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Liquid-gas transition and coexistence in ground-state bosons with spin twist
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We study the thermodynamic liquid-gas transition and coexistence (LGTC) for ground-state bosons under
contact interactions. We find that the LGTC can be facilitated by the mismatch of spin polarization, dubbed
“spin twist,” between single-particle and interaction channels of bosons with spin degrees of freedom. Such a spin
twist uniquely stabilizes the gas phase by creating an effective repulsion for low-density bosons, thereby enabling
LGTC in the presence of a quantum droplet at a much larger density. We have demonstrated the scheme for binary
bosons subject to Rabi coupling and magnetic detuning, where the liquid-gas transition can be conveniently tuned
and their coexistence can be characterized by a discontinuous density profile in a harmonic trap. The spin twist
scheme for LGTC can be generalized to a wide class of quantum systems with competing single-particle and
interaction orders.
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Introduction. Liquid-gas transition and coexistence
(LGTC) [1] appears to be a common physical phenomenon in
nature. Nowadays the phenomenon has many industrial
applications in oil, natural gas, aerospace, chemical
engineering, etc., and its research has recently even extended
to hot nuclei [2–4] and active matters [5,6]. All these systems
have two common features. Namely, the LGTCs therein all
occur at finite temperature (T ) within a certain T window,
and they are all associated with long-range interactions
characterized by a repulsive core and an attractive tail
(e.g., the Lennard-Jones potential), as responsible for the
liquid stabilization. Indeed, a textbook model for LGTC is
based on the van der Waals’ equation of state [7,8], exactly
reflecting the important roles played by the thermal effect and
long-range potential.

The question is whether we can go beyond the traditional
frame to engineer LGTC, so as to broaden the understanding
of its nature and enable its potential use in different systems.
As a first attempt, Miller et al. showed that the liquid-gas
transition can occur at zero T where the quantum statistics
played a vital role [9,10]. Nevertheless, they still relied on the
long-range interaction and concluded the absence of liquid-
gas coexistence in bosons given the associated transition is
of second order. On the other hand, the recent realization of
quantum droplets in ultracold gases [11–21] offers an un-
precedented opportunity for addressing the question. These
ultracold droplets (with a resemblance to liquids) are stabi-
lized by an attractive mean-field interaction and a repulsive
force from quantum fluctuations [22], where the interaction is
not necessarily long range but can be a contact one. However,
the phenomenon of LGTC has not been deterministically ob-
served in these systems up to date. It is essentially because
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the liquid-gas transition therein is continuous at zero T [23],
which cannot host any coexistence region as in accordance
with Refs. [9,10]. Note that the transitions measured in exist-
ing experiments [17–21] are driven by the quantum pressure
of a finite-size system, instead of a thermodynamic one. More-
over, since the quantum droplet is quite fragile to the thermal
effect [24–26], the LGTC at finite T , even if it exists, can be
quite difficult to detect given the expected narrow T window
in reality.

