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Decoherence-assisted quantum driving
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We address the problem of optimal quantum state preparation. We propose a protocol based on a stroboscopic
driving of the system in its parameter space combined with repeated measurementlike interactions with an
external spectator system. In the limit of infinite-rate interactions, the protocol naturally yields unit fidelity
due to the quantum Zeno effect. For realistic finite-rate interactions we show that the fidelity is maximized if
the discretized driving trajectory has a minimal geometric length and keeps a constant speed with respect to
the Provost-Vallee metric in the parameter space. We numerically test the protocol in an interacting multiqubit
system, demonstrating its possible dominance over the coherent driving. Our results can be used in various

quantum information applications.
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I. INTRODUCTION

A possible way to build a quantum computer relies on the
idea of adiabatic quantum computation [1,2]. It is formulated
for an isolated many-body system with a discrete energy
spectrum depending on a set of controllable parameters A
(external fields or internal coupling strengths). The aim is
to prepare the ground state at A = Ap, where the system
exhibits complex correlations between individual constituents
(these will be exploited in a particular quantum algorithm).
The adiabatic theorem of quantum mechanics [3] ensures that
for a very slow variation of parameters the system remains in
the instantaneous energy eigenstate. So the desired final state
can be obtained by initiating the system in the ground state
at A = A, where the correlations are not present, and then
slowly changing the parameters along a certain path in the
parameter space to the final point Ag. The overall duration
T of the driving procedure must be sufficiently long to avoid
unwanted excitations of the system during the drive.

Since the adiabaticity-violating effects may be strong even
for rather slow driving [4-8], the requirement of high fidelity
of the driving procedure may set too stringent constraints
on its overall duration, preventing suitable scaling with the
size of the many-body system. This is particularly true if the
initial and final states are separated by a finite-size precur-
sor of a quantum phase transition (QPT) [9-12]. A method
that can potentially overcome this problem, the so-called
counterdiabatic driving, is based on adding some extra terms
into the driven Hamiltonian to compensate nonadiabatic ef-
fects [13—-16]. If the energy costs connected with action of
the additional terms are ignored, this strategy can in principle
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work for any preselected driving time 7. However, realistic
energy restrictions imply lower bounds on time. Research of
general time constraints in preparation of selected quantum
states and their interplay with energy relations characterizing
the system constitutes a quickly expanding field of quantum
speed limits [17-20].

In this Letter, we propose another strategy to keep the
fidelity of the driving procedure close to unity. Our method
combines sudden jumps along a selected trajectory in the pa-
rameter space with periodically performed measurementlike
interactions with an external spectator system, which repeat-
edly diagonalize the density matrix of the controlled system in
the running Hamiltonian eigenbasis. This approach is closely
related to the measurement-based techniques of quantum con-
trol [21-26]. It is known that, in analogy to the quantum Zeno
effect [27,28], the final-state fidelity tends to unity if the inter-
action rate grows to infinity, and even imperfect realizations
of the procedure with finite-rate interactions can provide a
significant improvement of fidelity.

A crucial question related to these finite-rate realizations
is which path in the parameter space and which set of in-
teraction points yield the best performance. The purpose of
this Letter is to demonstrate—on general grounds as well as
using a particular model example—that the answer to this
question follows from the geometric description of parameter-
dependent quantum systems in terms of the formalism of
curved spaces [19,29-33].

II. DECOHERENCE-ASSISTED DRIVING PROTOCOL

We assume a general Hamiltonian H(A) depending on a
D-dimensional set of parameters A = A*, u=1,2,...,D,
with normalized eigenvectors |E;(A)) assigned to discrete
nondegenerate energy levels E;(A). The index i =0, 1,2, ...
increases with energy, so i = 0 corresponds to the ground
state, i = 1 to the first excited state, etc. The system is driven
along a path p= {A(¢)}]_, in the parameter space satisfying
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A(0) = A; and A(T) = Ag. The dependence A(r) deter-
mines the shape of the trajectory as well as the course of the
motion along it.

We first introduce the case of coherent driving, when
the system is isolated and remains in a pure state
|[Y(¢)) determined by the Schrodinger equation with a
time-dependent Hamiltonian A (A(r)). Using an expansion
Y (1)) =Y, i(t)|E;(A(1))), where ;(t) are normalized am-
plitudes, we express matrix elements of the density operator
0N (t) = | (1)) (¥ ()| of the coherent evolution in the instan-
taneous Hamiltonian eigenbasis:

o5 (1) = (E(AM)I0" (1) E;j (A1) = ai()ef(1). (1)

We suppose that the system is initiated in the ground state
|Eo(Ay)) and that the purpose of our driving procedure is to
prepare the ground state |Eg(Ag)). The fidelity of the instan-
taneous ground state at any intermediate time ¢ € [0, T'] reads
Feoh(r) = Qggh(t). The adjunct Z = 1 — F of fidelity F will
be called infidelity.

