
PHYSICAL REVIEW A 107, L031305 (2023)
Letter

Quantized topological response in trapped quantum gases

Pengfei Zhang
Department of Physics, Fudan University, Shanghai 200438, People’s Republic of China

and Institute for Quantum Information and Matter & Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, California 91125, USA

(Received 8 July 2022; revised 14 March 2023; accepted 17 March 2023; published 27 March 2023)

We study the quantized topological response of trapped one-dimensional quantum gases, which involves
applying an optical pulse to a half-infinite region in an asymptotically harmonic trap and measuring the resulting
density distribution. We prove that the corresponding linear response is described by a universal quantized
formula in the thermodynamic limit, which is invariant under local continuous deformations of the trapping
potential V , atom distribution f�, the spatial envelope of the optical pulse �p, and the measurement region �m.
Our numerical analysis confirms this prediction with high accuracy, and we show that a short but finite optical
pulse duration only causes a violation of quantization near the transition time. Our work presents an exciting
avenue for exploring quantized topological phenomena in trapped quantum gases.
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Introduction. Understanding the phases of quantum many-
body systems is one of the most important subjects in
condensed matter physics. Nowadays, it has been realized that
quantum systems are not only classified by their local order
parameters [1], but also by their topological properties [2–12].
By definition, the topological properties of quantum systems
are invariant under continuous deformations, and are thus
much more stable against perturbations. In many cases, non-
trivial quantum topology implies novel quantum responses,
which can be directly measured in both solid-state materi-
als [13–15] and quantum simulators [16–21]. As an example,
without any symmetry constraint, band insulators in two di-
mensions (2D) can be classified by the Chern number of
occupied bands [22,23]. A nonzero Chern number guar-
antees the existence of chiral edge states under the open
boundary condition, which contribute to a quantized Hall
conductance. Adding symmetry constraints further leads to
the new concept of symmetry-protected topological phases,
examples of which include the celebrated quantum spin Hall
effect [24–26]. Unveiling new topological responses beyond
the current knowledge is then of special interest.

Recently, Kane proposed that the topology of the Fermi
surface can be probed by a novel quantized nonlinear charge
transport in D dimensions with D � 2 [27], which is a
generalization of the Landauer formula in one dimension
(1D) [28–36]. Studies further show that this Fermi-surface
topology can also be probed using the entanglement en-
tropy [37]. Later, a concrete experimental protocol for
observing such quantized nonlinear transport was proposed
in a pioneering work [38], where the authors studied the
noninteracting Fermi gases in 2D traps using semiclassi-
cal Boltzmann equations. For harmonic traps, a closed-form
expression was obtained, which showed a quantization for
arbitrary evolution time, with repeated transitions of the quan-
tization value. In particular, this quantization goes beyond the
early-time regime determined by the Fermi-surface topology
without the trapping potential. However, it is possible that

such a quantization strictly relies on harmonic traps and de-
tails of the experimental protocol, which makes the underlying
physics less universal.

In this Letter, we show that it is indeed the opposite:
The quantization for arbitrary time t is stable against local
continuous deformations of both the trapping potential and
experimental details as illustrated in Fig. 1, and which thus
defines a variant of the universal topological response in
trapped quantum many-body systems. As we will explain,
the nonlinear quantized response in D-dimensional harmonic
traps is a direct consequence of its 1D counterparts. Conse-
quently, we will first state our main conclusion in 1D, with a
proposal for the experimental protocol, and then turn to the
technique proofs supported by various numerical results. We
also discuss practical considerations which are necessary for
realistic experiments as in Ref. [38]. Finally, we will explain
the generalization to higher dimensions by a tensor product
of 1D protocols in each spatial direction. Our theory can be
tested in near-term experiments using ultracold atomic gases.

