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Quantifying T -gate-count improvements for ground-state-energy estimation with
near-optimal state preparation
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We study the question of when investing additional quantum resources in preparing a ground state will improve
the aggregate runtime associated with estimating its energy. We analyze Lin and Tong’s near-optimal state
preparation algorithm and show that it can reduce a proxy for the runtime, the T -gate count, of ground-state-
energy estimation near quadratically. Resource estimates are provided that specify the conditions under which
the added cost of state preparation is worthwhile.
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Introduction. A key task in all quantum simulation al-
gorithms is the preparation of a state that encodes the
observables of a physical system of interest [1–3]. This is
often the ground state |�0〉 of a Hamiltonian H on an n-qubit
Hilbert space [4–8]. Independent of whether this repre-
sents interacting electrons [9–14], spins [15–17], or quantum
fields [18–20], we generally produce an approximation to
the desired state |�0〉 with overlap γ = |〈�0|�0〉|. Then the
probability of successfully processing |�0〉 to estimate some
observable of interest (e.g., the ground-state energy E0) is
generally upper bounded by γ 2 [21], which would ideally
be 1.

While it is likely not possible to efficiently prepare ground
states of generic local Hamiltonians on quantum computers
[22,23], physical arguments suggest that the specific instances
for which nature can efficiently find the ground state will be
efficiently preparable on a quantum computer [24]. Though
the question of which instances these are remains an active
area of research [25], it is generally of interest to develop
algorithms that increase γi from some easy-to-prepare ini-
tial approximation |�0,i〉, to γ f with some associated final
approximation |�0, f 〉. It might be that |�0,i〉 comes from
the outcome of a classical calculation (e.g., an approximate
solution to a mean-field theory) or a hybrid quantum-classical
approach such as the variational quantum eigensolver [26,27].
Regardless of the source of |�0,i〉, it is often assumed that the
cost of preparing it is negligible relative to the cost of boosting
γi → γ f , making use of some unitary Usp(H) |�0,i〉 = |�0, f 〉
[28].

The question that we answer in this Letter is “when does
the added cost of implementing Usp(H) outweigh the cost of
repeated trials with a lower probability of success?” We are
specifically concerned with the potential benefit to estimating
E0, for which conventional approaches that apply quantum
phase estimation (QPE) [29] to |�0,i〉 will project onto |�0〉
after a single round with probability γ 2

i [21] [see Fig. 1(a)].
One can use more elaborate strategies in which repeated
rounds of QPE can iteratively improve our knowledge of E0

[2,30–35], though we assume a simple strategy of repeating
the circuit O(γ −2

i ) times for ease of analysis [36].
Broadly speaking, there are two classes of state prepara-

tion algorithms, those that make use of the adiabatic theorem
[37] and those that apply a filter in the eigenbasis of H [4].
In this Letter, we consider a Usp(H) in the latter category,
derived from a near-optimal approach of Lin and Tong [7].
While adiabatic state preparation is conceptually straight-
forward, it generally requires a time-dependent Hamiltonian
simulation, the analysis of a family of Hamiltonians along the
entire adiabatic pathway, and potentially many different initial
Hamiltonians, rather than a single instance. It also has worse
scaling with the minimum spectral gap [38]. However, there
are some important exceptions [39] and it may be the case
that adiabatic algorithms are found to be the optimal solution
in some cases, so we make no claim to the optimality of our
results. An added benefit of analyzing filter-based state prepa-
ration is that it relies on a block encoding [40] of H that could
be identical to one used in QPE, making it straightforward to
compare costs.

Whether exponential, polynomial, or nonexistent, the
advantages realized by quantum computers in physical sim-
ulation are likely to be problem specific and depend critically
on the cost of implementing Usp(H) [41]. We provide esti-
mates for the cost of state preparation based on the T -gate
count of implementations of Lin and Tong’s Usp(H) [7]. We
choose the total number of T gates as a simple-to-compute
proxy for an actual runtime estimate because their implemen-
tation will dominate the runtime in T -factory-limited surface
code architectures [42,43] and a more precise analysis would
involve detailed scheduling of the algorithm’s implementa-
tion. Actual runtimes could also be reduced relative to this
proxy in contexts in which the availability of magic states is
not a limiting factor, in which case the T -gate depth would be
the more appropriate quantifier.

