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Fate of multiparticle entanglement when one particle becomes classical
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We study the change in multiparticle entanglement if one particle becomes classical, in the sense that this
particle is destructed by a measurement but the gained information is encoded into a new register. We present
an estimation of this change for different entanglement measures and ways of encoding. We first simplify the
numerical calculation to analyze the change in entanglement under classicalization in special cases. Second, we
provide general upper and lower bounds on the entanglement change. Third, we show that the entanglement
change caused only by classicalization of one qubit can still be arbitrarily large. Finally, we discuss cases where
no entanglement is left under classicalization for any possible measurement. Our results shed light on the storage
of quantum resources and help to develop a different direction in the field of quantum resource theories.
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I. INTRODUCTION

Different types of quantum resources [1] are essential for
quantum information tasks, like quantum computation [2],
quantum key distribution [3], and quantum metrology [4], for
which they can provide a decisive advantage over the classical
regime. One main problem of many quantum resources is
their sensitivity to a disturbance from the environment. Their
protection with tools like quantum error correction [5] is usu-
ally expensive, especially if larger systems are considered. In
practice, some fraction of the particles of a larger quantum
system can inevitably become classical, e.g., as the result of
a measurement or decoherence process. In fact, the particles
may even be completely lost.

It is a natural question to ask how multiparticle entangle-
ment [6,7] is affected by such processes. Many works have
considered the influence of decoherence on multiparticle en-
tanglement [8–13]. Other works considered the robustness of
multiparticle entanglement under particle loss [14–17]. More-
over, the sharp change in bipartite entanglement caused by
the complete loss of one particle in one party has been stud-
ied as the concept of lockable entanglement [18–21]. There
can, however, still be information left in the environment
after loss of particles. For example, in the case of the Stern-
Gerlach experiment, the remaining information is given by
the location of the spots on the screen. As another example
one can consider the decay of particles due to decoherence,
from which it may be reasonable to gather some informa-
tion from the particles before their complete decay. The
usefulness of this classical information has been extensively
explored in the form of the entanglement of assistance [22],
where a third party (Charlie) optimizes the measurement and
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the resulting information to help the two original parties
(Alice and Bob) reveal as much quantum entanglement as
possible. Most research on the entanglement of assistance has
focused on the case where the global state is pure [23–25].
As it turns out [22], the entanglement of assistance depends
only on the reduced state for Alice and Bob, and the exact
three-partite initial state is not important.

In this Letter we consider a different scenario: One or more
particles in a multiparticle system is destructed by a measure-
ment. The gained classical information is then encoded in a
quantum state. Our question is how much the multiparticle
entanglement is affected in this process of classicalization (see
Fig. 1). This scenario is practically relevant because one may
not have the perfect “assistance” when the size and perfor-
mance of the register system are limited. Consequently, our
approach can provide guidance for the storage of quantum en-
tanglement robust to particle loss and for finding the optimal
strategy of entanglement recovery with the gained classical
information and a small register system. Unlike in the concept
of quantum assistance, we consider mixed quantum states

FIG. 1. The change in multiparticle entanglement if the particle
C becomes classical. In this process of classicalization the particle
C is first destroyed by the measurement, and then the measurement
information is encoded in a new register. This Letter asks for which
classicalization procedure the change in entanglement is minimal.
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where the entanglement is stored and it is not the aim of the
measured party to increase the bipartite entanglement between
the remaining ones. Most importantly, the initial quantum
state plays a major role in the change in the entanglement
due to classicalization. We stress that there are further re-
lated concepts. The so-called hidden entanglement [26] has
been introduced as the difference between the entanglement
without the decomposition information of a mixed state and
the one with the decomposition information. In addition, the
role of one particle in the change in entanglement has also
been considered in distributed entanglement [27,28], where
the particle is transferred from one party to another one rather
than being destroyed.

II. NOTATIONS AND DEFINITIONS

We focus on tripartite systems in this Letter; other multi-
partite systems can be analyzed similarly. We denote the initial
state as ρABC . First, suppose that one party of this state is
measured in a process that completely destroys the measured
party, such as the detection of the photon polarization.