In this Letter, we unveil a mechanism for the LGTC
of ground-state bosons (zero T ) with a contact interaction,
thereby well beyond the traditional frame as well as previ-
ous theories [9,10]. Such a mechanism is based on a “spin
twist,” which refers to a mismatch of spin polarization be-
tween single-particle and interaction channels for bosons with
spin degrees of freedom. To demonstrate the idea, we con-
sider a concrete setup of binary (pseudospin-1/2) ultracold
bosons subject to Rabi coupling (�) and magnetic detuning
(δ) [see the schematics in Fig. 1(a)], as explored in previous
experiments [27–31]. The single-particle potentials (�, δ) de-
termine an optimal spin polarization, which can be tuned to
mismatch the one determined by spin-dependent interactions
[Fig. 1(b)]. Such a spin twist leads to an effective repulsion for
low-density bosons [Fig. 1(c)], which uniquely stabilizes the
gas phase and renders the first-order LGTC in the presence of
a quantum droplet at a much larger density [Fig. 1(d)]. In this
case, the resulting liquid-gas transitions can be conveniently
tuned by �, δ and interaction strengths, and moreover, they all
occur for thermodynamic systems, in contrast to the finite-size
transitions observed previously [17–21]. To characterize the
liquid-gas coexistence, we have pointed out their phase sepa-
ration in a harmonic trap and further identified two universal
exponents for the critical scaling of their densities. Our results
can be readily detected in ultracold experiments, and the spin
twist scheme can serve as a general tool to engineer LGTC in
quantum systems.
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FIG. 1. (a) Schematics of a spin twist setup. The spin state of
binary bosons, (ψ↑, ψ↓) ∝ [cos(θ/2), sin(θ/2)], can be mapped onto
a Bloch sphere with polarization S ≡ 〈σz〉 = cos θ . Single-particle
potentials {�, δ} and spin-dependent interactions {gσσ ′ } respectively
optimize θ as θsp and θint . A spin twist occurs when θsp 	= θint and thus
Ssp 	= Sint . (b) Density-tuned polarization from Ssp(= γ ) to Sint (= β ).
Dashed and solid lines respectively show mean-field and total (with
LHY correction) results. (c) Effective interaction (black solid line)
and its individual contribution from mean-field (blue dashed) and
LHY (red dotted) sectors. The spin twist leads to an additional mean-
field repulsion in the low-density regime [∼(γ − β )2], as marked by
the blue vertical line, which uniquely stabilizes the gas state. (d) En-
ergy per particle (shifted by the single-particle energy −√

�2 + δ2)
as a function of density, where the double minima indicate liquid-
gas coexistence near their first-order transition. In (b)–(d) we take
the parameters (α, β, γ , η) = (−0.1, 0.2, 0.5, 0.0137), and scale the
density and energy per particle respectively by �/g0 and �.

Model. We consider the binary bosons (↑,↓) with Hamil-
tonian H = H0 + U (h̄ = 1),

H0 =
∫

dr
∑
σσ ′

ψ†
σ (r)

(
−∇2

2m
δσσ ′ − [�σx + δσz]σσ ′

)
ψσ ′ (r),

U = 1

2

∫
dr

∑
σσ ′

gσσ ′ψ†
σ (r)ψ†

σ ′ (r)ψσ ′ (r)ψσ (r). (1)

Here, ψ†
σ (r) is the creation operator of spin-σ , and σi (i =

x, y, z) are Pauli matrices; � and δ are respectively the
strengths of Rabi coupling and magnetic detuning; gσσ ′ is
the contact coupling strength between σ and σ ′, and here we
consider g↑↑, g↓↓ > 0 and δg ≡ g↑↓ + √

g↑↑g↓↓ < 0, where a
stable quantum droplet can be supported in the absence of �

and δ [22]. The multiple parameters in this problem can be
recombined into four dimensionless ones,

α ≡ δg

g0
, β ≡ g↓↓ − g↑↑

4g0
,

γ ≡ δ√
δ2 + �2

, η ≡ m3�g2
0,

with g0 ≡ (g↑↑ + g↓↓ − 2g↑↓)/4. Here, α characterizes the
strength of an overall attractive interaction; β and γ , as
shown later, stand for the optimal spin polarizations in the

interaction and single-particle channels, respectively; η mea-
sures the Rabi field with respect to the interaction strength. To
simplify the discussions, in this Letter we mainly consider the
effects of tunable α and γ .

Spin twist and the induced effective repulsion. Under the
mean-field treatment, we replace the field operators by classi-
cal numbers, ψ↑ = √

n cos(θ/2), ψ↓ = √
n sin(θ/2), where n

is the total density, and θ determines the spin polarization,

S ≡ n↑ − n↓
n↑ + n↓

= cos θ. (2)

The mean-field energy per volume, εmf = Emf/V , is

εmf = −(
√

1 − S2� + Sδ)n

+ g0n2

2

[
(S − β )2 + g↑↑g↓↓ − g2

↑↓
4g2

0

]
. (3)

Clearly, the first term contributed from the single-particle
potentials favors spin polarization Ssp = γ , while the second
term from the interactions favors Sint = β. A “spin twist”
occurs when the two polarizations are mismatched, i.e., β 	=
γ . The overall mean-field polarization, as determined by
∂εmf/∂S = 0, is shown by the dashed line in Fig. 1(b), which
is density dependent and can change from γ to β as n in-
creases.