The statement. We first present our main result in 1D. Let
us consider quantum systems described by the 1D single-
particle Hamiltonian

Ĥ = p̂2

2m
+ V (x̂), (1)

with an asymptotically quadratic trapping potential V (x) →
1
2 mω2x2 for |x| → ∞ [39]. For conciseness, we set m = ω =
1 throughout this Letter. We label the single-particle eigen-
state of Ĥ with energy En as |n〉. We consider the experimental
protocol sketched in Fig. 1, which is similar to the 2D protocol
proposed in Ref. [38]:

(1) The many-body system is prepared into an initial state
where the filling fraction of each single-particle state |n〉 is
given by 〈c†

ncn〉 = f�(n).
(2) An optical pulse is applied to create a potential [40]

V̂p = ξ�p(x̂)δ(t ) for a half-infinite region. After the pulse,
each single-particle state becomes |ψn(0+)〉 = e−iξ�p(x̂)|n〉.
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FIG. 1. (a) A sketch of the experimental protocol for the quan-
tized topological response. Details of the protocol are given in the
main text. (b) Some examples for local continuous deformations
of the atom distribution f�, trapping frequency V , spatial envelope
of the optical response �p, and the measurement region �m under
which the universal quantized response is valid. Here, different lines
(the blue solid line, the orange dotted line, and the green dashed
line) are examples of different functions for which the experimental
protocol works.

(3) The density of the system ρ(x, ξ ) is measured after the
evolution of time t . We then analyze the experimental data by
computing ρξ = ∫

dx ρ(x, ξ )�m(x).
(4) We repeat steps 1–3 for different ξ and extract the

response at small ξ . We then compute P ≡ −2π∂ξρξ |ξ=0.
Here, Û = e−iĤt is the unitary evolution of single-particle

states. We focus on thermodynamical systems satisfying
f�(n � �) = 1 and f�(n � �) = 0 with � � 1, which is
naturally realized in noninteracting degenerate Fermi gases
with a large number of atoms [41]. The charge response P can
be computed using the linear-response theory. For �m/p(x)
that satisfies the boundary condition [see Fig. 1(b)]

�m/p(x) =
{

1, x → ∞,

0, x → −∞,
(2)

the main conclusion of this Letter reads

P = lim
�→∞

2π i
∑

n

f�(n)〈n|[Û †�m(x̂)Û ,�p(x̂)]|n〉

= sgn(sin t ). (3)

Since the right-hand side of (3) is independent of the details
of ( f�,V,�p,�m), the quantized number P is topological,
which means the invariance is under local continuous de-
formations. In the short-time limit t � 1, we have P = 1,
which probes the topology of the Fermi surface in 1D [27,38].
Intuitively, for harmonic traps V (x) = x2/2, the quantization
of the charge response for arbitrary time t can be understood
(semiclassically) by noticing that all atoms in the system os-
cillate with frequency ω = 1 under time evolution. For traps

with local deformations, the quantization is less obvious and
is a gift of quantum physics.

Our result is interesting at least for three reasons: First,
comparing to previous quantized responses, the trapping po-
tentials play an important role in our setup. The result shows
repeated transitions between different quantized values tuned
by the evolution time t . Second, our response is topological,
which means it is invariant under continuous deformations
of ( f�,V,�p,�m) with fixed boundary conditions. Third, as
discussed later, our result is not restricted to systems in 1D
or in thermal equilibrium. It can be generalized to quantum
quenches and systems in higher dimensions.

Note that at step 4 we have to repeat the experiment
for different ξ to extract the slope ∂ξρ. For potentials and
measurement envelopes with reflection symmetry V (−x) =
V (x) and �m(−x) = 1 − �m(x), an alternative protocol ex-
ists, which only requires experimental data for a single small
ξ :

(3′) The density of the system ρ(x, ξ ) is measured
after the evolution of time t . We then compute ρ+

ξ =∫
dx ρ(x, ξ )�m(x) and ρ−

ξ = ∫
dx ρ(x, ξ )[1 − �m(x)].

(4′) In the thermodynamical limit � � 1, the statement (3)
predicts a quantized response for ξ � 1:

−π (ρ+
ξ − ρ−

ξ )/ξ = P = sgn(sin t ).

Now we turn to the proof of the statement. In the following
sections, we prove (3) by first evaluating the left-hand side
(LHS) using a particular choice of ( f�,V,�p,�m), and then
revealing its topological nature by showing its invariance un-
der local continuous deformations of these functions. Direct
numerical verifications will also be presented.