Without loss of generality, we here assume that the de-
structive measurement M = {mi} acts on party C. After the
measurement, the particles belonging to party C vanish, but
the postmeasurement information from the associated out-
come is available. That is, each classical outcome i can be
encoded into a new register system E as associated post-
measurement states τi. We say that this encoding is perfect if
τi = |i〉〈i| for an orthogonal basis {|i〉}. In practice, of course,
the encoding may not be perfect due to the interaction with
the environment.

We can write the above process as the operation

�C (ρABC ) =
∑

i

piσi ⊗ τi, (1)

where pi = tr(ρABCmi ), σi = trC (ρABCmi )/pi, and τi is the
register state related to the outcome i. We say that this en-
coding is perfect if τi = |i〉〈i| for an orthogonal basis {|i〉}. In
practice, of course, the encoding may not be perfect due to the
interaction with the environment or the limited memory of the
register.

We denote by NC the set of all possible operations in the
form in Eq. (1) on party C. We stress that the set NC is
equivalent to the set of entanglement-breaking channels [29]
acting on party C. So far, we have not imposed any assumption
on the destructive measurements and the encoding, but in
practice, there can be extra limitations on them.

Our central question is how much the global entanglement
in ρABC is changed by the operation �C . The maximal change
happens usually when there is no classical information left
or it has not been employed, that is, τi are the same for all
outcomes i; a similar question was explored already under the
concept of lockable entanglement [18] (see Sec. V for more
details). Here we are particularly interested in the minimal
amount of entanglement change with remaining classical in-
formation which corresponds to the optimal operation �C to
keep as much entanglement as possible.

For this purpose, we define the quantity �E (ρABC ) as

�E (ρABC ) = min
�C∈NC

{E[ρABC] − E[�C (ρABC )]}, (2)

where E is a tripartite entanglement measure. The practical
choice of E may depend on the quantum information task un-
der consideration. For the choice of entanglement measures,
it is necessary to require that E does not increase under local
operations and classical communication (LOCC) [30], called
monotonicity under LOCC. In this case, �E (ρABC ) is always
non-negative.

Two further remarks are in order. First, if E is a measure of
genuine multipartite entanglement, then �E (ρABC ) = E[ρABC]
since �C (ρABC ) is always separable with respect to the bipar-
tition AB|C for any �C and ρABC . Second, if we restrict the
set NC with limitations on measurements and register states,
the amount of �E (ρABC ) can be affected. One example is
to consider the operations which keep the dimension of the
system.

III. SIMPLIFICATION

In general it is difficult to calculate �E (ρABC ) due to the
complexity of characterizing the set NC . Here we provide a
method to simplify the calculation. By default, we assume the
entanglement measure E is monotonic under LOCC. Then we
have the following observation.

Observation 1. If the entanglement measure E is convex,
we only need to consider M = {mi} as an extremal point in
the considered measurement set M. More precisely,

�E (ρABC )= min
M∈∂M

{
E[ρABC]−

∑
i

piE[σi⊗|0〉〈0|]
}

, (3)

where ∂M is the set of extremal points in M, pi = tr(ρABCmi )
and σi = trC (ρABCmi )/pi.

The proof of Observation 1 is given in Sec. A in the Supple-
mental Material [31]. The Observation shows that the actual
calculation of �E (ρABC ) can be reduced to the set of extremal
points in M, which was well characterized in Ref. [32]. In
the following, we will address this problem for two special
cases. In the first case the party C is a qubit, and the mea-
surement information from the outcomes is also registered in
a qubit system E [33]. For convenience, we denote by N1 the
set of those operations, which is equivalent to the set of all
entanglement-breaking channels mapping qubit to qubit. In
the second case the measurement M is a dichotomic positive
operator-valued measure [32], where C is not necessarily a
qubit. We denote this set as N2.

Now we can present the following observation.
Observation 2. For a convex entanglement measure E , if we

replace NC by N1 or N2 in the definition of �E , then the value
of �E (ρABC ) can be achieved with projective measurements.

The proof of Observation 2 is given in Sec. B in the
Supplemental Material [31]. Observations 1 and 2 make the
numerical calculation possible with only a few parameters as
in the following examples.

A. Example: Three-qubit systems

Here we look at three-qubit systems and analyze �E (ρABC )
with N1 and N2. Important examples of multipartite entangle-
ment measures that satisfy convexity and monotonicity under
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FIG. 2. �E with NABC and Esq for |ψ (p)〉 = √
p |GHZ〉 +√

1 − p |W〉.