A remarkable effect of such a spin twist is to induce an
effective repulsion uniquely in the low-density limit. Here, we
define the effective interaction as

geff ≡ ∂2ε

∂n2
, (4)

where ε is the energy density after optimizing S. In the
absence of spin twist, the two terms in Eq. (3) both favor
S = β = γ , leading to g(0)

eff,mf = (g↑↑g↓↓ − g2
↑↓)/(4g0). This

is the conventional case of binary bosons, whose mean-field
stability is given by g↑↑g↓↓ > g2

↑↓ for any density. However,
it is no longer true when a spin twist occurs (β 	= γ ). In this
case, the single-particle and interaction terms compete with
each other and the resulting S and geff,mf are generally n de-
pendent. In the low-n limit, the single-particle terms dominate,
which results in S ∼ γ and

geff,mf = g(0)
eff,mf + g0(γ − β )2. (5)

Here, the spin twist leads to an additional repulsion ∼g0(γ −
β )2 at the mean-field level. Its physical origin can be un-
derstood as follows: Since the interactions favor S ∼ β as
the ground state, here S ∼ γ corresponds to an excited spin
orientation in the interaction channel, which naturally gener-
ates an effective repulsion as above. Note that such repulsion
only works for low densities but not high ones, where the
interactions dominate and recover S ∼ β and geff,mf ∼ g(0)

eff,mf .
Beyond the mean-field treatment, we have further carried

out the Bogoliubov analysis and extracted the Lee-Huang-
Yang (LHY) energy εLHY from quantum fluctuations [32]. In
Fig. 1(c), we plot out the typical n-dependent geff obtained
from the total ε = εmf + εLHY, as well as its individual contri-
butions from the mean-field and LHY parts. As expected, the
mean-field contribution geff,mf is positive only in the low-n
limit, and gradually reduces to a negative value as n increases.
The reduction is exactly given by ∼g0(γ − β )2 due to the spin
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FIG. 2. Ground-state phase diagram in the (α, γ ) plane with
fixed β = 0.141, η = 0.0157. Here, I–IV respectively denote the
region where the ground state is a pure droplet, a droplet with a
metastable gas, a gas with a metastable droplet, and a pure gas. The
liquid-gas transition occurs at the II-III boundary. The inset shows
typical ε/n(n) curves for different regions, as marked by i–iv in the
main plot. For each curve ε/n is shifted by a single-particle energy
(−√

�2 + δ2). We scale n and ε/n respectively by �/g0 and �.

twist [Eq. (5)]. In comparison, the LHY contribution geff,LHY

is always positive and continuously grows with n. The total
geff then displays an intriguing sign change as n increases: It
turns from positive to negative, and back to positive again at
large n. Consequently, the energy per particle ε/n as a function
of n displays double minima [see Fig. 1(d)]. Here, the second
minimum at finite n is a self-bound droplet with zero pressure
that is mainly balanced by a mean-field attraction and LHY
repulsion, sharing the same spirit as an ordinary case [22],
while the first minimum at n = 0 stands for a gas stabilized
by a unique low-n repulsion under a spin twist [cf. Eq. (5)].
Such a double-minima structure implies a first-order transition
between liquid and gas as well as their coexistence under
proper conditions. We have checked that a similar structure
cannot appear without a spin twist [32].

From the dressed basis perspective, the gas with n ∼ 0
and S ∼ γ essentially occupies the lowest dressed branch as
explored in experiments [28–30], while for the liquid phase
at finite n, whose polarization can be far from γ , the single
dressed branch is generally not a good description due to the
considerable population at the higher branch.

