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We theoretically investigate the superfluid–normal-state Berezinskii-Kosterlitz-Thouless transition in a binary
mixture of bosonic atoms with Rabi coupling under balanced densities. We find the nonmonotonic behavior
of the transition temperature with respect to the intercomponent coupling and amplification of the transition
temperature for finite values of Rabi coupling, but for small intracomponent couplings. We develop the Nelson-
Kosterlitz renormalization-group equations in the two-component Bose mixture and obtain the Nelson-Kosterlitz
criterion modified by a fractional parameter, which is responsible for half-integer vortices, and by Rabi coupling.
Adopting the renormalization-group approach, we clarify the dependence of the Berezinskii-Kosterlitz-Thouless
transition temperature on the Rabi coupling and the intercomponent coupling. Analysis of the first and second
sound velocities also reveals the suppression of quasicrossing of the two sound modes with a finite Rabi
coupling in the low-temperature regime. Our results for a two-dimensional binary Bose superfluid contribute
to the understanding of a broad range of multicomponent quantum systems such as two-dimensional multiband
superconductors.
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The Berezinskii-Kosterlitz-Thouless (BKT) transition is
one of the most striking phenomena that occur in a
two-dimensional (2D) superfluid realized in thin films of
4He [1–16], ultracold atoms in a planar geometry [17–38]
or in a spherical bubble trap [39–42], and exciton-polariton
systems [43–50]. The BKT transition originates from un-
bindings of vortex-antivortex pairs and a proliferation of free
vortices and antivortices [51–53]. It was first experimentally
observed in thin 4He films [11] and later also in superconduct-
ing films [54–58], ultracold atomic gases [17–19,22,23,28–
33,36], and exciton-polariton systems [48,49]. A BKT tran-
sition to electron-hole superfluidity in 2D atomic double
layers has been also predicted and is under current inves-
tigation [59,60]. A stark contrast to three-dimensional (3D)
superfluidity is a discontinuous jump of the superfluid density
at the BKT transition temperature in a 2D superfluid [53,61–
67]. It also leads to a jump of the second sound veloc-
ity, which was experimentally measured recently with a 39K
atomic gas [36]. To theoretically investigate the BKT tran-
sition, there are mainly two approaches. One is universal
relations which are valid in the vicinity of the BKT tran-
sition temperature [22,23,68–70]. The other approach is to
use the Nelson-Kosterlitz (NK) renormalization-group (RG)
equations, which are responsible for RG flows of the vortex
fugacity and the phase stiffness associated with the superfluid
density [53]. An advantage of the RG approach is that it is also
valid in the low-temperature regime.

In contrast to a single-component Bose gas, a multicom-
ponent Bose mixture has significant qualitative differences
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such as the Andreev-Bashkin entrainment effect between
different species [38,71–77], the emergence of fractional cir-
culation of vorticity [78–95], and the modification of the NK
criterion [96,97]. There are also several theoretical analy-
ses of the BKT transition in a bilayer XY model [98,99],
which has similarities to 2D binary Bose mixtures, and
a Monte Carlo simulation in a binary Bose mixture with
finite Rabi coupling [100]. Finite Rabi coupling makes half-
quantized vortices, which are vortices in one of the two
components of the Bose atoms, topologically unstable but
makes vortex molecules, which consist of two vortices of
both components with positive or negative charges, stable.
Reference [100] proposed that the topological excitations
that induce the BKT transition are also replaced with vor-
tex molecule-antimolecule pairs instead of vortex-antivortex
pairs. Renormalization-group analysis taking into account
these distinct topological excitations is crucial to predict phys-
ical quantities such as sound velocities and provide a coherent
understanding of multicomponent superfluidity.

In this Letter, we consider a 2D atomic Bose gas confined
in a quadratic region of area L2, at temperature T , and with
a chemical potential μ across the BKT transition temperature
through the RG approach. The bosonic gas is characterized
by atoms with two hyperfine components in their energy-level
spectrum. In addition to the usual intraspecies (g = g11 =
g22 > 0) and interspecies (g12) contact interactions, atoms in
different hyperfine states interact via an external coherent
Rabi coupling of frequency ωR (�0), which drives an ex-
change of atoms between the two components. The presence
of the Rabi coupling implies that only the total number N =
N1 + N2 of atoms is conserved, with Na=1,2 being the number
of atoms in the ath hyperfine component. The existence and
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stability of the ground state with balanced densities N1 = N2

were extensively discussed in Refs. [101,102]. We focus on
the balanced and uniform ground state throughout this Letter.