Explicit calculation. We first compute (3) in a particular
setup with f�(n) = e−En/� and V (x) = 1

2 x2. Introducing ε =
�−1, the LHS of (3) becomes

P = 4π lim
ε→0

Im tr[e−εĤ�p(x̂)eiĤt�̂m(x̂)e−iĤt ]. (4)

Here. the trace is over the single-particle Hilbert space. In our
choice, the regulator becomes a short imaginary-time evolu-
tion, which makes an explicit calculation possible. Using the
single-particle Green’s function K (x, y, t ) = 〈x|e−iĤt |y〉, we
can write (4) as

P=4π lim
ε→0

Im
∫

dxdy �m(x)�p(y)K (x, y, t −iε)K (y, x,−t ).

(5)

In harmonic traps, we have a closed-form expression [42]
K (x, y, t ) = 1√

2π i sin t
exp( i

2 sin t [(x2 + y2) cos t − 2xy]). We
further choose �p(x) = �m(x) = θ (x). Here, θ (x) is the unit
step function. For t �= lπ (l ∈ Z), we can perform the integral
over x and y, and expand for small ε. Leaving details for the
Supplemental Material [43], we find

P = 4π lim
ε→0

( | sin t |
4π sin t

+ O(ε2)

)
= sgn(sin t ). (6)

This also indicates the result (3) converges with power-law
corrections for a smooth cutoff function f�(n). We also need
to examine the results at the transition time t = lπ . In this
case, the Green’s function is proportional to δ(x − (−1)l y),
which is equivalent to the identity operator Î or the parity

L031305-2



QUANTIZED TOPOLOGICAL RESPONSE IN TRAPPED … PHYSICAL REVIEW A 107, L031305 (2023)

TABLE I. Numerical results of P for different choices of �m(x) and �p(x). We fix f�(n) = e−En/�, V (x) = 1
2 x2, and � = 104. The results

showed verify our statement (3) to high accuracy, consistent with a quantized value for P. We have also tested the deviation from ±1 decreases
as � increases.

t = π

3 t = π

2 t = 3π

2 t = 7π

4

�m = θ (x), �p = θ (x) 1.0000 1.0000 −1.0000 −1.0000
�m = θ (x + 1), �p = θ (x + 1) 0.9999 0.9999 −0.9999 −0.9999
�−1

m = (e−x + 1), �−1
p = (e−x + 1) 0.9996 0.9997 −0.9997 −0.9993

�m = θ (x), �p = θ (x + 1) 0.9999 1.0000 −1.0000 −0.9999
�m = θ (x), �−1

p = (e−x + 1) 0.9998 0.9998 −0.9998 −0.9997
�m = θ (x + 1), �−1

p = (e−x + 1) 0.9997 0.9998 −0.9998 −0.9996

operator P̂. In either case, Û †�m(x̂)Û is then diagonal in real
space, and thus commutes with �p(x̂). This leads toP = 0 for
t = lπ .

Topological invariance. Having verified (3) for a particu-
lar choice of ( f�,V,�p,�m), we now explain its invariance
under local continuous deformations. Loosely speaking, the
invariance with respect to the deformation of f� is a direct
consequence of the existence of the limit � → ∞, which
requires the contribution from states |n〉 to vanish rapidly
enough as n → ∞. As a result, for two different choices
f� and f ′

�, their difference is peaked near n ≈ �, and thus
vanishes as we take � → ∞. This suggests that f�(n) can be
viewed as a regulator, whose specific form should not change
the underlying physics. More generally, one can take arbitrary
initial states in which low-energy Hilbert space is occupied.
This includes the thermal equilibrium state with a completely
different trapping potential Ṽ (x̂), where our statement (3)
now describes a quantized topological response in the quench
dynamics [43].

To understand the invariance of P for different
(V,�p,�m), we first imagine the case in which the dimension
dH of the Hilbert space spanned by states |n〉 is finite. Then,
we can safely take the limit of lim�→∞ f�(n) = 1, and the
LHS of (3) becomes 2π i tr[Û †�m(x̂)Û ,�p(x̂)] = 0. Here,
we have used the cyclic property of the trace operation. As a
comparison, our result in (3) is finite for general t . The reason
is that, without any regulation, both tr[Û †�m(x̂)Û�p(x̂)] and
tr[�p(x̂)Û †�m(x̂)Û ] are divergent [44], and it is not possible
to use the cyclic property of the trace. [We avoid possible
confusion by introducing an explicit regulator in (3).] This
is similar to the derivation of the chiral anomaly [45], and
the real-space definition of the 2D Chern number for systems
without translation symmetry introduced in Appendix C
of Ref. [10]. Interestingly, in the latter case, the formula
takes a form that is similar to (3): (2π i) times a trace of the
commutator between asymptotically projective operators.

