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Hongting Song ,1,2,* Areeya Chantasri ,3,1,† Behnam Tonekaboni ,4,‡ and Howard M. Wiseman 1,§

1Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics,
Griffith University, Yuggera Country, Brisbane, Queensland 4111, Australia

2Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
3Optical and Quantum Physics Laboratory, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

4Centre for Quantum Dynamics, Griffith University, Yuggera Country, Brisbane, Queensland 4111, Australia

(Received 9 June 2022; revised 6 December 2022; accepted 7 February 2023; published 1 March 2023)

Spectator qubits (SQs) are a tool to mitigate noise in hard-to-access data qubits. The SQ, designed to be much
more sensitive to the noise, is measured frequently, and the accumulated results used rarely to correct the data
qubits. For the hardware-relevant example of dephasing from random telegraph noise, we introduce a Bayesian
method employing complex linear maps which leads to a plausibly optimal adaptive measurement and control
protocol. The suppression of the decoherence rate is quadratic in the SQ sensitivity, establishing that the SQ
paradigm works arbitrarily well in the right regime.
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Despite recent impressive advances towards large-scale
quantum computing [1,2], the challenge of suppressing noise
sufficiently to achieve scalable universal quantum computing
remains [3–6]. The best known approaches to noise mit-
igation are dynamical decoupling (DD), which works for
non-Markovian noise [7–14], and quantum encoding and error
correction (QEC), which works best for Markovian and local
noise [15–17]. In favorable regimes, both of these approaches
can suppress errors arbitrarily.

For data qubits that are very well isolated from their en-
vironment, it could be difficult to control them (as for DD)
or measure them (for QEC) rapidly. In this context, another
paradigm for error mitigation has recently been proposed
and demonstrated [18–20]: spectator qubits (SQs). The SQ
is located physically near the data qubits. It is a spectator
in two senses: it does not interact with the data qubits, but
it is a sensitive probe to the noise they experience. The idea is
that by measuring the SQ in a suitable way, the experimenter
can obtain information about the noise in real time and, by
applying suitable controls, cancel at least some of the effect
of that noise on the data qubits.

Previous work within the SQ paradigm has used rather
simple measurement and control strategies, and has not shown
that the SQ can, like DD and QEC, work arbitrarily well in
a suitable regime. In this Letter, we transform that situation.
We consider an experimentally relevant-type noise that effects
many qubits: dephasing caused by a random telegraph process
(RTP) [21–24]. We consider the regime where the flip rates,
γ↑, γ↓, of the RTP are large compared to κ , the data qubit’s
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sensitivity to the RTP, but small compared to the SQ’s sensi-
tivity, K :

T −1, κ � γ↑,↓ � K. (1)

Here T is the time at which the control is applied on the data
qubit. We introduce a principled method, based on Bayesian
maps, to construct a measurement and control algorithm that
is, we conjecture, optimal in this regime. Our algorithm sup-
presses the data qubit decoherence by an amount (i.e., a
divisor) scaling as (K/γ̄ )2, where γ̄ := (γ↑ + γ↓)/2, limited
only by the sensitivity of the SQ.

We tackle the problem from the perspective of quantum
estimation or decision theory [25,26]. The ultimate limits to
such problems are surprisingly subtle even with a single probe
qubit confined to a single plane [27–35]. In all of these, the
optimal sequence of single-qubit measurements is, in general,
adaptive; that is, the basis for later measurements must depend
on the results of earlier measurements [26,32,34]. The SQ
problem we consider here is more complicated than the above
examples [27–35] in three ways. First, it is dynamic: there
is a Hamiltonian affecting the qubit rotation that changes
stochastically (the RTP). Second, we allow a choice not just
in the time of application of the Hamiltonian before measure-
ment (as in [32]), but also in the measurement basis. Third,
the quantity to be estimated is not the current state of the
SQ, nor even the current state of the RTP (i.e., the current
Hamiltonian). Rather, it is the cumulative phase acquired by
the data qubit, proportional to the integral of the RTP up to
that time.

