescope is used for tracking
and the lens as a sending aperture. A Cassegrain telescope
(f = 2032 mm) receives the photons at Bob’s laboratory and
guides them to the measurement setup.

Alice’s and Bob’s measurement setups consist of a time-of-
arrival (TOA) and a time-superposition measurement (TSUP),
each implementing measurement bases is described in the
section titled “Discretization and certification.” The TOA-
basis measurement consists of a projective measurement in
the Horizontal-Vertical (H-V)-basis and recording the photon
arrival times in continuously streamed time tags. When pro-
cessing these streams, one benefits from the hyperentangled
state [10,11] by taking polarization entanglement into account
and passively sorting out photons not correlated in the po-
larization DOF, increasing the signal-to-noise ratio (SNR) in
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the TOA basis. The TSUP basis uses an imbalanced Mach-
Zehnder interferometer (MZI), with a path length difference
of vz = 2.7ns, to superpose the photons’ long and short
paths. The path difference tyz supersedes the coherence
time of the SPDC photons (7, ~ 3 ps), which is necessary to
resolve the time of arrival of the detected photons. Alice’s
and Bob’s local MZIs together form a Franson interferom-
eter [31] to measure nonlocal two-photon interference. The
local MZIs consist of two polarizing beam splitters, which
map the polarization H-V to the short or long path. Using
a diagonal or antidiagonal polarization (D-A) measurement
after the MZIs, one deletes the which-path information and
completes the Franson interferometer for nonlocal temporal
interferometry. By using the hyperentangled state, we increase
the efficiency of the Franson interferometer by mapping po-
larization to time-energy entanglement (see [29] for details).
Additionally, we implement a 4 f system (see [32] for details)
in Bob’s local MZI to compensate for the turbulent atmo-
sphere. Furthermore, both MZIs and the source have to be
phase stable with respect to each other, which is achieved by
phase-locking them onto an atomic hyper-fine transition. Fur-
ther details on the experiment can be found in [30], where we
used the same free-space link to implement a noise-resistant
high-dimensional QKD protocol.

Results. To certify three-dimensional entanglement, we
first discretize the time-energy part of the produced contin-
uous DOF state presented in Eq. (1) into a 4 x 4-dimensional
state pa,. This is achieved by coarse-graining the continuous
time of arrival into time bins of variable length Ar (see “Dis-
cretization and certification” section for details and [21,30]).
Then, for various choices At we lower-bound the fidelity of
0a; to the four-dimensional maximally entangled state |¢>4+) =
%Z?:o |ii). Fidelity values larger than one-half certify the
Schmidt number of pa, (i.e., the smallest basis required to
write down pa,) to be at least 3 [14] and thus it certifies o,
to be at least genuinely three-dimensionally entangled.

The lower bounds on fidelity graphically presented in
Fig. 2 are certified for 200s blocks of discretized measure-
ment data obtained at different points in time during the
experiment. The results clearly show that the certified fidelity
is higher for shorter time bins and the highest fidelity is
observed at At = 540 ps. This observation can be explained
by the random distribution of accidental coincidence counts
caused by external noise. In contrast, the signal coincidences
caused by the entangled photons are always time-correlated
in the time of arrival. Therefore, choosing shorter time bins
in effect filters out more accidental counts. The minimal size
of At is fundamentally limited by the coherence time of the
SPDC photons t,. Further, feasible values of At are severely
restricted by the electronic jitter of the detectors and the time-
tagging modules. All of these effects decrease the precision of
time-tagging. This kind of noise affects the certified fidelity
more strongly for lower values of Af. We indeed observe
that for Az below 540 ps the certified fidelity starts to rapidly
decrease again.

Discretization and certification. The crucial component
of TOA discretization is the coarse-graining of time-tagged
detection event streams into time bins of length Az. Subse-
quently, d time bins are collected into a time frame, which
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FIG. 2. Entanglement dimensionality witness. To certify en-
tanglement dimensionality we use different discretisations with
d =4. For different time bin length (left to right) Ar e
{2700, 1350, 900, 675, 540} ps, we evaluate the fidelity of the
time-energy part of the discretised distributed state to maximally
entangled state |¢]) =1 /ﬁ Z?:o |ii). The integration time of all
data points is 200 s and the fidelity is evaluated throughout the
duration of the experiment. Fidelity strictly above 0.25 certifies that
the underlying state has a Schmidt number of at least 2 and thus
is entangled, while fidelity strictly above 0.5 certifies that the un-
derlying state has a Schmidt number value of at least 3 and thus
the correlations present in the state cannot be encoded using any
qubit-entangled state.

determines the dimensionality d x d of the discretized Hilbert
space. Conventionally, time frames are composed of d subse-
quent time bins (see, e.g., [21,30]). Applying this approach to
our data does not lead to a certification of high-dimensional
entanglement (see Fig. 2 with At = 2700 ps). As explained
above, shorter time frames effectively contain less accidental
coincidences. In turn, to have shorter time frames it is instru-
mental to be able to decrease the time bin length At. For the
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FIG. 3. Discretization we used to calculate the Schmidt number
certificates. The time delay between interferometer arms is Ty =
2.7ns. Each measured time interval of length 10.8 ns is divided
into time bins of size Ar. In the figure we used values (top to
bottom) Ar € {2700, 1350, 900, 675} ps. Subsequently, time bins in
the analyzed time interval with starting times exactly 2.7 ns apart
are collected into a time frame. These were chosen specifically be-
cause we can use our measurement setup to measure projections onto
some superpositions of bins with the same color.
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conventional method this requirement translates to shortening
the MZI delay vz on demand (see [13] for an experiment
with variable tyz;) or the use multiple MZI interferometers.
However, both methods are hard to implement for spatially
separated interferometers.