Our two-component Bose-atom systems are a counter-
part to strongly coupled multiband superconductors in which
all the partial condensates are close to the Bose-Einstein-
condensation regime. The Rabi coupling corresponds in
multiband superconductors to the Cooper-pair exchange
among different bands, and even in the case of multiband
systems, it is the total number of carriers that is conserved,
with redistribution of densities among the bands depending
on the parameter configuration and on the renormalization
of the chemical potential [103–105]. Hence, the present
investigation of Rabi coupled bosons can shed light on the
BKT transition and collective modes in 2D multiband super-
conductors, a growing field of study for their fundamental
interest and quantum technology applications [106].

We first examine the two branches of elementary excita-
tions, which are related to Rabi coupling and intercomponent
coupling. To consider the BKT transition, we develop NK RG
equations in the two-component Bose gas. We point out that
the NK criterion that provides the BKT transition temperature
is modified due to the fractional parameter. The fractional
parameter is also responsible for the half circulation of vortic-
ity in a population-balanced binary Bose mixture. With finite
Rabi coupling, on the other hand, the NK criterion reduces to
the one in the single-component case related to the formation
of vortex molecule-antimolecule pairs. This modification of
the NK criterion is also consistent with previous theoretical
predictions based on Monte Carlo analysis under balanced
densities [100]. We investigate the dependence of the BKT
transition temperature on Rabi coupling and intercomponent
coupling. It shows a nonmonotonic behavior with respect
to the intercomponent coupling and amplifies the maximum
transition temperature for each value of Rabi coupling. Fi-
nally, we determine the first and second sound velocities
across the BKT transition temperature. We confirm the jump
of the second sound velocity at the BKT transition tempera-
ture. At low temperatures, in particular, finite Rabi coupling is
found to hinder quasicrossing behavior due to the presence of
a gapped mode, in contrast to the single-component superflu-
ids [65,107–111].

The Bogoliubov spectrum of elementary excitations in a
uniform system has two branches, given by [101,102]

E (−)
k =

√
εk[εk + 2(μ + h̄ωR)], (1)

E (+)
k =

√
εk (εk + 2A) + B, (2)

with εk = h̄2k2/(2m) and m being the atomic mass. We set
η = g12/g, and the two parameters appearing in Eq. (2) are

A = 1 − η

1 + η
(μ + h̄ωR) + 2h̄ωR, (3)

B = 4h̄ωR

[
1 − η

1 + η
(μ + h̄ωR) + h̄ωR

]
. (4)

At the mean-field level, for the uniform ground state with
balanced densities, the chemical potential μ reads [101,102]

μ = 1 + η

2
gn − h̄ωR, (5)

where n = N/L2 is the 2D total number density of bosons.
The uniform ground state with balanced densities, charac-
terized by n1 = n2 = n/2, is stable under the conditions
g + g12 > 0 and (g − g12)n + 2h̄ωR > 0 [101,102], namely,
−1 < η < 1 + 2h̄ωR/(gn) with g > 0. By using Eq. (5), pa-
rameters A and B become A = gn(1 − η)/2 + 2h̄ωR and B =
4h̄ωR[gn(1 − η)/2 + h̄ωR]. For small wave numbers, the ele-
mentary excitations in Eqs. (1) and (2) read E (−)

k = cBh̄k and
E (+)

k = √
B + εkA/

√
B, showing explicitly that the mode E (−)

k

is gapless, while the mode E (+)
k is gapped (if ωR �= 0). Notice

that cB = [gn(1 + η)/(2m)]1/2 is the Bogoliubov speed of
sound for the uniform system. For η = 1, one recovers the
familiar expression cB = √

gn/m.
By adopting Landau’s approach [112], at finite temperature

T , the superfluid density of the system is given by

n(0)
s (T ) = n − n(−)

n (T ) − n(+)
n (T ), (6)

where

n(±)
n (T ) = −1

2

∫
d2k

(2π )2

h̄2k2

2m
f ′
T (E (±)

k ) (7)

is the thermally activated normal density due to the ele-
mentary excitations. In the formula, f ′

T (E ) is the derivative
with respect to E of the Bose distribution function fT (E ) =
1/[eE/(kBT ) − 1], with kB being the Boltzmann constant.