Density matrix (1) is generically nondiagonal due to coher-
ence of the isolated system evolution. Below we assume that
the coherence is destroyed by measurementlike interactions
that repeatedly erase off-diagonal elements of the density ma-
trix in the running Hamiltonian eigenbasis. So we consider an
alternative evolution

0ij(t) = pi(t)i;, ()

where p;(¢) are normalized occupation probabilities that gen-
erally differ from ,Qfl-"h (t) of the coherent evolution. The
instantaneous fidelity (infidelity) is given by

F(t) = 0oo(t) = po(t) = 1 = Z(1). 3)

The decoherence process can be realized either via a re-
peated quantum measurement on the driven system, or via
its specific interaction with an external spectator system. The
first option assumes a collapse of the state vector in the local
Hamiltonian eigenbasis, which at each measurement instant #;
leads to a nonunitary transition

Y a@lEAD) > Y P EAONEMAD] @)

from a pure state (left) to a mixed state (right). Here, a; de-
note normalized amplitudes resulting from the evolution after
the previous measurement, Ay = A(#;), and At represents a
timescale of the measurement procedure. The second realiza-
tion of the decoherence process counts on interaction with an
external spectator system which induces a unitary evolution

[ZaAE,-(Ak»] ®15) > Y ailEAD) ® 1) (5)

from a factorized state, where |S) stands for an initial state of
the spectator, to an entangled state involving spectator states
|S;) that satisfy the orthogonality relation (S;|S;) = §;;. The
partial density operator of the driven system extracted from
the right-hand side of Eq. (5) coincides with that in Eq. (4),
so both methods are equivalent. A sketch of the decohering
procedure for a two-level system is shown in Fig. 1.

In the following, the decoherence-assisted driving protocol
is implemented as a discontinuous procedure which consists

I\ A(t) Ag

FIG. 1. A sketch of the decoherence-assisted driving for a
two-level system. The driven system I with parameter-dependent
eigenvectors |E;(A)), i =0, 1 is repeatedly coupled to a spectator
spin—% system II initialized at times t = #, with k =1,2,...,K in
the “up” state |1). An interaction in the interval ¢ € (#, t; + At)
generates an entangled state of the whole system such that the
eigenstate |Ey(A(#))) is coupled to | <) and |E|(A(%))) to |—),
where the arrows denote spin states with the respective orientations
satisfying («— | —) = 0. The resulting full decoherence of system I
is equivalent to an ideal quantum measurement in the basis |E;(A)).
The procedure can be realized with K different spins employed
consecutively at each coupling event, or with a single spin which

is externally reset at each #; to the initial state | 1).

of a sequence of small quenches—sudden jumps between dis-
crete parameter points that form a finite sample of the selected
path g The total driving time T is split into K equal inter-
vals At = T/K and at each time t; = kAt, k=0,1,...,K
the parameters are abruptly switched from A to Agy;. This
stroboscopic procedure can nevertheless be treated as a quasi-
continuous driving since the number K is assumed to be very
large, so the discretization of the path gis rather fine grained.

The waiting time At at each parameter point A; with
k > 0 is set to a time T needed for the transition (5) to the
fully decohered density matrix. This time is determined by
the system-spectator interaction (an example will be discussed
below) and we assume that it is independent of A. Since the
condition At = 7 should be satisfied sharply, the total driving
timeis T = K.

III. THE OPTIMAL PATH

Due to the measurementlike interactions, the above stro-
boscopic driving procedure can be described as a classical
Markovian probabilistic process. The population probability
for the ith Hamiltonian eigenstate after the kth quench reads

pilt) =Y Bir(te—1)pi (ti),

Bir (1) = KE(ADIEs (Ar-1) %, (6)

where p;(f;—1) are population probabilities in the previous
step and B;y(t;_) are branching ratios for 7/ — i transitions
in the kth quench. At any fixed time we have ) . By =1
and ), B;y = 1. Equation (6) enables us to determine all
probabilities p;(#;) with k > 0 recursively from the values
pi(ty) at the initial time. In our case, the initial condition reads
pi(to) = 0.
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We will calculate the ground-state fidelity F(¢) in the run-
ning discrete time. If the ground state is populated at t = #;
and if the length [ZM((SkA“)Z]l/ 2 of the subsequent quench
Ay — Ay with §A* = A} — AJ is small enough, the
transition to the neighboring ground state dominates over
those to excited states. The corresponding branching ratio is

