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Motivated by recent progress in the generation of optical spatiotemporal vortex pulses (STVPs), there is a
theoretical discussion about the transverse orbital angular momentum (OAM) carried by such pulses. Two recent
works [K. Y. Bliokh, Phys. Rev. Lett. 126, 243601 (2021)] and [S. W. Hancock et al., Phys. Rev. Lett. 127,
193901 (2021)] claimed the OAM values which differ by a factor of 2 for circular STVPs. Here we resolve
this controversy by showing that the result by Hancock et al. is correct for the total OAM, while the result by
Bliokh describes the suitably defined intrinsic part of the OAM. The other, extrinsic part of the OAM originates
from the fact that plane waves of the same amplitude but different frequencies in the pulse spectrum contain
different densities of photons, which induces a transverse vortex-dependent shift of the photon centroid even in
a STVP with symmetric energy-density distribution. We describe similar peculiarities of acoustic and quantum-
relativistic (Klein-Gordon and arbitrary-spin) STVPs. In all cases, only the intrinsic OAM keeps a universal form
independent of the details of the problem and similar to the OAM of monochromatic vortex beams.

DOI: 10.1103/PhysRevA.107.L031501

I. INTRODUCTION

Monochromatic vortex beams with screw-type phase sin-
gularities (vortices) have been extensively explored in optics
[1–7], acoustics [8–14], and quantum physics [15–23] in the
past 30 years. Such beams with circularly symmetric trans-
verse intensity distributions carry an intrinsic orbital angular
momentum (OAM) along the beam axis. In the paraxial
regime, the OAM value is � per particle (photon, phonon,
electron, etc.) in the h̄ = 1 units, where � is the integer
topological charge of the vortex. More recently, there was
a theoretical [24–28] and experimental [29–37] progress in
studies of spatiotemporal vortex pulses (STVPs) with edge-
type (or, generally, mixed edge-screw) phase dislocations, i.e.,
vortices in the space-time domain. Such pulses carry the OAM
orthogonal to the pulse plane. STVPs can be considered in a
wider context of structured space-time waves [38].

It is natural to assume that the OAM of STVPs with circular
intensity distributions is � per particle and the first calculations
indeed provided this value [26,27,30]. However, recent calcu-
lations for optical STVPs [28] reported an unusual expression
for the OAM corresponding to �/2 per photon in circular
pulses.

Here we reexamine the OAM of STVPs and find that the
result of [28] is correct and describes the total OAM of an op-
tical STVP with symmetric energy-density distribution. Yet,
previous results [26,27,30] are also valid for the intrinsic part
of the OAM. The remaining extrinsic part originates from the
transverse vortex-dependent shift of the “photon (probability)
centroid.” This shift appears because plane waves of the same
amplitude but different frequencies in the pulse spectrum con-
tain different densities of photons [39,40], and positions of the
energy-density and probability centroids differ in the general
relativistic case [41,42].

We also examine this problem for acoustic and relativis-
tic quantum-mechanical (Klein-Gordon and arbitrary-spin)
STVPs. We show that the total and extrinsic OAM of spa-
tiotemporal vortices are very sensitive to the spin, choice of
the wave function, and the mean momentum of the pulse,
whereas the intrinsic OAM, defined with respect to the particle
probability centroid, is a robust universal quantity, similar to
the intrinsic OAM of monochromatic vortex beams.

In contrast to phase singularities in monochromatic waves,
spatiotemporal vortices do not have a unique well-defined
position. For example, a single optical charge-� vortex in
the electric field generally splits into a constellation of �

charge-1 vortices in the vector-potential field. Therefore, it
is impossible to construct a globally symmetric STVP with
a uniquely defined center (e.g., the electric-field and vector-
potential distributions inevitably differ from each other). Only
the use of the particle probability centroid simplifies the OAM
description in the general case.