It is important to stress that the superfluid density obtained
in Eq. (6) does not take into account the formation of quan-
tized vortices. The bare superfluid density n(0)

s (T ) goes to
zero at a critical temperature that is larger than Tc, the critical
temperature of the BKT phase transition induced by the un-
binding of vortex-antivortex pairs and the proliferation of free
quantized vortices described by NK RG equations [51,52]. In
a single-component 2D Bose gas, the NK RG equations are
given by [53,113–115]

∂lK (l )−1 = 4π3y(l )2, ∂l y(l ) = [2 − πK (l )]y(l ), (8)

with K (l ) ≡ h̄2n(l )
s (T )/(mkBT ) = J (l )/(kBT ), J (l ) =

h̄2n(l )
s (T )/m being the phase stiffness, and y(l ) ≡

exp[−μv(l )/(kBT )], where μv(l ) is the vortex chemical
potential at the dimensionless scale l . The BKT critical
temperature T (0)

c can be obtained by using the NK criterion,
which provides a fixed point of Eqs. (8) [53]. According to
this criterion, T (0)

c is given by the implicit formula

kBT (0)
c = π h̄2

2m
ns

(
T (0)

c

)
. (9)

In a binary Bose mixture with balanced densities αa=1,2 =
na/n = 1/2; in contrast, we can obtain the following set of
NK RG equations [100,113–115]:

∂lK (l )−1 = 4π3�(ωR)y(l )2, (10a)

∂l y(l ) = [2 − π�(ωR)K (l )]y(l ), (10b)

where �(x) is the Heaviside step function with �(0) =
1/2. It can be derived from the microscopic Lagrangian as in
the single-component case. For the details of the derivation,
see the Supplemental Material [115]. The RG equations (10)
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give the modified NK criterion

kBTc = π h̄2

2m
�(ωR)ns(Tc) (11)

at the BKT critical temperature Tc. This NK criterion (11) is
consistent with the Monte Carlo analysis in Ref. [100]. To
calculate the RG flow, we use the initial conditions K (0) =
h̄2n(0)

s (T )/(mkBT ) and μv(0) = π2�(ωR)J (0)/4 [116–119],
where n(0)

s (T ) is calculated using Eq. (6) with Eqs. (1), (2),
and (7). The maximum value of the RG scale is related to
the system size as lmax = ln (L/ξ ), with ξ = h̄/

√
2mg(n/2)

being the vortex core size. Here, we note that the higher-order
derivative terms in the XY model can lead to corrections in
the initial conditions for the RG flow. Indeed, it has been
pointed out that the higher-order corrections are important
for quantitatively accurate predictions of the BKT transition
in XY models in particular for a small vortex chemical po-
tential [120]. In our model of a binary Bose mixture, such a
higher-order term of the superfluid velocity can arise and de-
termine a quantitative change in our results with a small vortex
chemical potential as well. In this Letter, however, since they
are expected to produce moderate quantitative changes, we
do not consider the effects of the spin-wave excitations on
the vortex excitations, which will be the subject of a future
investigation including the functional RG analysis [120,121].

The modification of the NK criterion in the absence of Rabi
coupling reflects the half circulation of vorticity. Indeed, the
circulation of vorticity is given by [100]

κ ≡
∮

ds · vs = h̄

m

∮
ds · |ψ1|2∇θ1 + |ψ2|2∇θ2

|ψ1|2 + |ψ2|2 , (12)

with ψa=1,2 being the ath complex bosonic field, where
vs is the superfluid velocity associated with the superfluid
phase θa=1,2, and s is the vector along the closed path en-
closing vortices. With fractional parameters αa = na/n, for
instance, each of the circulations for vortices (ψ1, ψ2) ∼
(
√

n1e±iθ0 ,
√

n2), with θ0 = arctan (y/x), is given by κ1 =
±2πα1h̄/m [100]. For a population-balanced system n1 =
n2 = n/2; in particular, α1,2 = 1/2 gives rise to half vor-
tices. In the presence of Rabi coupling, on the other hand,
topological defects that lead to a BKT transition are re-
placed with vortex molecule-antimolecule pairs instead of
vortex-antivortex pairs [78,81,100]. The formation of vortex
molecule pairs modifies the RG equations as in Eqs. (10),
which recover the ones for the single-component case in
Eqs. (8).