We propose a ratio ι that compares the T -gate count for
Usp(H) and subsequent QPE to the count for “trivial” state
preparation and QPE repeated until success. This quantifies
the improvement in runtime associated with “better” state
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FIG. 1. Circuit diagrams and schematic visualizations for estimating the ground-state energy E0 of a Hamiltonian H with a near-optimal
ground-state preparation technique using amplitude amplification. (a) An energy estimation circuit such as the one in the reference implemen-
tation under consideration [10] in which the probability of correctly measuring E0 in a single round is γ 2. The value of γ is determined by
details of Usp(H). (b) A circuit that implements Usp by first preparing an initial guess |�0,i〉 and then running Niter rounds of AA in which
the reflector about |�0,i〉 (R�0,i ) is straightforward to implement and the reflector about |�0〉 [R�0 (ε)] requires the use of quantum signal
processing, as proposed in Ref. [7], to produce |�0, f 〉. Niter is determined by γi and the desired final overlap γ f . The former overlap might
vanish exponentially in the size of sys. (c) A circuit that uses quantum signal processing to implement an ε approximation to a degree-Nφ

polynomial that suppresses support on energy eigenstates above a known lower bound (μ), in favor of support on energy eigenstates below μ.
The phases are chosen using the method in Ref. [46]. (d) An illustration of the ε-approximate reflector R�0 (ε) and how it acts on eigenstates
above and below the energy gap �. Here, the calculated phases realize an approximation that clearly outperforms the target ε = 0.3.

preparation and allows us to answer the titular question. Even
in a scenario where γi vanishes exponentially with increas-
ing n, there are parameter regimes where there is a robust
near-quadratic speedup for better state preparation. This is
consistent with the Grover-like speedup [44] that one would
expect [45], though we note that we are exploring this in terms
of T -gate counts as a proxy for runtime, instead of query
complexity or some other more abstract quantifier.

Methods. Circuit diagrams that illustrate the implementa-
tion costs being studied are provided in Fig. 1. The quantum
computer that runs these circuits consists of four registers:
(sys) the n-qubit system register that encodes |�0,i〉, (qpe)
the auxiliary register that encodes p bits of an estimate for
E0, (aa) which implement amplitude amplification (AA), and
(be) which block encode H. In what follows, we describe the
structure of the circuits in Fig. 1 and any attendant assump-
tions. Many details that were originally elaborated elsewhere
in the literature are summarized in the Supplemental Material
(SM) [47].

For QPE, we use the highly optimized implementation of
Babbush et al. [10]. We indicate the T -gate count associated
with estimating E0 with Holevo variance �E as TQPE(�E )
and note that more relevant details can be found in the SM
[47]. We assume a particularly simple approach to estimating
E0. Each repetition of the circuit will sample an eigenvalue
from the spectrum of H with probability proportional to the
overlap of the input state with the associated eigenstate. So
after O(γ −2) repetitions the smallest observed eigenvalue will
likely be E0. We now derive conditions under which boosting
γ 2 with AA will reduce the expected total runtime for esti-
mating E0 relative to only relying on U�0,i , the cost of which
we will denote T�0,i [see Fig. 1(b)].

AA consists of Niter applications of a product of two reflec-
tions (R�0,i ,R�0 ) that boosts the overlap of the state in sys to
γ f . Niter is determined by γi,

Niter =
⌈

1

2

(
sin−1 γ f

sin−1 γi
− 1

)⌉
. (1)

While implementing R�0,i only requires controlled applica-
tions of U�0,i , the implementation of R�0 is complicated by
|�0〉 generally being unknown. We will follow Ref. [7] and
construct an ε approximation to this reflector using quantum
signal processing (QSP) [48], R�0 (ε) [see Fig. 1(c)]. This
is a degree-Nφ polynomial in (H − μI ) that approximates a
function that is ideally −1 for states with energy less than
μ − �/2 and ideally 1 for states with energy greater than
μ + �/2. Details pertaining to the calculation of μ and � are
included in the SM [47].

However, in practice each eigenvalue of R�0 (ε) is only ε-
close to {−1,+1} and R�0 (ε) is not an exact reflector. One of
the technical advances in this Letter is a bound on ε such that
the QSP circuit produces |�0, f 〉 with γ f � γi,

ε �
(
1 − γ 2

f

)
/6N2

iter. (2)

A proof can be found in the SM [47]. The cost of implement-
ing the entire AA circuit is denoted TAA(γi, γ f ).