LOCC are the multipartite negativity [34] and multipartite
squashed entanglement [21,35]:

NABC (ρABC ) = NAB|C + NBC|A + NAC|B, (4)

Esq(ρABC ) = min
γABCX

1
2 I (A : B : C|X ). (5)

Here NX |Y = |∑λi<0 λi| is the negativity for a bipar-
tition X |Y with eigenvalues λi of the partially trans-
posed state ρTY with respect to subsystem Y , where Y =
A, B,C. Also, I (A : B : C|X ) = S(AX ) + S(BX ) + S(CX ) −
S(ABCX ) − 2S(X ) is the quantum conditional mutual infor-
mation, where γABCX is any extension of ρABC , i.e., ρABC =
trX [γABCX ], and S(M ) is the von Neumann entropy of system
M. For a pure state ρABC , the quantum conditional mutual
information can be simplified as I (A : B : C|X ) = S(A) +
S(B) + S(C), which is independent of system X .

As the first example, we consider the superposition of
Greenberger-Horne-Zeilinger (GHZ) states and W states:

|ψ (p)〉 = √
p |GHZ〉 +

√
1 − p |W 〉 , (6)

where 0 � p � 1, |GHZ〉 = (|000〉 + |111〉)/
√

2, and |W 〉 =
(|001〉 + |010〉 + |100〉)/

√
3. The numerical relation between

�E and p is presented in Fig. 2 for E = NABC, Esq; details
about the optimization method are given in in Sec. C in the
Supplemental Material [31]. Interestingly, we find that the
maximal value of �E (|ψ〉) is given by the W state, while the
minimal value is not achieved by the GHZ state but the state at
p = 0.4. We remark that both NABC ( |ψ (p)〉 ) and Esq( |ψ (p)〉 )
are minimized when p = 0.4. However, it is an open problem
to understand why this state also has minimal entanglement
change.

Moreover, let us consider a three-qutrit case and compute
the tuple of �E for E = (NABC, Esq ). The GHZ state∑2

i=0 |iii〉 /
√

3 has (1.667, 0.792489), while the state
(|012〉 + |120〉 + |201〉 + |021〉 + |210〉 + |102〉)/

√
6 has

(1.86747, 0.971332). More details are given in Sec. C in the
Supplemental Material [31].

FIG. 3. Comparison between �E with NABC and its lower and
upper bounds for the state |ψ (p)〉 = √

p |GHZ〉 + √
1 − p |W〉.

IV. GENERAL BOUNDS

In general, it may be hard to obtain the exact value of
�E (ρABC ) for some entanglement measure E . To address this
situation, we now derive upper and lower bounds that can
be used for the estimation. First, we present a general lower
bound.

Observation 3. For a convex entanglement measure E and
for the set NC , we have

�E (ρABC ) � min
|x〉

{E[ρABC] − E[σ|x〉 ⊗ |0〉〈0|]}, (7)

where |x〉 is a measurement direction on party C and σ|x〉 =
〈x|ρABC |x〉/tr[〈x|ρABC |x〉] is a normalized state.

The proof of Observation 3 is given in Sec. D in the
Supplemental Material [31]. This lower bound can be used
to characterize the complete entanglement loss, as we will see
in Sec. VI.

Furthermore, suppose that we remove all the classical in-
formation of the measurement outcomes, that is, we encode
all the measurement outcomes into the same state |0〉. Then
we find an upper bound:

�E (ρABC ) � �̃E (ρABC ) (8)

for any convex entanglement measure E , where

�̃E (ρABC ) = E[ρABC] − E[ρAB ⊗ |0〉〈0|], (9)

with ρAB = trC (ρABC ). We remark that �̃E (ρABC ) is the max-
imal entanglement change since we can always map any
encoding into the state |0〉〈0| with a local operation on the
system C.