Boo(tx) =1 — ZBiO(tk) =1-48¢;,

i>0

S ARS8 AT, (T)

562 ~ re (ol IE (B 1Eo)

P |Ei — Eol?
where the second line with 8MI-7 (A) = %Ifl (A) follows from
the elementary perturbation theory (all quantities are implic-
itly taken at A = A;). Here and below we use the summation
convention for indices p and v. For the protocols that consist
of a large number of short quenches the final fidelity can be
approximated by

K—1 K—1
F(Ty~ [ Boott) ~ [ ] (1—5¢7). (8)
k=0 k=0

Indeed, for 8¢, ~ O(K~") [see the second line of Eq. (7)],
the deviation of F(T) from unity is of order O(K~"), while a
summed contribution of all transition sequences not included
in Eq. (8) is of order O(K~?2).

We intend to maximize the final fidelity F(7T") over the
set of all paths g with fixed A; and Ap and their arbitrary
discretizations {Ak}fzo. The solution of this problem can be
found with the aid of the geometric description of parameter-
dependent quantum systems in terms of the Provost-Vallee
metric. It is defined by

A€ = gu(A)dA"dA" =1~ [(Eo(A +dA)|Eg(A))I,

©)
where g,,(A) is a metric tensor in the space of A induced
by the changing structure of ground state (the metric is in-
dependent of local gauge transformations). We see that the
element of distance d¢ in Eq. (9) is an infinitesimal form of
quantities §¢; in Eq. (7). Therefore, all sequences {8¢;}f_,
assigned to different discretizations of the same trajectory
in the parameter space sum up to a roughly constant value
approximating the length of the trajectory

T
€p=/ dt\) g (A()A"AY, (10
0

where dots denote time derivatives.

According to Eq. (8), the fidelity resulting from partition-
ing of the length £, by any sequence {Mk}f:l is for large
enough K given by F(T) ~ 1 — Y, §¢7. Maximal fidelity is
achieved for an equidistant sequence, when the length interval
passed in each step is the same, 8¢, = £,/K ~ (D , 84x)/K.
This means that individual quenches should be chosen so that
the quasicontinuous stroboscopic motion along the selected
path keeps a constant speed v = (g,,, A A)'/? on the ground-
state manifold equal to £,/T . This is the first condition for an
optimal driving procedure.

The second condition is now very easy to derive. Applying
Eq. (8) to the equidistant sequence, we obtain

ez R
e ©
=% 5" & (v

where K = T' /7. The last term with R > O represents the un-
evaluated contribution from sequences connecting the initial
and final ground states via intermediate excited states. We
see that for large K the optimal driving follows the path with
minimal length £, i.e., the geodesic connecting the initial and
final parameter points.

We stress that for K — oo the fidelity F(7') limits to
unity for any decoherence-assisted driving procedure. This is
a direct consequence of the quantum Zeno effect, in which
quantum measurements performed with infinite rate freeze
the system in a motionless state [27,28]. For a fixed time T
and length £, this is achieved if the decoherence time 7 drops
to zero. The above-derived optimization conditions apply in
realistic situations with large but finite values of K.

IV. DECOHERING PROCEDURE FOR A SINGLE QUBIT

Let us discuss a possible implementation of the decoher-
ence process (5) in a driven single-qubit system, whose sketch
was presented in Fig. 1. In the two-level case the spectator
system at each time instant ¢ = #;, can also be just a two-
level system (an ancilla qubit), and we assume that it is a
single spin—% particle. Denoting the spectator spin up and spin
down states as | 1) and || ), and the qubit energy eigenstates
|Eo(A(t;))) and |E; (A(#))) as |0) and |1), we span the Hilbert
space of the coupled system by basis vectors [0) ® | 1), |0) ®
[4),11) ® | 1), and |0) ® | ). In both qubit and spectator parts
of the product space we introduce Pauli matrices (6, 6y, 6-)
so that the ((1)), ((1)) basis states are associated with |1), |0) and
[ 1), |{). In all formulas, the components associated with the
qubit and spectator appear on the first and second position,
respectively.

If the coupled system after the kth quench starts from a
separated initial state | (#;)) = (ap|0) + a1]1)) ® | 1), where
ap and a; are arbitrary coefficients, the full decoher-
ence from Eq. (5) is achieved if the state after time t
evolves to the entangled state written, e.g., in the follow-
ing form: |V(# + 7)) = apl0) ® | <) + a;|1) ® | ). Here,
<) = (1) —iliN/V2 and |—) = (1) +i[1)/V2 de-
note mutually orthogonal spin states obtained by the rotation
of | 1) around the x axis by angle £ /2. The corresponding
evolution operator can be written as

U@t = 10)(0] @ e % 4+ |1)(1] @ o, (12)

where ' =t — t;, hence the Hamiltonian of the system-
spectator interaction reads

a wh .
int = ——— 0; & 0y (13)
47

We stress that the fully decohered qubit state is only
transient—it appears at time ¢ = 7 and then 37, 57, .. ..