II. GENERAL ELECTROMAGNETIC EQUATIONS

We first examine electromagnetic pulses constructed as
free-space solutions of Maxwell’s equations. The spin and
orbital parts of the angular momentum of light are well de-
fined and separably observable [1–7,43–49], particularly in
the paraxial approximation where the spin and OAM are
determined, respectively, by the polarization and complex
phase-amplitude structure of the field. Since we are interested
in the OAM-related controversy and not in the spin-related
phenomena, we consider paraxial linearly polarized wave
packets, where one can neglect the spin and spin-orbit inter-
action effects [27,46,50].

Using the real-valued electric and magnetic fields E (r, t )
and H(r, t ), as well as the corresponding complex plane-wave
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Fourier amplitudes E(k)e−iω(k)t and H(k)e−iω(k)t satisfying
H = ω−1k×E and ω(k) = k in the c = 1 units, the normal-
ized integral (expectation) values of the energy, momentum,
and (orbital) angular momentum of the wave packet can be
written as [39,51]

W = 1

2N

∫ (
E2 + H2)d3r =

∫ |E|2 d3k∫
ω−1|E|2 d3k

� ω0, (1)

P = 1

N

∫
(E × H) d3r =

∫
ω−1k |E|2 d3k∫
ω−1|E|2 d3k

� k0, (2)

L � 1

N

∫
r × (E × H)d3r �

∫
ω−1E∗(−ik × ∇k )E d3k∫

ω−1|E|2 d3k
.

(3)

Here k0 and ω0 = ω(k0) are the central wave vector and
frequency of the pulse, whereas N ∝ ∫

ω−1|E|2 d3k is the
number of photons in the pulse. Note also that the first ex-
pression in Eq. (3) is the exact expression for the total angular
momentum valid for arbitrary localized solution of Maxwell
equations [51] and the spin part is neglected in the transition to
the second expression in Eq. (3). Equations (1)–(3) represent
the expectation values of the energy ω, momentum p̂ = k,
and OAM L̂ = r̂×p̂ = −i(k×∇k ) operators with the “photon
wave function” E(k)/

√
ω(k) in the momentum representa-

tion. The fact that the photon wave function is well defined
only in k space and with the factor ω−1 is well known [39,40]
and crucial for our problem. It means that the density of
photons (well defined in monochromatic fields) in a plane
wave is ρ ∝ |E|2/ω.

There is one more quantity important for our consideration:
the “photon centroid.” Although the photon wave function and
the corresponding probability density are generally ill-defined
in real space [because the operator 1/ω(k) is nonlocal in r
space] [40], which is related to the Weinberg-Witten theorem
[52], the probability centroid of the photon is well defined
as the normalized expectation value of the position operator
r̂ = i∇k [41,42,46]:

R =
∫

ω−1E∗eiωt (i∇k )Ee−iωt d3k∫
ω−1|E|2 d3k

. (4)

Here we accounted for the time-dependent factor e−iωt in the
field Fourier amplitudes, which provides for the propagation
of the centroid R(t ) with the mean value of the group velocity,
vg(k) = ∇k ω = k/k. This straightforward propagation is not
important for our consideration below. Notably, the photon
centroid (4) generally differs from the centroid of the en-
ergy density distribution RW , defined similarly to Eq. (4), but
without the ω−1 factors in the integrands [41,42]. The photon
centroid allows one to separate the intrinsic and extrinsic parts
in the total OAM (3) [7,41,42,46]

Lext = R×P, Lint = L − Lext. (5)

The change of the coordinate origin r → r + a affects
only the extrinsic OAM in agreement with the parallel-axis
theorem: Lext → Lext + a×P, Lint → Lint. An alternative

definition of the intrinsic OAM with respect to RW is con-
sidered in the examples below.

III. OAM OF OPTICAL STVPs

We are now in the position to analyze the OAM of
an electromagnetic STVP. For simplicity, we consider a
Bessel-like z-propagating STVP [27] with an elliptical
intensity-distribution shape in the (z, x) plane, charge-� vor-
tex, y-directed OAM, and linear y-polarization corresponding
to the single electric-field component Ey, Fig. 1. Its plane-
wave spectrum lies on a k-space ellipse and is described by

kz = k0 + � cos φ, kx = γ� sin φ, Ey ∝ exp(i�φ). (6)

Here � � k0 and γ� � k0 are the ellipse semi-axes along
the z and x directions, respectively, and φ is the azimuthal
angle with respect to the ellipse center, Fig. 1(a).