In this Letter, we show that, despite these complications, it
is possible, in the relevant regime (1), to derive a measurement
and control strategy using the SQ that is plausibly optimal.
That is, in the multiplicative factor by which the data qubit
decoherence rate is reduced,

H � (γ̄ /K )2, where H � ≈ 1.254, (2)
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FIG. 1. (a) Schema for the SQ protocol, showing dynamics of
(from top to bottom): RTP (orange); SQ (blue) which is reprepared
(triangle) after each measurement (purple semicircle and down-
ward arrows); measurement record (purple); and data qubit (pink).
Teal arrows from measurement record show feedback (upward for
adaptive measurements on the SQ and downward to the teal box
at t = T representing the final control on the data qubit). Small
Bloch spheres at left indicate the meaning of θ , �, and φ. (b) Plot
of data qubit decoherence (1 − C) vs t , with change to log scale
for 1 − C > 0.55×10−4. From top to bottom: no-control asymptotic
result, Eq. (6), dashed brown; exact no-control case, solid brown;
exact Greedy algorithm data points with fit (green). Parameters: κ =
0.2, γ↑ = γ↓ = 1, K = 20. (c) Bloch sphere showing how Greedy
chooses the measurement axis θn to align with the most likely SQ
state, |�〉s.

even the prefactor (H�) is as small as possible. Unsurprisingly,
we find that the optimized strategy is adaptive.

Finding the ultimate limit to a harder qubit-probe estima-
tion problem than has hitherto been considered serves as a
benchmark against which other techniques, such as machine
learning, can be compared. Having an optimal SQ protocol
solution could help to hone heuristic algorithms for even more
complicated problems.

The structure of this paper is as follows. First, we introduce
the physical system: the RTP, the data qubit, and the SQ (see
Fig. 1). Next we introduce the calculational tool of Bayesian
maps. Then we consider a greedy algorithm and, with insights
from that, construct the optimized algorithm that achieves (2),
and verify it numerically. We conclude with open problems.
More details in all sections are found in the companion paper
(CP) [36].

Charge noise and RTP. One of the main causes of decoher-
ence for solid-state qubits is the stochastic motion of particles
in traps in oxide layers or interfaces [21–24,37,38]. The sim-
plest model capturing the essential physics of such processes
is the RTP z(t ), which has a Lorentzian noise spectrum. The
RTP switches between two values: zt := z(t ) = ±1. Defining
Pt = (℘(zt = +1),℘(zt = −1))� as the vector of probabilities
at any given time, the master equation, and its steady state (ss)
distribution, are, respectively [39],

Ṗt =
(−γ↓ +γ↑

+γ↓ −γ↑

)
Pt and Pss = 1

2γ̄

(
γ↑
γ↓

)
, (3)

where γ̄ = (γ↑ + γ↓)/2 as before. For the calculations below,
we are also interested in the time-integrated noise,

X =
∫ t

0
z(s) ds, (4)

where we omit the t dependence when it is not needed. In
particular, we need to solve not just for ℘ (zt ) via Eq. (3), but
also for ℘ (X, zt ); see the CP [36].

Data qubit dephasing. We assume the data qubit decoher-
ence is caused by phase fluctuation. The coherence remaining
at any time can thus be calculated by taking the absolute value
of the average of the phasors:

C = |〈eiφ(	)〉	|, (5)

where φ is the data qubit’s phase and 	 is all the variables
on which φ depends. [We ignore the dependence on φ(0) by
taking that to be 0.] In this work we assume the RTP causes
the phase fluctuation via the data (d) qubit’s Hamiltonian
Ĥd = κ

2 σ̂ d
z z(t ). Thus 	 arises from the RTP plus any controls

applied to the data qubit.
In the absence of control, we simply have 	 = X and

φ(X ) = κ X , as the data qubit phase just accumulates. In
the CP [36], we give a closed-form expression for the no-
control (nc) coherence, and show that in the long-time limit
(t 	 γ̆ −1), the coherence decays exponentially:

d
dt C

nc = −�ncCnc, �nc = κ2γ̆ /2γ̄ 2. (6)

Here γ̆ := 2γ↑γ↓/(γ↑ + γ↓) is the harmonic mean of γ↑, γ↓.
Say that the quantum data are required at some time. If

we have additional information, Y , about X , at that time,
then we can increase the coherence C, by controlling the data
qubit conditioned on Y . Specifically, a unitary σ̂ d

z -rotation
can add a phase correction, c(Y ), to φ. This means that the
data qubit phase depends on two variables, 	 = (X,Y ), via
φ(X,Y ) = κX − c(Y ). Of course, these two variables are not
independent, as Y contains information about X . We show in
the CP [36] that the optimal choice for the control is

c(Y ) = argA|Y , where A|Y := 〈eiκX 〉X |Y . (7)