Figure 1 shows the renormalized superfluid fraction com-
puted with Eqs. (10) for g̃ = mg/h̄2 = 0.1 and η = 0 with
L/ξ = 200. Figure 1(a) displays the results with ω̄R =
h̄ωR/(nh̄2/m) = 0, 0.1, 1.0. The horizontal axis is the dimen-
sionless temperature kBT/(nh̄2/m) = 2π/(nλ2

T ), with λT =
[2π h̄2/(mkBT )]1/2 being the thermal wavelength. The thin
dotted curves stand for the bare superfluid fraction given
by Eq. (6). Due to the finite size, the discontinuity of the
renormalized superfluid fraction in the thermodynamic limit
L → ∞ is smeared and altered to a continuous drop [115]. In
the single-component case plotted by the dashed curve, the su-
perfluid fraction intersects with the thin dotted line for kBT =
π h̄2ns/(2m) at the BKT transition temperature as in Eq. (9)
in the thermodynamic limit. In contrast, in a population-

FIG. 1. Renormalized superfluid fraction calculated with
Eqs. (10) for g̃ = mg/h̄2 = 0.1 and η = 0. (a) displays the
results with L/ξ = 200 and ω̄R = h̄ωR/(nh̄2/m) = 0.0, 0.1, 1.0.
The horizontal axis is the dimensionless temperature
2π/(nλ2

T ) = kBT/(nh̄2/m). The gray dashed curve stands for
the superfluid fraction in a single-component Bose gas with
g̃ = 0.1 calculated with Eqs. (8). The thin dotted curves represent
the bare superfluid fraction given by Eq. (6). The thin solid
line and thin dotted line stand for kBT = π h̄2ns(T )/(4m) and
kBT = π h̄2ns(T )/(2m), respectively. (b) shows the 3D plot of
the superfluid fraction as a function of the temperature and Rabi
coupling.

balanced binary Bose mixture, the superfluid fraction should
intersect with the thin solid line for kBT = π h̄2ns/(4m) in the
absence of Rabi coupling at the BKT transition temperature
as in Eq. (11) in the thermodynamic limit. With finite Rabi
coupling, on the other hand, the superfluid fraction intersects
with the thin dotted line for kBT = π h̄2ns/(2m) at the BKT
transition temperature in the thermodynamic limit as in the
single-component Bose gas. A larger value of Rabi coupling
shifts the transition temperature to a higher one. Figure 1(b)
shows a 3D plot of the renormalized superfluid fraction as a
function of the Rabi coupling and the temperature.

Figure 2 shows the phase diagram and the BKT tran-
sition temperature. In Fig. 2(a), the curves represent the η

dependence of the BKT transition temperature in the thermo-
dynamic limit with g̃ = 0.1 and ω̄R = 0, 0.1, 0.5. The shaded
region below the transition temperature is the superfluid phase
with a finite superfluid density for each of the values of Rabi
coupling, while the system is in the normal phase above
that temperature. We can observe that, as η increases from
−1, the transition temperature first increases. Near η = 1 +
2h̄ωR/(gn), it reaches a maximum for each ω̄R and changes
to a gradual decrease. In particular, at ω̄R = 0, as displayed in
Fig. 2(a), the BKT transition temperature is symmetric with
respect to η and reaches its maximum at η = 0. This is a
natural consequence of the two symmetric excitation spectra
E (±)

k = √
εk[εk + gn(1 ∓ η)] for ωR = 0. Figure 2(b) displays

a 3D plot of the BKT transition temperature as a function of
η and ω̄R. It shows the monotonic increase of the transition
temperature with increasing Rabi coupling ω̄R. This behav-
ior can be explained by the behavior of the energy gap in
E (+)

k due to the Rabi coupling. As one increases the Rabi
coupling, the gap size also increases, and the normal density
n(+)