For the one-dimensional elliptical spectrum (6), all k-space
integrals (1)–(4) are reduced to integrals over φ ∈ (0, 2π ).
Substituting Eq. (6) with the relations

∂

∂kx
= cos φ

γ�

∂

∂φ
,

∂

∂kz
= − sin φ

�

∂

∂φ
,

1

ω
� 1

k0

(
1 − � cos φ

k0

)
,

into Eq. (3) we find the normalized OAM of the STVP

Ly � γ �

2
. (7)

This equation agrees with the calculations of [28] (using a
completely different approach based on an OAM-like operator
commuting with the effective z-evolution “Hamiltonian” of
the paraxial wave equation) and differs from all other cal-
culations [26,27,30]. In particular, for a circular pulse with
γ = 1 it yields half-integer OAM Ly = �/2, in sharp contrast
to the integer OAM of monochromatic vortex beams [1–23].
We checked numerically that the standard calculation of the
total angular momentum of the pulse via real-space integrals
in Eqs. (1) and (3), i.e., ω0Ly/W , yield the same result (7)
and hence the spin-related contributions are negligible as ex-
pected.

To unveil the physical meaning of the unusual OAM (7),
we calculate the photon centroid (4) in the STVP (6). Surpris-
ingly, it exhibits a transverse vortex-dependent shift along the
x axis, Fig. 1(b),

X � �

2γ k0
. (8)

This shift occurs even though the energy-density (or electric-
field intensity |E|2) centroid is not shifted, XW = 0, because
the STVP consists of multiple plane waves with equal electric-
field amplitudes but slightly different frequencies and, hence,
different photon densities ρ ∝ |E|2/ω. Interference of these
waves, including the vortex phase factor, results in the shift
(8). The vortex-induced transverse shifts of the probability
centroid, different from the energy centroid, are typical for
relativistic waves with OAM [26,41,42].
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FIG. 1. (a) The plane-wave spectrum of the linearly y-polarized Bessel-like STVP (6); the phases of the plane-wave amplitudes Ey ∝
exp(i�φ) are color-coded. (b) Its instantaneous (t = 0) real-space electric-field intensity E2

y (r) (or the similar energy density E2 + H2)
distribution with the positions of the “photon probability centroid” R, Eqs. (4) and (8), and the energy centroid RW . (c) Same as (b) but
for the STVP with Ey ∝ √

ω exp(i�φ) providing for equal densities of photons in each of the plane waves in the spectrum. The parameters are
� = 3, �/k0 = 0.4 (this not-too-small value is for the better visualization of the centroid shift) and γ = 0.7.

The shift (8) together with the momentum of the pulse
Pz � k0 mean that the pulse carries intrinsic and extrinsic
OAM (5)

Lint
y � �

γ + γ −1

2
, Lext

y � −k0X � − �

2γ
. (9)

This intrinsic OAM is in precise agreement with calculations
in [26,27] and yields the usual integer value Lint

y = � for cir-
cular STVPs with γ = 1.

Equations (7)–(9) resolve the controversy between
[26,27,30] and [28]. On the one hand, the total OAM is
calculated correctly in [28], while the authors of [27,30] did
not properly account for the variations of frequency in the
pulse spectrum. On the other hand, the intrinsic part of the
OAM, defined via Eq. (5), is given by the expressions found
in [26,27] (the authors of [30] did not properly account for the
ellipticity γ ).

There are several important remarks. First, one can con-
struct a modified STVP with an additional amplitude factor√

ω in the spectrum (6): Ey ∝ √
ω exp(i�φ), so that all the in-

terfering plane waves carry the same density of photons. This
results in X = Lext

y = 0 and Ly = Lint
y given by Eq. (9). Such a

paraxial pulse looks very similar to the regular STVP, but with
slight asymmetry of the energy-density distribution and shift
of the energy centroid opposite to Eq. (8): XW = −�/(2γ k0),
Fig. 1(c).