The only remaining details for the implementation un-
der consideration pertain to the block encoding of H [40].
Block encoding is used both to encode the eigenspectrum of
H, as sampled in QPE, and to implement a polynomial in
(H − μI ) in QSP. As many of the details are model spe-
cific and extensively developed in other work, we relegate a
detailed discussion of block encoding to the SM [47]. While
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there are alternatives to block encoding, we leave it to future
work to consider variants on the approach in Fig. 1 mak-
ing use of, e.g., Trotterized Hamiltonian evolution, either for
encoding the eigenspectrum of H for QPE or for implement-
ing time-dependent Hamiltonian evolution in adiabatic state
preparation [49].

With all of the components of our implementation speci-
fied, we can prepare T -gate counts for the circuits with and
without AA. The ratio of these counts defines the improve-
ment,

ι = γ −2
i [T�0,i + TQPE(�E )]

γ −2
f [T�0,i + TQPE(�E ) + TAA(γi, γ f )]

. (3)

Here, the cost of AA is

TAA = Niter[TR�0,i
+ Nφ (TUH + Teiφ	 )]. (4)

TR�0,i
involves two applications of U�0,i and a single mul-

ticontrolled X gate. TUH is the cost of a single application
of the block-encoded Hamiltonian. Teiφ	 involves two mul-
ticontrolled X gates and a single-qubit rotation with angles
determined using the protocol in Ref. [46]. Nφ is the number
of phases used to implement R�0 (ε) and all parameter values
will be chosen to saturate their bounds. We note that Eq. (4)
depends on the rotation synthesis error incurred in imple-
menting the Hamiltonian block encoding and the controlled
rotations in QSP, and the error analysis used in deriving our
results is considered in the SM [47]. We consider better state
preparation as being worthwhile when ι > 1.

Results. We first consider resource estimates for the one-
dimensional (1D) transverse field Ising model (TFIM) [50]
with periodic boundary conditions [51]. sys is encoded such
that each of the n qubits represents one of the L sites. We
consider a simple form for U�0,i in which Ry rotations are
applied to each qubit to generate a product state. We tune the
rotation angles to construct a |�0,i〉 with a target value of γi.
While not a particularly sophisticated choice for initializing
sys, it suffices for our purposes. We select ε to saturate the
bound in Eq. (2) with a target γ 2

f = 0.75, and assume that
the true final overlap is also γ 2

f = 0.75; a presentation of the
difference between the target and true overlaps can be found
in Fig. 3.

In Fig. 2 we present ι and TAA for the TFIM as a function of
L, γi, and �E . We find ι > 1 for all instances with γ 2

i � 10−3,
and even for larger γi for the higher accuracy calculation.
For γi � 1, the costs of QPE and AA are both dominated
by repeated applications of the block-encoded Hamiltonian,
leading to a simple approximate form of ι,

ι ∼ γ 2
f

γ 2
i

(
�

�E

1

sin−1 γ f

γi

log γ −2
i

)
, (5)

consistent with a near-quadratic Grover-like speedup in γi

from AA. Importantly, the asymptotic improvement has no
explicit dependence on the system size, with the only system
size dependence in the finite-size error of �. We find that our
computed ι follows this asymptotic trend closely for ι � 10−2.
We note that 88 logical qubits are required for the L = 64
calculation with �E = 10−2, with a detailed analysis of qubit
counts in the SM [47].

FIG. 2. T -gate counts and improvement ι for TFIM with L = 4,
16, and 64 sites, with ε saturating the bound in Eq. (2) with γ 2

f =
0.75, γ 2

i ranging from 10−5 to 10−1, and two different values of �E .
The inset shows TAA and the main figure is a plot of the improvement
ι with solid lines fit to the asymptotic form Eq. (5). The dashed line is
a guide for the eye at ι = 1, above which improvement is seen when
conducting state preparation.

To test the performance of our Usp(H) implementation, we
explicitly simulate circuits for L = 2, 4, 6 site TFIM using
the upper bound on ε in Eq. (2). For each L we run nine
simulations, with γ 2

f = 0.9, 0.99 and 0.999, and γi chosen
such that Niter = 4, 6, 10. We are then able to compare the

FIG. 3. Comparison of the target γ f and simulated γ f for the
transverse field Ising model with L = 2, 4, and 6 sites. For each
value of L, state-vector simulations of the full Usp(H) circuit were
carried out for three target values, 1 − γ 2

f = 10−1, 10−2, 10−3, and
three values of γi satisfying Niter = 4, 6, 10. The black line is the
x = y reference and our results are consistent with the validity of
the bound in Eq. (2).
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values of γ 2
f actually realized in the simulation to the specified

value of γ 2
f in Fig. 3. Noise-free simulations were carried out

using the PYTKET package [52] with the full source available
in the SM [47].