That is, whatever information Y exists, this choice of control
maximizes the coherence (5). Therefore, if the qubit is needed
at time T , the appropriate reward function for our problem is
Cc(T ), where [36]

Cc := |〈eiφ(X,Y )〉X,Y | =
∑

Y

℘(Y )|A|Y |, (8)

with ℘(Y ) being the probability of obtaining the information
Y . Thus |A|Y | can be interpreted as conditional coherence.

SQ for noise sensing. As motivated in the introduction, a
natural way to obtain Y is to use a SQ (s). This is similar to
the data qubit but with a Hamiltonian K

2 σ̂ s
z z(t ) making it more

sensitive to the noise than the data qubit (K 	 κ). It can be
frequently probed, as described by a projective measurement
of the observable 1 − |θ〉s〈θ |, yielding outcomes y ∈ {0, 1}.
Here |θ〉s is the equatorial state (|+1〉s

z + eiθ |−1〉s
z )/

√
2, with

σ̂ s
z |±1〉s

z = ±|±1〉s
z. The SQ is initially prepared in the equa-

torial state |0〉s, and immediately reset to this after each
measurement. Between measurements it remains in an equa-
torial state, |�〉s, with �̇(t ) = Kz(t ). See Fig. 1(a).
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Let us define {t1, t2, . . . , tN ≡ T } as the times for SQ
measurement and yn ∈ {0, 1} as the corresponding measure-
ment results. At any tn, the SQ phase accumulated during
the waiting time τn := tn − tn−1, between measurements, is
�(tn) = Kxn, where xn := X (tn) − X (tn−1) from Eq. (4). We
use Bayesian estimation and control based on the likelihood
function

℘(yn|θn, xn) = ∣∣yn − cos2
[

1
2 (θn − Kxn)

]∣∣, (9)

where θn is the equatorial measurement angle introduced
above at time tn. Now, given the record Yn := (y1, y2, . . . , yn),
with n � N , the problem is to optimize the choice for the next
waiting time τn+1 and measurement angle θn+1 to maximize
the reward function (8). (Note that when we condition on Yn

we implicitly condition on all the previous choices of dura-
tions and angles which are functions of the earlier parts of Yn.)
This optimization requires us to better understand Eq. (8).

Bayesian maps for phase estimation. We show in the
CP [36] that, from the dynamics of the RTP described in
Eqs. (3) and (4), and the likelihood function (9), we can apply
Bayes’ theorem to evaluate Eq. (8) at t = T as

Cc(T ) =
∑
YN

|℘(YN )A|YN | =
∑
YN

|I� AN |. (10)

Here I = (1, 1)�, while we define An for any n as

An = (
A+1

n , A−1
n

)�
, where Azn

n := ℘(Yn, zn)A|Yn,zn ,

and zn := z(tn). This can be efficiently calculated via

An = F(θn, τn, yn) · · · F(θ1, τ1, y1) A0, (11)

where each F(θ, τ, y) is a 2×2 complex matrix (one for each
measurement), which also depends upon κ , γ↑, γ↓, and K .
Here A0 = P0 encodes the initial or prior probabilities for z0,
which we take to be the unconditioned stationary probabil-
ities Pss of Eq. (3). The optimal final data qubit control in
Eq. (7) can thus also be easily computed in an experiment as
c(YN ) = arg(I� AN ). The full expression for F is lengthy and
is given in the CP [36].

Recall that the task is to choose τn+1 and θn+1 given Yn so
as to maximize Cc(T ). The significance of Eqs. (10) and (11)
is that the choice should depend only on An [36]. Although
An, a complex 2-vector, encodes four real parameters, it can
be shown [36] there are only two real sufficient statistics for
the adaptive measurement choice, which we now define and
explain.