Second, for symmetric z-propagating monochromatic vor-
tex beams the intrinsic OAM is uniquely defined: it coincides
with the total OAM, Lz = Lint

z = �, and parallel translations
of the z axis keep it invariant [53]. In contrast, parallel trans-
lations of the z and y axes, as well as the definition of the
centroid X , dramatically affect the OAM and its intrinsic part
in STVPs. Due to the momentum Pz � k0, the OAM values are
very sensitive to subwavelength x ∼ k−1

0 shifts. In particular,
one can define the separation of the intrinsic and extrinsic
parts of the OAM using the energy centroid RW instead of
R in Eq. (5). In this case, the STVP (6) with XW = 0 will
have the intrinsic OAM Lint′

y = γ �/2. Thus, the definitions

of the intrinsic and extrinsic OAM is a matter of convention
for the pulse centroid. The advantage of the definitions (4)
and (5) is that the intrinsic OAM takes a universal form (9)
valid for both spatial and spatiotemporal vortices and arbitrary
orientation of the OAM with respect to the propagation di-
rection [26,35,36] (and also for different wave equations, see
below).

Third, one can conclude from the above remarks that it
is impossible to construct an STVP symmetric with respect
to the z axis in the (z, x) plane. Indeed, the probability and
energy centroids are inevitably shifted with respect to each
other and at least one of them is shifted with respect to the vor-
tex. Moreover, the very concept of a unique phase singularity,
common for monochromatic fields, becomes somewhat un-
certain for spatiotemporal vortices. For instance, the charge-�
electric-field singularity in the STVP (6) splits into a con-
stellation of � mutually shifted charge-1 singularities in the
vector potential with the Fourier spectrum A = −iω−1E (in
the Coulomb gauge), Fig. 2. The real-space distribution of
this vector-potential and its centroid also differ from their
electric-field counterparts. Thus, many basic features of spa-
tiotemporal vortices become dependent on the choice of the
wavefield (wave function), and one should be careful in ap-
plying concepts of monochromatic singular optics (where the
vector-potential differs from the electric field by a constant
factor) [54,55] to spatiotemporal structured waves.

IV. ACOUSTIC STVPs

We now examine another example of STVPs, constructed
for sound waves in a fluid or gas. These waves are de-
scribed by the real-valued scalar pressure P (r, t ) and vector
velocity V (r, t ) fields. Setting the medium parameters (the
mass density, compressibility, and speed of sound) equal
to 1, the complex plane-wave Fourier amplitudes of the
fields, P(k)e−iω(k)t and V(k)e−iω(k)t , satisfy V = ω−1k P with
ω(k) = k. Similarly to Eqs. (1)–(3), the energy, momentum,
and OAM of a paraxial sound wave packet can be written
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FIG. 2. The instantaneous (t = 0) real-space intensity and phase
distributions of the complex electric field Ey(r) [the complex Fourier
transform of Ey(k); the real field in Fig. 1(b) is Ey = ReEy] and the
corresponding Coulomb-gauge vector-potential Ay(r) for the STVP
(6) shown in Fig. 1(b). Significant differences in these distributions
reflect the impossibility of a globally symmetric spatiotemporal vor-
tex with a uniquely defined singularity.

as [14,56]

W = 1

2N

∫
(P2 + V2) d3r =

∫ |P|2 d3k∫
ω−1|P|2 d3k

� ω0, (10)

P = 1

N

∫
PV d3r =

∫
ω−1k |P|2 d3k∫
ω−1|P|2 d3k

� k0, (11)

L = 1

N

∫
r × (PV ) d3r =

∫
ω−1P∗(−ik × ∇k )P d3k∫

ω−1|P|2 d3k
,

(12)

where N ∝ ∫
ω−1|P|2 d3k is the number of phonons in the

pulse.
Equations (10)–(12) show that, in terms of the pressure-

field “wave function” P(k) the expectation values for phonons
acquire the same ω−1 factor as in the case of photons. There-
fore, the spatiotemporal OAM calculations (6)–(9) remain
the same. Although, in this representation the definitions for
spin-0 phonons and spin-1 photons coincide, the equations of
motion for sound waves are actually mapped onto the mass-
less Klein-Gordon equation with the wave function ψ : P =
−∂tψ [57]. Constructing the STVP in terms of plane waves ψ

with equal amplitudes yields different values of the extrinsic
and total OAM (see below); the difference between the “wave
functions” P and ψ is similar to the difference between the
electric field and vector potential in the electromagnetic case.