Let us compare �E with its lower and upper bounds using
the tripartite negativity NABC . Figures 3 and 4 illustrate the
cases of the pure three-qubit state |ψ (p)〉 in Eq. (6) and
the mixed three-qubit state ρ(q) = qρGHZ + (1 − q)ρW,
where ρGHZ = |GHZ〉〈GHZ| and ρW = |W 〉〈W |. We find that
the lower bound is relatively close to �E , especially if the state
approximates the GHZ state. The gap between �E and �̃E
shows that the postmeasurement information is more relevant
for the GHZ state than for the W state.
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FIG. 4. Comparison between �E with NABC and its lower and
upper bounds for the state ρ(q) = qρGHZ + (1 − q)ρW.

Next, let us connect entanglement change to quantum dis-
cord. For that, we consider the multipartite relative entropy
of entanglement, which is the sum of the relative entropies of
entanglement [36] for all bipartitions, i.e.,

RABC (ρABC ) = RAB|C + RBC|A + RAC|B, (10)

where RX |Y = minσ∈SEP S(ρXY ||σ ) is the relative entropy of
entanglement for a bipartition X |Y , S(ρ||σ ) = tr[ρ (log2 ρ −
log2 σ )] is the von Neumann relative entropy, and SEP is the
set of bipartite separable states.

Similarly, the amount of quantum discord [37] can
be also measured by the relative entropy: DXY (ρXY ) =
minρ ′∈� S(ρXY ||ρ ′), where � is the set of quantum-classical
states ρ ′ = ∑

i piσi ⊗ |i〉〈i| with orthonormal basis {|i〉}. Now
we can formulate the following two observations.

Observation 4. When the entanglement measure E is the
tripartite relative entropy of entanglement RABC , we have

RAB|C (ρABC ) � �E (ρABC ) � 3DAB|C (ρABC ). (11)

Observation 5. More generally, if DAB|C (ρABC ) = 0, then
we have �E (ρABC ) = 0 for any entanglement measure E .

The proofs of Observations 4 and 5 are given in Secs. E
and F in the Supplemental Material [31]. From Observation
5, the condition DAB|C (ρABC ) = 0 is a sufficient condition for
�E (ρABC ) = 0 for any measure E . On the other hand, this
is not a necessary condition. For instance, if the initial state
ρABC is fully separable, clearly, �E (ρABC ) = 0, but this does
not mean DAB|C (ρABC ) = 0. From the conceptional perspec-
tive, quantum discord is the difference in quantum correlation
before and after a projective measurement, whereas �E (ρABC )
quantifies the difference in entanglement, which is only one
sort of quantum correlation.

V. LOCKABILITY

Previous works [18–20] have studied a similar issue un-
der the name of lockability of entanglement measures. In
that case, one asks for the quantitative change in entangle-
ment by the loss of one particle (e.g., one qubit) within one
party. For example, in the bipartite scenario, one considers

the situation where Alice and Bob both have five qubits,
and then one asks how the entanglement changes if Alice
loses one of her qubits. If the entanglement change can be
arbitrarily large, the entanglement measure is called lockable.
For instance, all convex entanglement measures are known
to be lockable, while the relative entropy of entanglement is
not [18].

The lockable entanglement is related to our consideration
in the following sense. For a given tripartite state ρABC , if
we choose the convex entanglement measure E to measure
only the entanglement in the bipartition A|BC (or AC|B), then
�̃E defined in Eq. (9) is the quantity considered in lockable
entanglement. More precisely, for any convex entanglement
measure E for the bipartition A|BC, we have

�̃E (ρABC ) = E[ρABC] − E[ρAB], (12)

where we used E[ρAB ⊗ |0〉〈0|] = E[ρAB]; see Theorem 2 in
Ref. [38].

In order to understand the difference between the behav-
ior of entanglement under classicalization and the lockability
problem, one has to analyze the role of the information com-
ing from the measurement results. We know already from
Figs. 3 and 4 that this information makes some difference for
the entanglement change. In the following, we will show that
this difference can be arbitrarily large.