n in Eq. (7) decreases, while n(−)
n is unaffected. This results

in an increase of the superfluid density in Eq. (6), thereby
leading to an enhancement of the BKT transition temperature
according to Eq. (11) by replacing the renormalized superfluid
density with the bare one, which is a good approximation at
low temperatures, as illustrated in Fig. 1(a). The maximum
value of the transition temperature scaled by the one in the
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FIG. 2. Phase diagram of the binary Bose mixture and the BKT
transition temperature to intercomponent coupling η and Rabi cou-
pling ω̄R. The curves in (a) represent the BKT transition temperature
for g̃ = 0.1 and ω̄R = 0.0, 0.1, 0.5, below which the system is super-
fluid (SF). Above the transition temperature, it turns into a normal
(N) phase with the vanishing superfluid fraction. The gray dotted
curve in (a) represents the boundary at η = 1 + 2h̄ωR/(gn). The ver-
tical thin lines represent η = 1 + 2h̄ωR/(gn) for each Rabi coupling
above which the population-balanced ground state changes to the
polarized phase. For η < −1, the population-balanced ground state
is unstable. The two dashed curves in (b) represent the boundaries
of the stable region of the ground state with balanced densities
at η = −1 and η = 1 + 2h̄ωR/(gn), respectively. (c) shows the
maximum value of the BKT transition temperature scaled by the
transition temperature in the single-component case T max

c /T (0)
c , with

g̃ = 0.01, 0.1, 0.5.

single-component case is shown in Fig. 2(c) with varying
Rabi coupling. It monotonically increases by increasing ω̄R.
Figure 2(c) also reveals that the ratio T max

c /T (0)
c is prominently

enhanced as one decreases the intracoupling strength g̃. This
behavior comes from monotonically increasing the critical
temperature T (0)

c in the single-component Bose gas faster than
T max

c by increasing g̃.
The propagation of sound waves occurs in a fluid due to

density fluctuations, and the sound velocity is determined
by thermodynamic properties. In a superfluid, in addition to
the density wave, there is another collective mode associated
with the entropy fluctuations originating from the no-entropy
flow in superfluids. The collective mode of the entropy wave
is called the second sound [65,111,122–124]. The first and
second sound velocities c1,2 are the roots of Landau’s two-
fluid equation c4 − (v2

s + v2
L)c2 + v2

T v2
L = 0, where vT , vs,

and vL are the isothermal, adiabatic, and Landau velocities,
respectively, calculated from the free energy [65,115]. Fig-
ure 3 illustrates the first and second sound velocities for
g̃ = 0.1 and η = 0, 0.5 with ω̄R = 0.0, 1.0. The upper branch
is the first sound velocity c1, and the lower branch is iden-
tified as the second sound velocity c2, which survives as

FIG. 3. First and second sound velocities c1,2 scaled by the Bo-
goliubov velocity cB for g̃ = 0.1 and L/ξ = 200. The intercoupling
is set to be η = 0 in (a) and η = 0.5 in (b). The dashed curves cor-
respond to ω̄R = 0.0, while the solid curves correspond to ω̄R = 1.0.
The thin dotted curves represent c1,2 in a single-component Bose gas
for g̃ = 0.1. The low-temperature behavior is magnified in (c) and
(d). The insets in (c) and (d) illustrate the elementary excitations
E (±)

k . The solid curves stand for E (−)
k , while the dotted and dashed

curves represent E (+)
k for ω̄R = 0.0 and ω̄R = 1.0, respectively.

long as the superfluid fraction is finite. Finite Rabi coupling
increases the critical temperature, as shown in Fig. 1, and
allows the second sound to be present up to a higher tem-
perature. At the low-temperature limit in the absence of Rabi
coupling, using the linear dispersions E (+)

k 
 c+h̄k, with c+ =
[(1 − η)gn/(2m)]1/2, and E (−)

k 
 cBh̄k, one finds vT = vs =
cB and vL = [(c−2

+ + c−2
B )/(c−4

+ + c−4
B )]1/2 = [(1 − η)/(1 +

η2)]1/2cB [115]. For η = 0 as shown in Fig. 3(a), in particular,
the first and second sound velocities coincide with each other,
c1 = c2 = vT = vs = vL = cB. The low-temperature behavior
is shown in Fig. 3(c). With 0 < η < 1 in the low-temperature
regime without Rabi coupling, one observes c1 = vs = vT =
cB and c2 = vL < cB, indicating that the sound modes are
identified as the density mode and entropy mode, respec-
tively, as illustrated by the dashed curves in Fig. 3(d). As
one increases the temperature, the two branches exhibit a
quasicrossing at which the density mode and entropy mode
start to mix as in the case of the single-component 2D Bose
gas plotted with the thin dotted curves in Fig. 3 or a 3D Bose
gas [65,111]. In contrast, the solid curves in Fig. 3 imply that
finite Rabi coupling suppresses the quasicrossing, as shown
in Fig. 3(d), which is distinct from a single-component 2D
Bose gas. This behavior can be understood by the presence of
a gapped mode. With finite Rabi coupling, E (+)