If, hypothetically, we could find out zn, we could use that to
refine the control that we would (hypothetically, if tn were T )
apply to the data qubit, from cn(Yn) = argA|Yn to c′

n(Yn, zn) =
argA|Yn,zn . The difference between the two refined values,
c′

n(Yn,+1) − c′
n(Yn,−1), scaled to be typically O(1) [36], is

αn := K

κ
(argA|Yn,+1 − argA|Yn,−1) = K

κ
arg

Az=+1
n

Az=−1
n

. (12)

This α is the first of the two sufficient statistics.
Now, in the limit κ � K , not only are the arguments of

A|Yn,±1 very close, as per Eq. (12), but so are their mod-
uli, with |A|Yn,+1|/|A|Yn,−1| = 1 + O((κ/K )2) [36]. It follows,

with relative errors of the same magnitude, that |Azn
n | ≈

|A|Yn |℘(Yn, zn), and that

ζn := (∣∣Az=+1
n

∣∣ − ∣∣Az=−1
n

∣∣)/(∣∣Az=+1
n

∣∣ + ∣∣Az=−1
n

∣∣) (13)

is approximately the mean of zn conditioned on Yn. This ζ is
the second of the two sufficient statistics.

Greedy algorithm. The most obvious strategy, for choos-
ing τn+1 and θn+1, is a “greedy” one. Given Yn but before
yn+1 is obtained, “Greedy” (as we call it) at time t acts as
if T = t + dt (i.e., as if the protocol were about to end)
and maximizes the reward function at that time, Cc

|Yn
(t + dt ),

conditioned on the known information. This is explored in
detail in the CP [36]. We find that, in the regime of Eq. (1),
to an excellent approximation, Greedy chooses adaptively, as
follows:

θn+1 = sn�G(αn, |ζn|) where sn := sgn(ζn), (14)

τn+1 = |θn+1|/K. (15)

Here �G ≈ π/2, varying by only 2.5% as its arguments vary.
Since sn is the most likely value of zn, the choice θn+1 =
Kτn+1sn corresponds to measuring along the direction of the
most likely state |�〉s of the SQ [Fig. 1(c)], with y = 0 being
the most likely, or “null” result. Naively, one might expect
�G = π/2 to be optimal since, ignoring jumps during the
measurement interval, a duration of τ = π/(2K ) would map
the two RTP states (zn = ±1) to orthogonal states of the SQ
(� = ±π/2). However, while Greedy does greatly suppress
decoherence [Fig. 1(b)], we can achieve more by optimizing
�, as we now show.

Map-based Optimized Adaptive Algorithm for Asymptotic
Regime (MOAAAR). We use a map-based approach for our
optimization, in order to obtain analytical results in the
asymptotic regime (1). We make the ansätze (14) and (15)
for the adaptive algorithm, but replace �G by �, a con-
stant. Hence there are only four possible values of the map
F(θn, τn, yn) in Eq. (11). These are Fy

s (�) := F(s�,�/K, y),
with y ∈ {0, 1} and s = ±. To understand and thus optimize
our algorithm, we need to study the behavior of the parameters
(α, ζ ), which encode all our relevant knowledge.

The behavior is shown in Fig. 2(a), choosing � = 1.0
for illustrative purposes. Under the mapping (11), applied
stochastically with the actual statistics of Yn, we see that the
“system” (α, ζ ) spends almost all of the time close to just two
points. These are the fixed points (stable eigenstates) E0

± of
the maps F0

±(�) with the null outcome (y = 0). Thus, if we
ignore the initial [t = O(1/γ̆ )] and final [T − t = O(1/γ̆ )]
transients, the dynamics of (α, ζ ) mirrors that of the RTP, with
transition rates γ↑, γ↓. This is an ergodic process with steady
state Pss in Eq. (3).

To maximize Eq. (10) for T 	 γ̆ −1, transients can be ig-
nored. Thus we seek a � that minimizes the decay of Cc(t )
in the ergodic regime. Consider first the relative change, δ, in
the conditional coherence, |A|Yn |. As the system state evolves
from a known An at time tn to an unknown one at time
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FIG. 2. Phase-space (ζ , α) portrait showing jumps induced by
measurement maps Fy

s for the constant-� adaptive scheme, with
� = 1.0 (a) and � = �� ≈ 1.50 (b). Dots are all possible points
after n = 10 measurements with color saturation showing relative
probability. Parameters are as in Fig. 1.