A. Example: Flower state

First, let us consider the so-called flower state in (d ⊗ d ⊗
2)-dimensional systems [19]:

ωABC = 2

d (d + 1)
P(+)

AB ⊗ d + 1

2d
|0〉〈0|C

+ 2

d (d − 1)
P(−)

AB ⊗ d − 1

2d
|1〉〈1|C, (13)

where P(±)
AB are the projections onto the symmetric and anti-

symmetric subspaces, that is, P(±)
AB = (1AB ± VAB)/2 with the

SWAP operator VAB acting as VAB |vA〉 ⊗ |vB〉 = |vB〉 ⊗ |vA〉.
Notice that the quantum discord of ωABC for the biparti-

tion AB|C is zero, i.e., DAB|C (ωABC ) = 0. From Observation
5, we conclude that �E (ωABC ) = 0 for any entanglement
measure E . However, we have �̃E (ωABC ) = E (ωABC ) > 0 be-
cause trC (ωABC ) ⊗ |0〉〈0| is fully separable. In fact, if the
entanglement measure E is taken to be the squashed entan-
glement, then E (ωABC ) can be arbitrarily large [19]. This
directly implies that the difference �̃E − �E can be arbi-
trarily large if d is properly chosen. Hence, although the
information from the measurement at the flower state is only
one bit, a large amount of entanglement can be saved by
collecting it.

B. Example: n pairs of Bell states

On the other hand, we will see that the entanglement
change �E can also be arbitrarily large even if only one qubit
has become classical. As an example, let us consider a pure
state made of n pairs of Bell states |+〉 = (|00〉 + |11〉)/

√
2.

We label the ith pair of particles by ai, bi. Suppose that party
A owns particles {ai}n

i=1, party B owns particles {bi}n−1
i=1 , and

party C owns particle bn. We denote this state as βABC =

L040401-4
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|+〉〈+|⊗n. Now we can present the following observation,
which is proven in Sec. G in the Supplemental Material [31].

Observation 6. For the entanglement measure E to be the
tripartite negativity NABC , we have

�E (βABC ) = 2n−2 + 1/2. (14)

Thus, �E (βABC ) can be arbitrary large if n is properly chosen.
Inspired by those two examples, an interesting question

arises about whether entanglement measures E and states ρABC

exist such that both �E (ρABC ) and �̃E (ρABC ) − �E (ρABC ) can
be arbitrarily large in the sense that they are not limited by the
size of C, even if C is only a qubit. We leave this question for
further research.

VI. COMPLETE ENTANGLEMENT LOSS
UNDER CLASSICALIZATION

By definition, �E (ρABC ) � E[ρABC] always holds. We
are now concerned about the case where this inequal-
ity is saturated, i.e., �E (ρABC ) = E[ρABC], or, equivalently,
max�C∈NC E[�C (ρABC )] = 0.

First of all, Observation 3 implies a sufficient condition for
complete entanglement loss under classicalization, which can
be formulated as follows.

Condition 1. If, after a projective measurement in any di-
rection |x〉 on C, the postmeasurement state σ|x〉 ∝ 〈x|ρABC |x〉
is always separable, then the entanglement is completely lost
under classicalization.

Clearly, Condition 1 is stronger than the condition that the
reduced state ρAB is separable. For instance, let us consider
the GHZ state. Its reduced state trC[ρGHZ] is separable, but its
postmeasurement state σ|x〉 can be entangled if measurement
bases are {|+〉 , |−〉}.

The existence of genuine multipartite entangled states
which satisfy Condition 1, however, was already reported in
Ref. [39]. We propose observations using Condition 1 and

provide more examples in Secs. H and I in the Supplemental
Material [31].

VII. CONCLUSION AND DISCUSSION

Multiparticle quantum entanglement is an important quan-
tum resource, and the preservation of entanglement is a
practical issue. We have studied the change in multiparticle
entanglement under classicalization of one particle. Clearly,
the results usually depend on the choice of the entangle-
ment quantifier, and the change in entanglement is difficult
to compute. We provided simplifications for important special
scenarios and upper and lower bounds for the general case.
One crucial question is whether one small part like one qubit
can change quantum resources like quantum entanglement a
lot. Our results showed that the entanglement change can still
be arbitrarily large even with complete measurement informa-
tion remaining. In addition, the measurement information can
also make an arbitrarily large difference. Finally, we provided
conditions under which quantum entanglement is always com-
pletely lost under classicalization.

While we focused on the difference between the original
quantum resource and the remaining resource if one party
becomes classical, the behavior of quantum resources during
the quantum to classical transition is also interesting, and it
may have a richer theoretical structure. We believe that our
work paves the way to designing concepts for quantum re-
source storage and may help in the development of a different
direction in the field of quantum resource theories.
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