V. KLEIN-GORDON STVPs

Let us now consider STVPs in the Klein-Gordon wave
equation which describes both massless and massive spin-0
quantum particles. Using the complex wave function ψ (r, t )
and its Fourier transform ψ̃ (k), the energy, momentum, and
angular momentum of a paraxial Klein-Gordon wave packet
read [41,58]

W = 1

N

∫
w d3r =

∫
ω2|ψ̃ |2 d3k∫
ω|ψ̃ |2 d3k

� ω0, (13)

P = 1

N

∫
p d3r =

∫
ωk|ψ̃ |2 d3k∫
ω|ψ̃ |2 d3k

� k0, (14)

L = 1

N

∫
r×p d3r =

∫
ω ψ̃∗(−ik × ∇k )ψ̃ d3k∫

ω|ψ̃ |2 d3k
. (15)

Here w = (|∂tψ |2 + |∇ψ |2 + m2|ψ |2)/2 and p =
−Re[(∂tψ

∗)∇ψ] are the energy and momentum densities for
the Klein-Gordon particles, N = ∫

ρ d3r ∝ ∫
ω|ψ̃ |2 d3k is

the number of particles, ρ = Im[(∂tψ
∗)ψ] is the probability

density, m is the mass, we use the units c = h̄ = 1, and the
dispersion relation is ω2 = k2 + m2.

Thus, the definitions of the Klein-Gordon wave function
and expectation values involves the factor ω instead of ω−1

in the photon case. This is because we deal with spin-0 par-
ticles. (For spin-1/2 Dirac particles there is no factor.) Akin
to the photon case, assuming the Bessel-type STVP spectrum
(6) with ψ̃ ∝ exp(i�φ), we calculate the x coordinate of the
particle probability centroid

X =
∫

xρ d3r∫
ρ d3r

=
∫

ω ψ̃∗(i∂kx )ψ̃ d3k∫
ω|ψ̃ |2 d3k

� − � k0

2γ ω2
0

, (16)

where ω0 =
√

k2
0 + m2. This shift is directed oppositely to

Eq. (8). Calculating the OAM (15), and using Eqs. (5) and
(8), we find that the total, intrinsic, and extrinsic OAM of the
Klein-Gordon STVP

Ly = Lint
y + Lext

y � �
γ + γ −1

2
+ �

k2
0

2γω2
0

. (17)

Notably, the intrinsic OAM is the same as in the photon case
(9). We checked the analytical results (16) and (17) by numeri-
cal calculations using the wave function ψ (r, t ) and real-space
integrals in Eqs. (15) and (16). To construct a Klein-Gordon
STVP with X = Lext

y = 0 and Ly = Lint
y , one has to use the

vortex wave function ψ̃ ∝ ω−1/2 exp(i�φ), which involves
plane waves with equal particle densities.

Note that the Klein-Gordon STVP with a symmetric distri-
bution |ψ (r)|2 has an asymmetric energy-density distribution
w(r) with the centroid XW = 2X . Therefore, an alternative
definition of the intrinsic OAM with respect to XW yields
Lint′

y = [γ + γ −1(1 − k2
0/ω

2
0 )]/2.

In addition to all the properties described for electromag-
netic STVPs, the Klein-Gordon case allows one to trace the
OAM behavior from the relativistic massless limit k0 = ω0

to the nonrelativistic limit k0/ω0 → 0. In the latter case,
X = XW = Lext

y = 0 and Ly = Lint
y = Lint′

y is unambiguously
given by Eq. (9) [26,27]. Thus, all the peculiarities related

L031501-4



ORBITAL ANGULAR MOMENTUM OF OPTICAL, … PHYSICAL REVIEW A 107, L031501 (2023)

to the centroid shift and extrinsic OAM have relativistic
origin.