k is gapped out,
as shown in the insets in Figs. 3(c) and 3(d), and most ther-
mally excited bosons occupy only the gapless mode E (−)

k 

cBh̄k. Then, the major difference from the single-component
case is only the additional prefactor 1/2 in Eqs. (7) which
affects the Landau velocity. Consequently, the Landau veloc-
ity is found to be identical to the Bogoliubov velocity, which
also coincides with the adiabatic velocity at zero tempera-
ture [115]. It results in the suppression of quasicrossing at a
low temperature. The temperature at which the quasicrossing
occurs characterizes the temperature above which the second
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sound can be detected by a density probe [64,110,125,126].
From an experimental point of view, the suppression of
quasicrossing at finite temperature implies that the second
sound mode is sensitive to a density probe even in the low-
temperature regime, which can be tested with ultracold-atom
experiments [76,125].

In summary, we investigated BKT transition in a Rabi-
coupled binary Bose mixture under balanced densities. We
have derived the NK RG equations for a binary Bose mixture
and pointed out that the NK criterion is subject to change
due to the fractional parameter and the Rabi coupling, con-
sistent with the Monte Carlo simulation [100]. Based on
the obtained RG equations, we clarified the whole behavior
of the BKT transition temperature with respect to the Rabi
coupling and intercomponent coupling. We found a nonmono-
tonic behavior of the transition temperature in terms of the
intercomponent coupling and showed the maximum transition
temperature for each value of Rabi coupling, finding regimes

of parameters resulting in an amplification of the transition
temperature. Finally, we have studied the first and second
sound velocities in this binary Bose mixture. We confirmed
the jump in the second sound velocity as well as the super-
fluid density at the BKT transition temperature and elucidated
the quasicrossing behavior of the two sound modes in the
low-temperature regime. Our obtained NK criterion is con-
sistent with the prediction based on Monte Carlo analysis
for the population-balanced case [100]. On the other hand,
Monte Carlo analysis has also predicted a double-step struc-
ture of the superfluid density in the population-imbalanced
case [100,101,127–129]. A challenging open problem is to
obtain a consistent result through the RG analysis in this
population-imbalanced Bose mixture, extending the approach
investigated in this work [121].
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Fondazione Cassa di Risparmio di Padova e Rovigo.

[1] J. W. Kane and L. P. Kadanoff, Long-range order in superfluid
helium, Phys. Rev. 155, 80 (1967).

[2] J. R. Clow and J. D. Reppy, Temperature Dependence of
Superfluid Critical Velocities near Tλ, Phys. Rev. Lett. 19, 291
(1967).

[3] G. Kukich, R. P. Henkel, and J. D. Reppy, Decay of Superfluid
“Persistent Currents,” Phys. Rev. Lett. 21, 197 (1968).

[4] D. J. Amit, Phase transition in HeII films, Phys. Lett. A 26,
448 (1968); New form for the thermodynamic potential of He
II near Tλ, 26, 466 (1968).

[5] R. S. Kagiwada, J. C. Fraser, I. Rudnick, and D. Bergman, Su-
perflow in Helium Films: Third-Sound Measurements, Phys.
Rev. Lett. 22, 338 (1969).

[6] R. P. Henkel, E. N. Smith, and J. D. Reppy, Temperature
Dependence of the Superfluid Healing Length, Phys. Rev. Lett.
23, 1276 (1969).

[7] M. Chester, L. C. Yang, and J. B. Stephens, Quartz Microbal-
ance Studies of an Adsorbed Helium Film, Phys. Rev. Lett. 29,
211 (1972).

[8] M. Chester and L. C. Yang, Superfluid Fraction in Thin He-
lium Films, Phys. Rev. Lett. 31, 1377 (1973).

[9] M. H. W. Chan, A. W. Yanof, and J. D. Reppy, Superfluidity
of Thin 4He Films, Phys. Rev. Lett. 32, 1347 (1974).