To overcome this complication, we utilize an alternative
coarse-graining scheme, which allows us to probe four-
dimensional subspaces spanned by nonneighboring time bins
of variable length A¢. Our method assigns four time bins with
starting times exactly myz apart to a single time frame. If
the time bin length At divides vz, such time frames can be
interleaved so that an entire time-tagged measurement stream
is covered (see Fig. 3). The main advantage of this method
is that time bins probing four-dimensional subspaces can be
much shorter than required by the conventional method. Such
short time frames allow for a larger fraction of accidental
clicks to be postselected away as single clicks.

Subsequently, we associate basis vectors |0), |1), |2), |3)
to time bins in each time frame. The TOA measurement
therefore corresponds to a projection onto the computa-
tional basis of the 4 x 4 Hilbert space defined by the
time bin length Az. The definition of the discretized
TSUP measurement is a little more involved. The Fran-
son interferometer implemented in the TSUP measurement
modules can essentially be seen as implementing projections

J

onto superpositions of two time bins, the first starting at
time ¢ and the second one starting at time ¢ + Tyz;. For the
time frames we defined above this corresponds to projections
onto six vectors: {%(|O> + 1)), J%(“) +12)), %z(m +
13))}. Clearly {%qm + 1)), J%qz) + |3))} form a complete
four-dimensional Hilbert space basis and we will denote the
projective measurement associated to this basis TSUP;. On
the other hand, vectors \L@(l 1) &£ |2)) need to be supplemented
with another two orthogonal vectors from a subspace spanned
by |0) and |3). We opted to approximate the measurement
counts for projection onto this subspace with counts for
projections onto {\%(B) +10'))}, where |0') is a time bin
starting exactly tyizp after the start of time bin associated with
|3). We denote the projective measurement associated to this
second basis as TSUP,. Coincidence matrices for simultane-
ous measurements by both parties in these three bases can
be obtained from the measurement data and postprocessed
into outcome probabilities. These are subsequently used to
obtain lower bounds for density matrix elements (ii| pa, |ii)
for all i€ {0,1,2,3} and for Re((ii| pa; i+ 1,i4+ 1)) =
Re({(i+ 1,i+ 1] pa, |i, i) for i € {0, 1, 2}. While the former
is just a probability to obtain the ith outcome in Alice’s and
Bob’s laboratory simulatneously, the latter can be obtained
using the following calculation:

(il + 4+ 1Da ® (il + (i + 1Dp par (I1) + i+ 1)a @ (Ii) + i + 1))p

n ({i] = (i +1Da ® ({i] = (ii 115 P:t (1) = li+1)a @ (li) = li + 1))p
@ =4+ 1Da® (il + ( +1Dp par (I1) = i+ 1D)a @ (I1) + i + 1))p
W+ +H1Da® (G = (i +1Ds pit (1) + i+ 1)a® (i) — i+ 1))p
=2Re[(i, i| pas li + 1,1+ 1)] + 2Re[(i,4i + 1l par li+1,0)]. 2)

To obtain a lower bound on 2Re[{i,i| pa; i+ 1,74+ 1)]
it remains to derive an upper bound on the term
2Re[(i, i + 1| pas li + 1,7)]. This can be done as follows.
First, note that the real part of a complex number is always
smaller than its absolute value, therefore

2Re[(i, i+ 1] pas li + 1, )]
<20 i+ 1 parli+ 1, 10) |

<2V i+ 1 pac iy i+ 1) (i + 1, il par li + 1,3),  (3)

where the last inequality is
Cauchy-Schwartz inequality

| (il p k1) | < V/(ijl o lij) ki] p IkD).
Note that the fidelity of pa, to |¢4+) is defined as

an application of the

1 3
F(par, 161 (65D = 1 > Re((iil pac lif)), @)

i,j=0

and thus it remains to lower-bound the six remaining real parts
of density matrix elements Re({ii| pa; |jj)), with |[i — j| > 1.

(

This can be done using density matrix completion techniques
based on the Sylvesters criterion [12,13], from which it
follows that every subdeterminant of a positive-semi-definite
matrix should be nonnegative. Performing these calculations
on our experimental data leads to fidelity lower bounds which
are presented in Fig. 2.

Discussion. In this Letter we revisited a recent experiment,
where high-dimensional QKD experiment was performed
over a long-distance free-space channel to successfully show
an advantage in noise resistance. We shined more light on
the role high-dimensional entanglement has played in this
experiment. In particular, it was not clear whether the gen-
uine high-dimensional entanglement created at the source
actually survived the transmission over a very noisy atmo-
spheric channel. Here we answered this question affirmatively.
This was possible only thanks to developing an alternative
way of looking at time bin entanglement, by relaxing the
requirement that a time frame is composed of chronologically
subsequent time bins. Indeed with the alternative technique
we were able to use much shorter time bins for supreme noise
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filtering and thus reported an experimental realization of high-
dimensional entanglement distribution over a long-distance
horizontal free-space channel.

We also believe that the techniques developed within our
research can be further improved on, which would allow us
to certify even higher-dimensional entanglement in the time-
energy DOF. The simplest and most immediate upgrade to the
setup would be adding another measurement setting to the
Franson interferometer setup, which should allow us to add
phase to the photon passing through the long arm and thus be

£Ik+1) This would in effect

improve our estimation of the first off-diagonal density matrix
element [Eq. (2)] so that the estimation performed in Eq. (3)
would not be needed. The second experimental improvement
is more involved and consists of adding a capability to modify
the MZI delay tyz1. Already measurements with two different
values of tyzr as in [13] would allow efficient estimation of a
larger number of density matrix elements of the experimental

able to measure projections on

state. This would allow more stringent constrains for the semi-
definite programs used to complete the density matrix in the
last step of the analysis, thus increasing the tightness of our
bound.
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