Indeed, the notion of the “mass centroid” of an extended
body is well defined in nonrelativistic mechanics and it un-
ambiguously determines the separation of the intrinsic and
extrinsic OAM [59]. In relativistic mechanics, the centroid
of the body becomes frame dependent and can be defined
in different ways [41,60,61]. Notably, using the seminal
approach by Pryce [61], the expectation value of the quantum-
mechanical operator of the relativistic mass or energy centroid
corresponds to the probability centroid R rather than the en-
ergy centroid RW [62]. This is because the expectation value
of some combination of operators differs from the analogous
combination of the expectation values of the operators.

VI. GENERALIZATION TO ARBITRARY SPIN

It is instructive to generalize the photon and Klein-Gordon
results to STVPs in a relativistic wave equation with arbitrary
spin s and mass. Assuming the momentum-representation
wave function ψ̃ ∝ ωn/2 exp(i�φ), and using the density of
particles in a plane wave ρ ∝ ω(1−2s)|ψ̃ |2, we find the total
OAM and positions of the particle and energy centroids

Ly � �
γ + γ −1

2
+ � (1 − 2s + n)

k2
0

2γω2
0

. (18)

X � −� (1 − 2s + n)
k0

2γω2
0

, XW � X − �
k0

2γω2
0

. (19)

For example, the electromagnetic STVPs in Figs. 1(b) and
1(c) correspond to k0 = ω0, s = 1, n = 0, and n = 1, respec-
tively.

Remarkably, there is only one combination in Eqs. (18) and
(19) that acquires a universal form (9) [26,27], independent of
spin, mass, and so on, and similar to the OAM of monochro-
matic beams

Lint
y � Ly + k0X � �

γ + γ −1

2
. (20)

That is why we advocate the definition (5) of the intrinsic
OAM. Alternatively, defining the intrinsic OAM with respect
to the energy centroid yields

Lint′
y � Ly + k0XW � �

γ + γ −1
(
1 − k2

0

/
ω2

0

)
2

. (21)

In the massless case, k0 = ω0, this coincides with the OAM
(7) advocated in [28]. In the nonrelativistic limit, both defini-
tions converge to the same universal form.

VII. CONCLUSION

We resolved a recent controversy in calculations of the
OAM of electromagnetic STVPs [26–28,30] and found that
the OAM properties of paraxial STVPs are extremely sensitive
to a number of factors: definition of the pulse centroid, spin
of the particle, its mean momentum (relativistic or nonrel-
ativistic), and choice of the wave function. This is in sharp
contrast to monochromatic paraxial vortex beams, where the
intrinsic OAM is unambiguous and independent of all these
factors [1–23,53]. In the spatiotemporal case, globally sym-
metric vortices with a unique center are simply impossible: a
relativistic object with an intrinsic angular momentum is in-
evitably asymmetric and delocalized. Nonetheless, we found
that calculating the intrinsic OAM with respect to the prob-
ability centroid of the particle results in the clear universal
expression [26,27] independent of all the above subtleties and
similar to the monochromatic vortex case.

Furthermore, we described the OAM properties of STVPs
in other wave systems: acoustic and quantum-relativistic with
different spins and masses. Using the suggested approach
based on the probability centroid, the transverse intrinsic
OAM takes the same universal form in all of these cases. It
is worth noticing that the OAM of acoustic pulses is deter-
mined by the mechanical angular momentum of the medium
particles moving due to the wave-induced Stokes drift [63,64].
This makes it directly observable for classical waves in fluids
or gases [63,65].

We hope that this work sheds light on the intricate analysis
of the OAM and other properties of spatiotemporal vortices.
For further progress in this problem, it is important to examine
possible methods of the OAM measurements in STVPs of
various nature. Atomic transitions in interactions with optical
pulses could be one of such possibilities [43,66]. Also, the
radiation torque on large absorbing particles (larger than the
pulse size) could serve as a measure of the OAM in opti-
cal [67,68] and acoustic [10–12] STVPs. In these cases, an
accurate analysis of the wave-matter interactions involving
nonmonochromatic pulses is necessary.
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