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Observing single particles beyond the Rindler horizon
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We show that Minkowski single-particle states localized beyond the horizon modify the Unruh thermal
distribution in an accelerated frame. This means that, contrary to classical predictions, accelerated observers
can reveal particles emitted beyond the horizon. The method we adopt is based on deriving the explicit Wigner
characteristic function for the complete description of the quantum field in the noninertial frame and can be
generalized to general states.
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In classical physics, an observer in an accelerated frame
cannot detect signals emitted beyond an event horizon. One
can argue if this is also true in quantum physics. Start-
ing from pioneering investigations [1,2], many authors have
studied how accelerated observers can register inertial vac-
uum states through thermal particle detection. Here, we
ask if inertial single-particle states localized beyond the
horizon can be revealed by monitoring variations of the
particle distribution from the thermal background. To an-
swer this question, we adopt quantum field theory in curved
space-time [3], developed in the last decades with ground-
breaking results as the Hawking [4] and the Unruh effect
[1,5,6].

In the Unruh effect, a thermal state replaces the vacuum
when the observer is accelerated, as an outcome of the fact that
quantum states are reference-frame dependent [5]. Beyond
the vacuum, various authors considered more general states
focusing on entangled systems (see Refs. [7–9] and references
therein). Indeed, entanglement is significant because of the
quantum correlation between two regions of space-time, de-
noted as the Rindler left and right wedge, and the need to trace
over one of the two wedges to predict observable quantities in
accelerate frames.

A way to describe the transition from Minkowski to
Rindler frames can be made using Wigner distributions [10].
Recently, Ben-Benjamin, Scully, and Unruh have reported
[10] the Wigner distribution for the Minkowski vacuum state
in the right wedge and the Minkowski number states in both
the right and the left wedges. However, to the best of our
knowledge, the explicit expression for Minkowski number
states in the right wedge, tracing out the left wedge, is still
missing.

In this Letter, we compute the characteristic function [11]
of single-particle states in accelerated frames. From the char-
acteristic function, we derive the probability of finding a
Rindler particle when a Minkowski particle is emitted. We
show that there is a finite probability of detecting a Rindler
particle as a perturbation to the Unruh thermal background,
even when the Minkowski particle is localized beyond the
horizon.

By following the original works of Fulling, Daviss
and Unruh [1,5,6], we consider a (1 − 1)-dimensional
flat space-time and the coordinate transformation (tR, xR)
from an accelerated frame (T, X ) to an inertial frame
(t, x) = [tR(T, X ), xR(T, X )], actR(T, X ) = eaX sinh acT and
axR(T, X ) = eaX cosh acT , where ac2 is the acceleration,
which is conventionally taken positive, and c the speed of
light. Such a transformation covers only the right Rindler
wedge. On the other hand, it is possible to cover the left
Rindler wedge through the transformation t = tL(T, X ) and
x = xL(T, X ) with tL(T, X ) and xL(T, X ) being identical to
tR(T, X ) and xR(T, X ) but with opposite acceleration. In the
notation we have adopted, the subscript L (R) refers to the
left (right) wedge. It is possible to see a visual representation
of the Minkowski and Rindler coordinates in Fig. 1, where
(TL, XL ) and (TR, XR) are taken as the inverse transformations
of (tL, xL ) and (tR, xR). However, since we are not interested in
temporal evolutions of states, for the rest of this Letter we will
just refer to xL,R(X ) and XL,R(x) as, respectively xL,R(0, X )
and XL,R(0, x).

By following again the original works of Fulling, Davis,
and Unruh [1,5,6], we consider a massless free scalar field
φ̂(t, x). We name â(k) the annihilation operator for the
Minkowski mode with momentum k, while b̂L(K ) [b̂R(K )] the
annihilation operators for the left (right) Rindler mode with
momentum K .

The Unruh effect can be obtained by representing the
Minkowski vacuum state |0M〉, defined by â(k)|0M〉 = 0 for
any k ∈ R, in the representation space of the b̂L,R(K ) algebra.
This leads to the following state [1],

|0M〉 ∝ exp

[ ∫ +∞

−∞
dK exp

(
−β

2
|K|

)

× b̂†
L(K )b̂†

R(K )

]
|0L, 0R〉, (1)

with β = 2π/a and |0L,R〉 defined by b̂L,R(K )|0L,R〉 = 0. The
final expression for the Minkowski vacuum state in the
right Rindler frame can be obtained by performing a partial
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FIG. 1. Representation of the coordinate transformation (t, x) �→
(T, X ) = [TR(t, x), XR(t, x)] and the probability density function
transformation n(x) �→ �nR(X ) for localized wave packets from the
inertial to the accelerated frame. The yellow and the green lines are
associated to single-particle states with Gaussian wave function ψ (x)
defined by Eq. (16) with aσ = 1 and ax0 = ±1. The Rindler left and
right wedges are shown in (a) through constant T and X lines. The
two wedges are delimited by the Rindler horizons (gray). The profile
of the probability density n(x), defined by Eq. (13), for the two wave
packets has been drawn. In (b) and (c), we show the constant T and
X lines in the accelerated frame and the profile of �nR(X ), defined
by Eq. (12a). The value of �nR(X ) gives the variation of probability
density to find a Rindler particle in X with respect to the Minkowski
vacuum. In (b), �nR(X ) is non-negligible, even if ψ (x) is localized
in the left wedge. On the other hand, in (c), �nR(X ) is larger and
narrower for ax0 = +1, as we expect from wave functions localized
within the right wedge.

trace over the left wedge, which leads to a thermal state ρ̂0

with temperature T0 = (kBβ )−1, where kB is the Boltzmann
constant.