Then, let us consider the difference of P between two
different spatial envelopes of the optical impulse �′

p = �p +
δ�p and �p:

δP= lim
�→∞

2π i
∑

n

f�(n)〈n|[Û †(�m(x̂)−1/2)Û , δ�p(x̂)]|n〉.
(7)

Here, we have added a −1/2 for later convenience, which
trivially commutes with an arbitrary function. When δ�p(x)
vanishes rapidly enough at |x| → ∞, the limit of � → ∞ can
now be safely taken at first since tr[Û †(�m(x̂) − 1

2 )Ûδ�p(x̂)]

and tr[δ�p(x̂)Û †(�m(x̂) − 1
2 )Û ] are both finite. This leads to

δP = 2π i tr[Û †(�m(x̂) − 1/2)Û , δ�p(x̂)] = 0. (8)

This shows that a local continuous deformation of the �p

leavesP invariant. Noticing (3) is symmetric under �m ↔ �p

and Û → Û †, we conclude that P is also invariant under the
local continuous deformation of the �m. For the deformation
of V , we can use

δÛ (t ) = −i
∫ t

0
dt ′ Û (t − t ′)δV (x̂)Û (t ′). (9)

Similar to previous cases, the variation of P again vanishes
when δV̂ (x) decays rapidly enough at |x| → ∞.

Now we present numerical verification of the topologi-
cal invariance for different choices of ( f�,V,�p,�m). The
details of the numerics can be found in the Supplemental
Material [43]. We first fix f�(n) = e−εEn and V (x) = 1

2 x2.
The quantization of the response P can then be tested to high
accuracy by performing the numerical integration in (5) with
small ε = 10−4. The result is presented in Table I, which is
consistent with the statement (3). We then test the validity
of the statement for different choices of the cutoff function
f�(n) and potential V (x) with fixed �m(x) = �p(x) = θ (x).
Since generally no closed-form expression is available for the
Green’s function K (x, y, t ), we perform an exact diagonaliza-
tion study in the Hilbert space spanned by the first L = 200
eigenstates of the harmonic oscillator. Leaving details for
the Supplemental Material [43], we present results in Fig. 2
for � = 150. Despite a finite �, the results match the state-
ment (3) to good accuracy. This guarantees the quantization
can be observed in experiments with a moderate number of
atoms.

Practical considerations. In realistic experiments the
duration of the optical pulse is finite. To estimate the corre-
sponding effect, we make the replacement

V̂p = ξ�p(x̂)δ(t ) → ξ√
2πσ 2

�p(x̂)e− t2

2σ2 .

Using the linear-response theory, we can determine the den-
sity change due to the optical pulse as

Pσ ≡ −2π ∂ξρξ (t )|
ξ=0 =

∫
dt ′ 1√

2πσ 2
e− t ′2

2σ2 P(t − t ′).

(10)
For a short duration of the pulse σω � 1, Pσ is approxi-
mately quantized for |t − nπ | � σ . The correction of finite
σ is important near the transition time t ≈ nπ . In this case,

L031305-3



PENGFEI ZHANG PHYSICAL REVIEW A 107, L031305 (2023)

FIG. 2. The numerical results of P for different potential V (x) =
[x2 + �V (x)]/2 and filling fraction f�(n) with finite � = 150. The
black dashed line is the quantized analytical prediction (3). The
results show deviations of the order of ∼10−2, which is consistent
with the quantization of P. The blue dotted-dashed line is a plot
of (11), which estimates the effects of finite duration of the optical
pulse in realistic experiments. Here, we set σ = 0.2.

we can estimate the correction by approximating P(t ) ≈
(−1)n sgn(t − nπ ), which gives

Pσ ≈ (−1)nerf

(
t − πn√

2σ

)
, for |t − πn| � σ. (11)

This describes the smoothening of the response function
near t ≈ πn. A plot of (11) with σ = 0.2 is presented using
the blue dotted-dashed line in Fig. 2. For |t − nπ | � σ , it
converges to the quantized value with exponentially small
corrections. This suggests the quantized response (3) is stable
against a finite duration of the optical pulse.