tn+1 = tn + τ , this is given by

δ(An) :=
⎡
⎣|A|Yn | −

∑
yn+1

℘(yn+1|Yn)
∣∣A|Yn+1

∣∣
⎤
⎦/

|A|Yn |

= 1 − |I�An|−1
∑

y

∣∣I� Fy
sn
(�) An

∣∣. (16)

From the above considerations of ergodicity, it can be
shown [36] that the decay rate �̄ of Cc can be evaluated as δ̄/τ ,
where the bar indicates the steady-state ensemble average.
That is, emphasizing the � dependence,

�̄(�) :=
∑
s=±

Pss(s)

∣∣I�E0
s

∣∣ − ∑
y

∣∣I� Fy
s (�) E0

s

∣∣
τ
∣∣I�E0

s

∣∣ . (17)

Finally, a lengthy calculation [36] reveals that in the
regime (1), �̄(�) → H�γ̆ κ2/(2K2), where H� equals

3�2 csc4 �− [2�(�− cot �) + 1]csc2�+ 1
3�2 − 1. (18)

This function is plotted in the inset of Fig. 3. Its minimum
is H� ≈ 1.254 at � = �� ≈ 1.50055. This optimization de-
fines our MOAAAR protocol, the one giving the minimum
decoherence rate of �̄(��) = H�γ̆ κ2/(2K2). Comparing with
the no-control case (6), gives the earlier quoted quadratic
decoherence suppression, Eq. (2).

We show the dynamics of phase space (α, ζ ) for � = �� in
Fig. 2(b). As expected, the system spends almost all its time in
the two fixed points E0

±, until a nonnull result (y = 1) causes
a jump to F1

±E0
±. But, unlike in Fig. 2(a) (� = 1.0), at the

next measurement the system almost always jumps practically
the whole way back to a fixed point E0

∓ (the opposite one
whence it started). Thus the entire evolution is, for all practical
purposes, confined to four points, E0

± and F1
±E0

±.

FIG. 3. Decoherence rate for Greedy (green dots) and MOAAAR
(maroon crosses) vs K , scaled so as to asymptote to O(1), with
κ = 0.2, γ↑ = γ↓ = 1. Data points are from slope-fitting to exact
numerical calculations of Eq. (8). Asymptotes (horizontal, dashed)
are from Eq. (18) (plotted in the inset), with � = π/2 (Greedy,
green long dashes) and � = �� (MOAAAR, maroon short dashes).
Curve (solid) for MOAAAR is a closed-form approximation in
the CP [36].

The fact that �� is significantly different from π/2 (as
chosen by Greedy almost all the time in the asymptotic
limit), highlights the nontriviality of MOAAAR. It also means
that to implement MOAAAR experimentally would require a
real-time feedback loop, albeit quite a simple one: one simply
switches the sign of θ whenever a nonnull result (y = 1) is ob-
tained. In Fig. 3 we confirm by exact numerics that MOAAAR
outperforms Greedy and that their decoherence rates, scaled
by 2K2/(γ̆ κ2), asymptote to H � and Hπ/2 ≈ 1.290, respec-
tively. In the CP [36] we provide further evidence supporting
the plausibility of the optimality of MOAAAR, by showing
numerically that it is also the optimal algorithm out of a
larger family of algorithms. Specifically, we optimize over
two parameters, � and τ , where τ is fixed but not constrained
by τ = �/K .

Discussion. For suppression of RTP phase noise, using
information obtained from a SQ, we have proposed a protocol
(MOAAAR)—an adaptive sequence of projective measure-
ments on the SQ, followed by a control on the data qubit at the
final time—which is plausibly optimal in the good parameter
regime. In this regime the suppression of the decoherence rate,
Eq. (2), is limited only by the SQ sensitivity. A conceptually
simpler but implementationally more complicated algorithm,
“Greedy,” performs slightly worse. In the CP [36] we perform
further comparisons of these two strategies.

This work establishes that, like the well-known noise-
mitigation strategies of DD and QEC, the SQ paradigm can
work arbitrarily well in a suitable regime. The approach we
use here can certainly be generalized for more complicated
noise processes, such as multiple RTPs or multilevel RTPs.
This, and other directions to study the applicability of SQs in
real-world situations, are discussed in the CP [36].
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