Analogously to |0M〉, any Minkowski single-particle state
|ψ〉 can be represented in the right wedge through a rep-
resentative in the b̂L,R(K ) algebra and by performing a
partial trace over the left wedge ρ̂ = TrL|ψ〉〈ψ |. Here, |ψ〉
is defined through a normalized wave function ψ (x) such
that

|ψ〉 =
∫ +∞

−∞
dxψ (x) ˆ̃a†(x)|0M〉, (2)

where ˆ̃a†(x) = ∫ +∞
−∞ dke−ikxâ†(k)/

√
2π is the creation opera-

tor for a particle in position x.
Equation (2) can be put into the following form,

|ψ〉 =
∫ +∞

−∞
dK[ψ̃−(K )b̂R(K ) + ψ̃+(K )b̂†

R(K )]|0M〉, (3)

with

ψ̃±(K ) = e−θ (±1)β|K|

n0(K )

∫ +∞

−∞
dX

e∓iKX

√
2π

{
ψR(X )

[
θ (±1)

+ f̃R±

(
∓K

a

)]
+ ψL(−X ) f̃L±

(
∓K

a

)}
, (4a)

f̃L,R±(κ ) = −θ (sL,R)θ (±1) + 1

2π

√
|κ|�(iκ )�

(
1

2
− iκ

)

× exp
[
±θ (sL,R)π |κ| ± isL,R sgn(κ )

π

4

]
, (4b)

ψL,R(X ) = √
a|xL,R(X )|ψ (xL,R(X )), (4c)

sL = −1, sR = 1, n0(K ) = (eβ|K| − 1)−1. (4d)

A proof for Eq. (3) is given in the Supplemental Material
(SM) [12]. The key element for such a proof is provided by
the following identity,

b̂†
L,R(K )|0M〉 = exp

(
β

2
|K|

)
b̂R,L(K )|0M〉, (5)

which holds for any K ∈ R. Equation (5) states that the cre-
ation of a Rindler particle in the left (right) wedge over the
Minkowski vacuum background is equivalent to the destruc-
tion of a Rindler particle in the right (left) wedge, up to
an exp(β|K|/2) factor. Owing to Eq. (5), we can give the
following interpretation to the functions ψ̃±(K ) that appear in
Eq. (3). ψ̃+(K ) [ψ̃−(K )] can be seen as the wave function of a
Rindler particle created (destroyed) over the Minkowski vac-
uum background in the right wedge, or, up to an exp(β|K|/2)
factor, as a Rindler particle destroyed (created) in the left
wedge.

ψR(X ), on the other hand, can be interpreted as a trans-
formed version of the wave function ψ (x) in terms of the
infinitesimal probability function n(x)dx = |ψ (x)|2dx. In-
deed, from Eq. (4c), it is possible to notice that for x > 0,
|ψ (x)|2dx is equivalent to |ψR(X )|2dX , up to the coordinate
transformation x �→ X = XR(x).

By taking the partial trace of |ψ〉〈ψ | over the left wedge,
Eq. (3) results in the following expression for the transformed
single-particle state,

ρ̂ =
∫ +∞

−∞
dK[ψ̃−(K )b̂R(K ) + ψ̃+(K )b̂†

R(K )]ρ̂0

×
∫ +∞

−∞
dK ′[ψ̃∗

−(K ′)b̂†
R(K ′) + ψ̃∗

+(K ′)b̂R(K ′)]. (6)

As we have mentioned before, an alternative representation
for the state ρ̂ can be provided through the following charac-
teristic function [11],

χ [ξ, ξ ∗] = Tr

[
ρ̂ exp

(∫ +∞

−∞
dKξ (K )b̂†

R(K )

)

× exp

(
−

∫ +∞

−∞
dKξ ∗(K )b̂R(K )

)]
. (7)

Owing to Eq. (6), we can write χ [ξ, ξ ∗] in terms of functional
derivatives of the characteristic function for the thermal state
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χ0[ξ, ξ ∗] (SM [12]):

χ [ξ, ξ ∗] =
{

1 −
∣∣∣∣
∫ +∞

−∞
dKn0(K )[ψ̃−(K )ξ (K )

− eβ|K|ψ̃+(K )ξ ∗(K )]

∣∣∣∣
2}

χ0[ξ, ξ ∗]. (8)