[10] J. E. Berthold, D. J. Bishop, and J. D. Reppy, Superfluid
Transition of 4He Films Adsorbed on Porous Vycor Glass,
Phys. Rev. Lett. 39, 348 (1977).

[11] D. J. Bishop and J. D. Reppy, Study of the Superfluid Transi-
tion in Two-Dimensional 4He Films, Phys. Rev. Lett. 40, 1727
(1978).

[12] D. J. Bishop and J. D. Reppy, Study of the superfluid transition
in two-dimensional 4He films, Phys. Rev. B 22, 5171 (1980).

[13] D. J. Bishop, J. E. Berthold, J. M. Parpia, and J. D. Reppy,
Superfluid density of thin 4He films adsorbed in porous Vycor
glass, Phys. Rev. B 24, 5047 (1981).

[14] V. Kotsubo and G. A. Williams, Kosterlitz-Thouless Super-
fluid Transition for Helium in Packed Powders, Phys. Rev.
Lett. 53, 691 (1984).

[15] P. Minnhagen, The two-dimensional Coulomb gas, vortex
unbinding, and superfluid-superconducting films, Rev. Mod.
Phys. 59, 1001 (1987).

[16] G. Agnolet, D. F. McQueeney, and J. D. Reppy, Kosterlitz-
Thouless transition in helium films, Phys. Rev. B 39, 8934
(1989).

[17] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier,
and J. Dalibard, Berezinskii-Kosterlitz-Thouless crossover
in a trapped atomic gas, Nature (London) 441, 1118
(2006).

[18] P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, and W. D.
Phillips, Observation of a 2D Bose Gas: From Thermal to
Quasicondensate to Superfluid, Phys. Rev. Lett. 102, 170401
(2009).

[19] S. Tung, G. Lamporesi, D. Lobser, L. Xia, and E. A.
Cornell, Observation of the Presuperfluid Regime in a Two-
Dimensional Bose Gas, Phys. Rev. Lett. 105, 230408 (2010).

[20] K. Martiyanov, V. Makhalov, and A. Turlapov, Observation of
a Two-Dimensional Fermi Gas of Atoms, Phys. Rev. Lett. 105,
030404 (2010).

[21] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S.
Hoinka, M. Lingham, P. Hannaford, and C. J. Vale, Crossover
from 2D to 3D in a Weakly Interacting Fermi Gas, Phys. Rev.
Lett. 106, 105304 (2011).

[22] T. Yefsah, R. Desbuquois, L. Chomaz, K. J. Günter, and
J. Dalibard, Exploring the Thermodynamics of a Two-
Dimensional Bose Gas, Phys. Rev. Lett. 107, 130401
(2011).

[23] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Observation
of scale invariance and universality in two-dimensional Bose
gases, Nature (London) 470, 236 (2011).

[24] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and M. Köhl,
Observation of a pairing pseudogap in a two-dimensional
Fermi gas, Nature (London) 480, 75 (2011).

[25] A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and
M. W. Zwierlein, Evolution of Fermion Pairing from Three to
Two Dimensions, Phys. Rev. Lett. 108, 045302 (2012).

L041302-5

https://doi.org/10.1103/PhysRev.155.80
https://doi.org/10.1103/PhysRevLett.19.291
https://doi.org/10.1103/PhysRevLett.21.197
https://doi.org/10.1016/0375-9601(68)90780-9
https://doi.org/10.1016/0375-9601(68)90792-5
https://doi.org/10.1103/PhysRevLett.22.338
https://doi.org/10.1103/PhysRevLett.23.1276
https://doi.org/10.1103/PhysRevLett.29.211
https://doi.org/10.1103/PhysRevLett.31.1377
https://doi.org/10.1103/PhysRevLett.32.1347
https://doi.org/10.1103/PhysRevLett.39.348
https://doi.org/10.1103/PhysRevLett.40.1727
https://doi.org/10.1103/PhysRevB.22.5171
https://doi.org/10.1103/PhysRevB.24.5047
https://doi.org/10.1103/PhysRevLett.53.691
https://doi.org/10.1103/RevModPhys.59.1001
https://doi.org/10.1103/PhysRevB.39.8934
https://doi.org/10.1038/nature04851
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.105.230408
https://doi.org/10.1103/PhysRevLett.105.030404
https://doi.org/10.1103/PhysRevLett.106.105304
https://doi.org/10.1103/PhysRevLett.107.130401
https://doi.org/10.1038/nature09722
https://doi.org/10.1038/nature10627
https://doi.org/10.1103/PhysRevLett.108.045302


FURUTANI, PERALI, AND SALASNICH PHYSICAL REVIEW A 107, L041302 (2023)

[26] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld,
and M. Köhl, Attractive and repulsive Fermi polarons in two
dimensions, Nature (London) 485, 619 (2012).