We find that the simulated infidelity, 1 − γ 2
f , is consistently

one or two orders of smaller than the target, indicating that
our bound for ε in Eq. (2) could be adjusted to potentially
realize further savings in implementing this approach to state
preparation. However, the impact of ε on ι is only logarithmic,
so removing this looseness will only affect our results by
a small constant factor. As such, we are confident that our
conclusions are not skewed by a loose bound in the state
preparation T -gate counts.

Next, we consider resource estimates for a more realistic
and technologically important Hamiltonian. The solid elec-
trolyte β-alumina is known for its high ionic conductivity
[53,54] and there is broad general interest in using it for low-
carbon energy storage [55]. Of particular interest for these
applications is the accurate calculation of equilibrium voltage,
ionic mobility, and thermal stability, which are all directly
related to accurate ground-state energies of the battery as
outlined by Delgado et al. in their work on the lithium-ion
battery Li2FeSiO4 [56].

Classical computation of accurate ground-state energies
of β-alumina structures is challenged by the nonstoichiomet-
ric chemical composition Na1+xAl11O17+x/2, which requires
large supercells to resolve finite-size effects. This is a larger
supercell than has been considered in other resource estimates
of materials. We choose this particular example because it is
large enough that mean-field classical heuristics (e.g., density
functional theory) are likely to be the only methods that are
viable, potentially leading to small values of γi. However, an
analysis of the precise value of γi that is classically achievable
with these heuristics is beyond the scope of this Letter and
thus we leave it as a free parameter.

In Fig. 4 we present resource estimates for a Na4Al22O35

supercell with 610 electrons using a first quantized repre-
sentation [12,57] of the electronic structure Hamiltonian in
a plane-wave basis set with cardinality N . We find that ι > 1
in all cases where γ 2

i � 10−2, from small to large basis sets,
and for �E below chemical accuracy to different extents. We
also see that the T -gate counts for AA are such that it is
plausible to imagine implementing calculations such as this
on fault-tolerant quantum computers that are perhaps a gener-
ation beyond the ones considered in Refs. [10,11]. Even when
starting with a fairly large γ 2

i = 0.1, we still find an order of
magnitude improvement in T -gate counts for a high-accuracy
calculation, as a result of investing resources in better state
preparation. We note that 33 275 logical qubits are required
for the N = 107 calculation with �E = 13 meV; 18 635 log-
ical qubits for antisymmetrization and 14 640 logical qubits
for all other computations. A detailed analysis of qubit counts
is relegated to the SM [47], as well as the full source code for
computing resource estimates.

Conclusions. We have developed resource estimates for
end-to-end ground-state-energy determination using near-
optimal state preparation [7]. The ratios of the T -gate count
for successful ground-state-energy estimation, without and
with this state preparation, define an improvement factor that

FIG. 4. T -gate counts and improvement ι for β-alumina structure
Na4Al22O35 with η = 610, N = 103, 105, 107, with ε saturating the
bound in Eq. (2) with γ 2

f = 0.75, γi ranging from 10−5 to 10−1 and
two different values of �E . The inset shows TAA for various system
sizes, with the main figure presenting ι with solid lines fit to the
asymptotic form Eq. (5). The dashed line is a guide for the eye at
ι = 1.

is related to likely runtime reductions. This improvement is
near quadratic in γi and demonstrated credible multiple-order-
of-magnitude speedups for a toy problem and a highly realistic
electronic structure problem.

Future work will involve determining more realistic esti-
mates for scenarios under which these types of speedups will
be realized. In particular, categorizing the values of γi typical
of classical heuristics that are efficiently implementable as
U�0,i is an open research area. It also remains unclear whether
efficient implementations of adiabatic state preparation or
other variants on filter-based state preparation are more or less
efficient than the one examined in this Letter. Finally, whether
quantum phase estimation protocols with built-in tolerance to
state preparation errors [33,58] can be exploited to achieve
better improvements is a topic for future work.

Note added. Recently, we became aware of another
work considering similar aspects of ground-state preparation
[59].

The DOE will provide public access to these results of
federally sponsored research in accordance with the DOE
Public Access Plan [67].
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