On the other hand, there are also residual interactions
between atoms in realistic experiments. We estimate the con-
tribution from off-resonant interactions for 1D Fermi gases.
Because of the Fermi statistics, the odd-wave interaction,
an analog of the p-wave interaction in higher dimensions,
dominates at low temperatures ĤI = g

∫
dx(ψ̂†∂xψ̂

†)(ψ̂∂xψ̂ ).
Away from any two-body resonance, g can be estimated by the
van der Waals length lW [46], which is usually hundreds of
picometers ∼10−10 m. On the other hand, the typical trapping
frequency ω is ∼50 Hz in most cold-atom experiments, which
is equivalent to a typical length lh ∼ 10−5 m. Consequently,
we expect the effect of the interaction, estimated by NlW /lh �
1, can be neglected for a moderate number of atoms.

Higher dimensions. Finally, we study the implication of our
statement (3) in D-dimensional harmonic traps. The Hamilto-
nian reads

H =
D∑

a=1

Ha =
D∑

a=1

(
p̂2

a

2
+ x̂2

a

2

)
. (12)

Here, we have assumed the trapping frequency ωa = 1. Gen-
eralizations to anisotropic harmonic traps are straightforward.
We propose the following protocol to probe the nonlinear

response of trapped quantum gases, as an analog of the
quantized nonlinear conductance in ballistic metals [27]: Af-
ter preparing the initial state, we add an optical pulse with

V̂p =
∑

a

ξa�
a
p(x̂)δ

(
t − t0

a

)
. (13)

We have set t0
1 = 0 in the previous discussions for the 1D

protocol. We then let the system evolve to time t , and perform
the measurement of

∏
a �a

m(x̂a) to obtain ρ{ξ} ≡ 〈∏a �a
m(x̂a)〉.

Both �a
m and �a

p satisfy the same boundary condition as their
1D counterparts. Taking the response in each direction to the
linear order, we define the nonlinear charge response P(D) as

P(D) = (−2π )D∂ξ1∂ξ2 · · · ∂ξDρ{ξ}|ξa=0. (14)

Since the D-dimensional harmonic trap is exactly analogous
to D copies of independent 1D harmonic traps, the contribu-
tion from different a factorizes. Our 1D result (3) implies

P(D) = (2π i)D lim
�→∞

∑
{na}

f�

D∏
a=1

〈[Û †
a �a

m(x̂a)Ûa,�
a
p(x̂a)]〉na

= sgn

(∏
a

sin
(
t − t0

a

))
, (15)

where Ûa = e−iĤa (t−t0
a ), and na is the quantum number in

the xa direction. We have introduced the filling fraction
f�({na}), which decays rapidly enough for any na � �.
When f�({na}) = ∏

a f�(na), (15) is just D copies of the
1D result (3). We then use the insensitivity of the regulator
in the limit of � → ∞ to relax the restriction of f�({na}).
Numerical verifications are presented in the Supplemental
Material [43]. When we choose f�({na}) = (eβ(

∑
a na−�) +

1)−1, the initial state describes a thermal ensemble in D di-
mensions. For D = 2, our protocol is reduced to the protocol
proposed in Ref. [38], and our result is consistent with the
semiclassical approach with θa

p = θa
m = θ (x) [38]. Moreover,

our analysis in 1D suggests that nonlinear responses in higher
dimensions are also topological, regardless of the choices of
(�a

p,�
a
m).

Discussion. In this Letter, we introduce a universal quan-
tized charge transport of trapped quantum gases. We compute
the response function explicitly for a convenient choice of
the setup, and show the result is topologically invariant under
local continuous deformations with fixed boundary conditions
for the trapping potential V , the atom distribution f�, the
spatial envelope of the optical pulse �p, and the measurement
region �m. The statement is supported by various numer-
ical results, which match the analytical prediction to high
accuracy. After analyzing realistic effects in experiments, we
believe our statement (3), as well as its higher-dimensional
generalization (15) for nonlinear responses, can be directly
observed in near-term experiments using ultracold atomic
gases. There are also various interesting future directions, in-
cluding adding symmetry constraints, considering the effects
of thermal baths, and detailed studies of interaction effects.
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