Ground-state phase diagram. The ground state (gas or
self-bound droplet) is given by the global minimum in the
ε/n(n) curve, which is associated with the lowest chemical
potential μ = ∂ε/∂n = ε/n. In Fig. 2, we present the ground-
state phase diagram in the (α, γ ) plane for a given set of β, η.
Four phases are shown, i.e., a pure droplet (I), a droplet with
a metastable gas (II), a gas with a metastable droplet (III),
and a pure gas (IV). Typical ε/n(n) landscapes for differ-
ent regions are given in the inset plot. The double-minima
structure appears in regions II and III, and the liquid-gas
transition occurs at the II-III boundary when they have the
same ε/n = μ = −√

�2 + δ2, i.e., the single-particle shift.
We would like to remark on a crucial difference between

the liquid-gas transition here and those observed previously
in binary bosons [17–21]. In previous cases, the transition is
driven by the gradually dominant quantum pressure as com-
pared to interaction terms when the boson number N decays,
and therefore it occurs for finite-size systems when N reaches

FIG. 3. Liquid-gas coexistence(LGC) tuned by γ at fixed α =
−0.11, β = 0.141, η = 0.0157. (a) Pressure P as a function of
1/n for different γ = 0.465(= γ0), 0.6, 0.683(= γc ) (from bottom
to top). (b) Shifted chemical potential μ ≡ μ + √

�2 + δ2 as a
function of n for different γ as in (a). The intersections between
these curves and horizontal lines in (a) and (b) give the equilib-
rium densities of liquid (nL , squares) and gas (nG, circles), which
are connected by binodal lines (dashed). For each curve in (a), the
two shadow regions have the same area following the Maxwell’s
construction. (c) Phase diagram of liquid, gas, and vacuum in the
(γ , μ) plane. LGC occurs along the black line for γ ∈ (γ0, γc ). At
γ < γ0, only a self-bound droplet (liquid) is present if μ is above
the dashed line. At γ > γc, the liquid and gas are indistinguishable.
(d) Profiles of total density (n) and spin polarization (S) for bosons
in an isotropic harmonic trap with frequency ω = (2π )50 Hz, total
number N = 4 × 105, and γ = 0.6, corresponding to the vertical
trajectory shown in (c). The sharp jumps of n and S mark the location
of LGC. For all plots, we scale the density and energy per particle
respectively by �/g0 and �.

a critical value. However, in our case the transition occurs in
the thermodynamic limit (N,V → ∞ with n = N/V ) and is
driven by the competition between single-particle and inter-
action potentials. Therefore, the current case allows a highly
tunable transition point for an arbitrarily large system, and
moreover, allows for the exploration of liquid-gas coexistence
in a considerably broad parameter regime, as shown below.

Liquid-gas coexistence. We now analyze the properties of
bosons confined in a harmonic trap. We consider a realis-
tic system of 39K atoms with hyperfine states |F = 1, mF =
−1〉 ≡ | ↑〉, |F = 1, mF = 0〉 ≡ | ↓〉, as well studied in ultra-
cold droplet experiments [17–19]. In this system, a↑↑ = 35a0,
a↑↓ = −53a0 (a0 is the Bohr radius), and a↓↓ is highly tunable
by magnetic field. For a concrete demonstration, here we take
a↓↓ = 64a0, � = (2π )3.5 kHz (thus α, β, η are all fixed), and
only focus on the coexistence region tuned by δ (or γ ).

The coexistence of liquid and gas requires

μ(nL ) = μ(nG), P(nL ) = P(nG), (6)

where nL (nG) is the liquid (gas) density at equilibrium, μ

is the chemical potential, and P = μn − ε is the pressure. In
Figs. 3(a) and 3(b), we plot out P(1/n) and μ(n) for several
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typical γ . We can see that P(1/n) shows a similar line shape
as classical P-V isotherms hosting LGTC [7,8]. Here, we
have used the Maxwell’s construction to identify nL and nG,
as marked respectively by squares and circles in Fig. 3(a).
Specifically, nL (nG) is given by the left (right) intersection
between each P(1/n) curve and a horizontal line, by requiring
the same area of two separated shadow regions. The relation∫

dμ = ∫
1/ndP then guarantees the same μ at the intersec-

tions [see also Fig. 3(b)], which will be denoted as μLGC from
now on.