As follows from Eq. (13), any speed-up of the driving
protocol, which requires a shortening of the decoherence time
7, can be achieved only through an increase of the strength
of the qubit-spectator interaction. Using the first-order term
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from formula (11), we obtain the proportionality relation
I(T) x Eéh/smt, where Sinc = fOT dt (W(t)|Hp |W(2)) is the
overall action of the interaction Hamiltonian in the evolving
state |W(z)) of the coupled system. In this context it shall
be noted that the overall strength of the driving Hamiltonian
H(A(1)) plays no role here as it affects only the afterquench
evolution of phase factors at the qubit states |0), |1) and not
the process of their entanglement with the ancilla qubit.

V. TEST IN A MULTIQUBIT SYSTEM

We verify the efficiency of the decoherence-assisted state
preparation method in a fully connected system of N qubits.
Its Hilbert space is spanned by a factorized basis {Q"_, [/}
with [ € {1, 0}. In the ith qubit space we introduce Pauli ma-
trices (67, 6;”, 6 written in basis states [1?), |0©)) and we
also define an operator ¢ = (6{" + 1)/2. The Hamiltonian
reads as

A r+20° VX s X s
e 4 +2,-: 27 o) TN

1 o L o
_ m [)L ax(l)ﬁjgﬁ + X(ax(l)lg(J) + IQ(U&X(J))
i#j
+X2’2(i)’2(j)]» (14)

where € is a constant which sets the energy units, while
A € (—00, +00) and x € [0, 0c0) are two dimensionless con-
trol parameters (=A). This model was used in our previous
study of coherent driving [34].

Hamiltonian (14) contains one-body terms (the sum in the
first line) and two-body interactions acting equally between
all pairs of qubits (the second line). It can be rewritten in
terms of collective quasispin operators J, = %Zl 69, with
o = x,y, z which casts the model as a specific version of the
Lipkin model [35]. Subspaces of the entire 2"-dimensional
Hilbert space with different permutation symmetries related
to the exchange of qubits are invariant under the evolution, so
we select for our analysis the (N + 1)-dimensional fully sym-
metric subspace associated with the maximal value j = N/2
of the total quasispin quantum number.

The model in its infinite-size limit has an interesting phase
structure. As the number of qubits N increases, the two-body
terms in Eq. (14) with O(N -1 prefactors and one-body terms
with O(1) prefactors give comparable O(N) contributions to
the total energy, whereas the one-body terms with O(N~")
prefactors fade away. In the limit N — oo, the ground state
shows two basic forms characterized by expectation values
of the operators J. and fz a factorized form with (fx) =0,
(L) = —j, so all qubits are strictly in state |0), and an en-
tangled form with (J,) > 0, (J.) > —j, so each qubit allows
for both |0) and |1) measurement outcomes. In the half plane
(A, x), these ground-state phases are separated by a critical
curve of the first-order QPT which ends at x = 0 with point of
the second-order QPT. Note that a mirror symmetric structure
would appear in the x < 0 half plane with inverted values of
(Ja)-

We test the above state-preparation method for sev-
eral driving paths connecting the initial parameter point
A1 = (A1, x1) = (0, 0), located in the factorized ground-state

0.8

\/2\2 oA
0.
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0 0.5 1 1.5 A 2

FIG. 2. Parameter plane of Lipkin Hamiltonian (14) with N = 10
and (a) the geodesic and (b) linear paths between the initial and
final points. The variable speed in the plane that ensures a constant
speed on the ground-state manifold is expressed by the color scale
(the indicated values correspond to 7 = 1). The gray background
encodes the size of the energy gap between the ground state and first
excited state (darker shades indicate smaller gaps) and the dashed
curve represents the QPT separatrix in the limit N — oo.

phase, with the point Ag = (Ag, xr) = (2, 0.5) in the entan-
gled phase. We consider three types of driving: (a) the one
along the geodesic trajectory with a constant speed v on the
ground-state manifold, (b) the driving along a linear trajec-
tory, again with a constant speed v on the manifold, and (c)
the driving along a linear trajectory with a constant speed
u = (A2 + x>)Y/2 in the parameter plane. Paths (a) and (b) are
shown in Fig. 2 with the corresponding variable speed u, and
path (c) coincides with (b) but has u = const. All paths cross
the first-order QPT separatrix (the dashed curve) as well as its
finite-size realization, where the energy gap (encoded in the
shades of gray) between the ground state and the first excited
state exponentially decreases with N.