[27] E. Vogt, M. Feld, B. Fröhlich, D. Pertot, M. Koschorreck,
and M. Köhl, Scale Invariance and Viscosity of a Two-
Dimensional Fermi Gas, Phys. Rev. Lett. 108, 070404
(2012).

[28] R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon,
C. Weitenberg, and J. Dalibard, Superfluid behaviour of a two-
dimensional Bose gas, Nat. Phys. 8, 645 (2012).

[29] L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung, and
C. Chin, Strongly Interacting Two-Dimensional Bose Gases,
Phys. Rev. Lett. 110, 145302 (2013).

[30] M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D.
Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim,
Observation of Pair Condensation in the Quasi-2D BEC-BCS
Crossover, Phys. Rev. Lett. 114, 230401 (2015).

[31] R. J. Fletcher, M. Robert-de-Saint-Vincent, J. Man, N. Navon,
R. P. Smith, K. G. H. Viebahn, and Z. Hadzibabic, Connecting
Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions
by Tuning Interactions in a Trapped Gas, Phys. Rev. Lett. 114,
255302 (2015).

[32] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D.
Kedar, M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, and
S. Jochim, Observation of the Berezinskii-Kosterlitz-Thouless
Phase Transition in an Ultracold Fermi Gas, Phys. Rev. Lett.
115, 010401 (2015).

[33] J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S.
Nascimbène, J. Dalibard, and J. Beugnon, Sound Propagation
in a Uniform Superfluid Two-Dimensional Bose Gas, Phys.
Rev. Lett. 121, 145301 (2018).

[34] M. Bohlen, L. Sobirey, N. Luick, H. Biss, T. Enss, T. Lompe,
and H. Moritz, Sound Propagation and Quantum-Limited
Damping in a Two-Dimensional Fermi Gas, Phys. Rev. Lett.
124, 240403 (2020).

[35] L. Sobirey, N. Luick, M. Bohlen, H. Biss, H. Moritz, and T.
Lompe, Observation of superfluidity in a strongly correlated
two-dimensional Fermi gas, Science 372, 844 (2021).

[36] P. Christodoulou, M. Gałka, N. Dogra, R. Lopes, J. Schmitt,
and Z. Hadzibabic, Observation of first and second sound in a
BKT superfluid, Nature (London) 594, 191 (2021).

[37] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity (Oxford University Press, Oxford, 2016).

[38] B. Svistunov, E. Babaev, and N. Prokof’ev, Superfluid States
of Matter (CRC Press, Boca Raton, FL, 2015).

[39] A. Tononi and L. Salasnich, Bose-Einstein Condensation
on the Surface of a Sphere, Phys. Rev. Lett. 123, 160403
(2019).

[40] A. Tononi, F. Cinti, and L. Salasnich, Quantum Bubbles in
Microgravity, Phys. Rev. Lett. 125, 010402 (2020).

[41] A. Tononi, A. Pelster, and L. Salasnich, Topological superfluid
transition in bubble-trapped condensates, Phys. Rev. Res. 4,
013122 (2022).

[42] R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C.
Lannert, J. D. Murphree, E. R. Elliott, J. R. Williams, R. J.
Thompson, and N. Lundblad, Observation of ultracold atomic
bubbles in orbital microgravity, Nature (London) 606, 281
(2022).

[43] R. Y. Chiao and J. Boyce, Bogoliubov dispersion relation and
the possibility of superfluidity for weakly interacting photons

in a two-dimensional photon fluid, Phys. Rev. A 60, 4114
(1999).

[44] Y. E. Lozovik, A. G. Semenov, and M. Willander, Kosterlitz-
Thouless phase transition in microcavity polariton system,
JETP Lett. 84, 146 (2006).

[45] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti,
I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati,
Superfluidity of polaritons in semiconductor microcavities,
Nat. Phys. 5, 805 (2009).

[46] D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M.
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