Figures 3(a) and 3(b) also indicate a finite parameter
window, γ ∈ (γ0, γc), for the occurrence of liquid-gas coex-
istence. At the lower bound γ0, a gas phase starts to emerge at
nG = 0 and the two phases have μ = −√

�2 + δ2 and P = 0.
This is right at the ground-state transition between the liquid
and gas, i.e., at the II-III boundary shown in Fig. 2. As increas-
ing γ , the coexisting phases have higher μ, P and meanwhile
nG and nL get closer. Finally, the coexistence terminates at the
critical point γc when nL, nG merge into a single value (nc)
at the inflections of μ(n) and P(1/n) curves. For even larger
γ > γc, the gas and liquid become indistinguishable.

Figure 3(c) further summarizes the results in the (γ , μ)
plane, where μLGC (solid line) separates the liquid and gas
for γ ∈ (γ0, γc). To observe their coexistence, we suggest
measuring the density profiles of bosons under an external
trap, and here for brevity we consider an isotropic harmonic
trap V (r) = mω2r2/2. Using the local density approximation
μ(r) = μ(0) − V (r), in Fig. 3(d) we plot out the typical
profiles of n and S in the trap showing the liquid-gas phase
separation, where the liquid and gas respectively occupy the
trap center and edge. At their interface n (S) displays a sharp
jump from nL to nG (SL to SG), marking the location of liquid-
gas coexistence with μ = μLGC. Note that nL,G and SL,G do
not depend on a specific boson number N , as long as it is
above a critical value [32].

Interestingly, the liquid and gas obey a universal critical
scaling near the melting of LGTC. Here, we explore the
asymptotic behavior of their relative and mean densities near
γ ∼ γc and nL ∼ nG ∼ nc,

nL − nG

nc
∝ (γc − γ )λ,

nL + nG

2nc
− 1 ∝ (γc − γ )ξ , (7)

with λ, ξ the corresponding critical exponents. In Figs. 4(a)
and 4(b), we have numerically extracted the exponents as
λ = 1/2 and ξ = 1 for all given α. These exponents also uni-
versally persist for other tunable parameters, such as changing
γ to α [32]. To explain such a universal phenomenon, we have
adopted a mean-field theory as in the classical treatment of
the finite-T liquid-gas transition [1], which well predicts the
universal critical exponents as above [32].

Here, we clarify that the liquid-gas coexistence here should
be distinguished from the equilibrium of a droplet and a fully
polarized gas in previous studies [33–36], where �, δ are

FIG. 4. Universal critical scaling for the (a) relative and (b) aver-
aged densities of liquid and gas at their coexistence. β, η are the same
as in Fig. 3. Discrete points show numerical data and dashed lines
show linear fittings. Here, we take a ln - ln plot, and the slopes for all
fitting lines in (a) are 1/2 and in (b) are 1, giving the corresponding
exponents λ and ξ defined in Eq. (7).

both absent. The latter is due to a preset spin population that
deviates from the one preferred by the droplet, and therefore
the residue (single-species) bosons are repelled out of the
droplet to form a gas. In contrast, the coexistence here is as-
sociated with a first-order liquid-gas transition (Fig. 1), where
the spin population is changeable and both species can transfer
freely between two phases to reach mutual equilibration.

Summary. We have revealed a mechanism using spin twist
to engineer liquid-gas transition and coexistence (LGTC) in
ground-state bosons, which does not rely on a thermal effect
or long-range potential. The scheme is demonstrated with a
specific model of binary bosons under Rabi coupling and
magnetic detuning. Taking the realistic 39K atoms for exam-
ple, in practice one can follow the strategy in Refs. [28–30]
to prepare a gas at the ground state, from which a liquid
(droplet) can be approached by changing γ or α follow-
ing Fig. 2. The LGTC naturally occurs during this process,
and the proposed phase separation in a trap and the univer-
sal scaling of equilibrium densities can be readily tested in
experiments.

Finally, we remark that the spin twist in creating an effec-
tive low-density repulsion for gas stabilization is a very robust
mechanism, which can be applied to a wide class of quantum
systems with competing single-particle and interaction orders.
For instance, it is expected to still work when adding more
spin degrees of freedom, or changing �, δ to other single-
particle potentials in altering spins. In this regard, the spin
twist can serve as a general principle for achieving LGTC
at ultralow temperatures, which hopefully would promote the
practical use of such phenomena in a fascinating quantum
world in the future.
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