The infidelity obtained in decoherence-assisted driving
protocols for the above paths (a)-(c) discretized to K finite
steps is presented in Fig. 3. Exact values of Z(T") calculated

100 _: 0.5 - .
I TR A N .
107" E 0.2 42" order * a\"'\m
1 (a) _ r‘“u,‘
102 4 N ML M
] N 10 - 20 30
103 _ 18t order
= (a) —
1044 © (b) -~
1+ (©
10_5 bR | L | L | R | L |
10 100 1000 10000 100000

K

FIG. 3. Infidelity Z(T") of decoherence-assisted driving protocols
in the N = 10 Lipkin model as a function of the number of steps K
for the driving paths (a)—(c) described in the text (cf. Fig. 2). Dots
represent exact values of infidelity, lines assigned to paths (a) and
(b) show the approximation by formula (11) including the first one
and two terms (see the main panel and inset, respectively).
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FIG. 4. Comparison of coherent and decoherence-assisted driv-
ings along the above-described paths (a)-(c) in N = 10 Lipkin
model, Eq. (14). Upper panel: The final infidelity Z(7') as a function
of time T for coherent driving. Lower panel: The minimal number
of steps K for decoherence-assisted protocols to get a lower final
infidelity than in the coherent driving for the given path and value of
T. The inset shows the corresponding value of the decoherence time
T = T /K. All times are expressed in units of 7i/e€.

100

numerically are represented by dots of various shapes, while
the approximations by Eq. (11) for paths (a) and (b) are
depicted by smooth lines [for path (c) that approximation is
not valid]. We see a nice agreement of the ocK~! term with
exact results for K > 50, while the inclusion of the first K -2
term makes formula (11) applicable down to much lower
values of K (see the inset). The second K ~? term, which is
due to transition sequences not included in Eq. (8), reduces
the value of Z(T') for low K only in a moderate way. The
figure demonstrates dominance of the geodesic driving path
(a) over the nongeodesic ones, as well as a clear advantage of
the linear path (b) with v = const over the linear path (c) with
u = const. This all supports the theoretical analysis presented
above.

How can we compare these results to the performance of
a fully coherent driving of an isolated system? The upper
panel of Fig. 4 shows the infidelity obtained in the coherent
driving along the above three paths (a)—(c) as a function of

the total driving time 7. All curves exhibit a crossover from
the exponential Landau-Zener regime [36], valid at smaller
values of T, to the asymptotic-T regime characterized by the
algebraic dependence Z(T') o« T2 [8]. Note that the observed
oscillations of Z(T') are physical. Features of these dependen-
cies are discussed in Ref. [34] along with the fact that the
geodesic driving (a) is not generally optimal (here we observe
its preference only in the asymptotic-T regime).

We know that in all decoherence-assisted driving protocols,
the final infidelity for any total time 7 converges to unity if
the decoherence time t = T'/K decreases to zero. The lower
panel of Fig. 4 depicts the minimal number of steps K for
which the decoherence-assisted protocol along the respective
path (a), (b), or (c) yields a better result (a lower final in-
fidelity) than the coherent driving (the corresponding values
of T are shown in the inset). From a practical viewpoint, the
most important time domain is the one in which the coherent
driving is still in the Landau-Zener regime. In this case, the
performance of the state-preparation procedure can be consid-
erably improved by using decoherence-assisted protocols with
relatively small numbers of steps (K roughly from 10 to 1000),
while an alternative improvement via increasing the strength
of the Hamiltonian in coherent driving would be much less
effective.

VI. CONCLUSIONS

We propose an alternative type of state preparation driv-
ing protocol based on repeated measurementlike interactions
with an external system that steadily destroy coherence of the
driven system in the running Hamiltonian eigenbasis. In anal-
ogy to the quantum Zeno effect, the final fidelity converges to
unity in the limit of infinite-rate interactions. However, even
with finite-rate interactions, these protocols can provide much
better results than the corresponding coherent protocols. Our
analysis shows that the design of an optimal decoherence-
assisted protocol relies on the geometric approach to quantum
systems in terms of the Provost-Vallee metric. In particu-
lar, the highest fidelity is obtained if the discretized driving
procedure in the parameter space follows the geodesic path
with a constant speed on the ground-state manifold. This is in
contrast to the coherent case for which geodesic driving does
not play any exceptional role. We believe that these findings
will have practical applications in quantum information tech-
nologies.
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