Finally, the explicit expression for χ [ξ, ξ ∗] can be obtained
from Eq. (8) supplemented with Eqs. (4) and the already
known expression for χ0[ξ, ξ ∗] [11]:

χ0[ξ, ξ ∗] = exp

(
−

∫ +∞

−∞
dKn0(K )|ξ (K )|2

)
. (9)

Functional derivatives of the characteristic function
χ [ξ, ξ ∗] allow us to extract different mean values of ρ̂ [11].
In this way, we compute the probability density function of ρ̂,
defined as

〈n̂R(X )〉ρ̂ =
∫ +∞

−∞
dK

e−iKX

√
2π

∫ +∞

−∞
dK ′ eiK ′X

√
2π

× δ

δξ (K )

(
− δ

δξ ∗(K ′)

)
χ [ξ, ξ ∗]|ξ=0, (10)

where n̂R(X ) = ˆ̃b†
R(X ) ˆ̃bR(X ) is the particle density opera-

tor and ˆ̃bR(X ) = ∫ +∞
−∞ dKeiKX b̂R(K )/

√
2π is the annihilation

operator in X . Equation (10) results into the following equa-
tion (SM [12]),

�nR(X ) = n+(X ) + n−(X ), (11)

with

�nR(X ) = 〈n̂R(X )〉ρ̂ − 〈n̂R(X )〉ρ̂0
, (12a)

n±(X ) =
∣∣∣∣
∫ +∞

−∞
dK

e±iKX

√
2π

n0(K )eθ (±1)β|K|ψ̃±(K )

∣∣∣∣
2

.

(12b)

�nR(X ), defined by Eq. (12a), represents the difference
in the probability density function between the Minkowski
single-particle and the Minkowski vacuum state in terms of
Rindler particles. An accelerated observer measuring a non-
vanishing �nR(X ) can infer the presence of a Minkowski
particle. Figure 1 shows �nR(X ) for Gaussian wave functions
in comparison with the probability density function in the
Minkowski space-time, defined as

n(x) = 〈 ˆ̃a†(x) ˆ̃a(x)〉|ψ〉〈ψ |. (13)

n±(X ) derive from ρ̂ of Eq. (6) through the contribution
of, respectively, ψ̃±(K ). Therefore, they are associated with
the Rindler particles respectively created and destroyed over
the Minkowski vacuum background in the right wedge. Their
explicit form with respect to ψL,R(X ) reads (SM [12])

n±(X ) = |θ (±1)ψR(X ) + ψR±(X ) + ψL±(X )|2, (14)

with

ψL,R±(X ) =
∫ +∞

−∞
dξψL,R

(
sL,R

ξ

a

)
fL,R±(ξ − aX ), (15a)

fL,R±(ξ ) =
∫ +∞

−∞
dκ

eiκξ

2π
f̃L,R±(κ ). (15b)

FIG. 2. Profiles of fL,R±(ξ ) defined by Eq. (15b) which have been
numerically derived through a Fourier transform of f̃L,R±(ξ ) defined
by Eq. (4b).

ψR(X ) and ψL,R+(X ) of Eq. (14) play the role of superposed
wave functions which result in a probability density function
n+(X ) describing Rindler particles created over |0M〉 in the
right wedge. ψL,R−(X ), on the other hand, refer to Rindler
particles destroyed in the right wedge. Within the decompo-
sition of the wave functions ψR(X ) + ψL+(X ) + ψR+(X ) and
ψL−(X ) + ψR−(X ), ψL±(X ) derive from the left-wedge part
of ψ (x), i.e., ψ (x) for x < 0, while ψR(X ) and ψR±(X ) from
the right-wedge part of ψ (x).

The presence of ψL±(X ) in Eq. (14) implies that values
of the wave function beyond the horizon give nonvanishing
contributions to 〈n̂R(X )〉ρ̂ . Even a state with small values of
|ψ (x)| for x < 0 can still be detected in the right Rindler
wedge. We remark that this effect is not due to the right tail
of the wave function, since the corresponding contribution is
exponentially smaller than the leading one, as detailed below
with a specific example.

We can argue that the result may change if we use a
Lorentz-invariant normalization for ψ (x) [13], since left-
wedge values of the wave function are normalization depen-
dent. Nevertheless, we have verified that left-wedge values of
ψ (x) appear in �nR(X ) even when we use a Lorentz-invariant
normalization (SM [12]).

fL,R±(ξ ), shown in Fig. 2, are localized around ξ = 0.
This means that �nR(X ) receives most contributions from
ψL(X ′) and ψR(X ′) from X ′ ≈ −X and X ′ ≈ X , respectively,
and within a region �X ′ ∼ a−1. In the case of Fig. 2(a),
this implies that most of the contributions for ψL±(X ) come
from ψL(X ′) when xL(X ′) = −xR(X ), or, equivalently, from
ψ (−xR(X )). Moreover, wave functions localized in the left
wedge, i.e., with small values of |ψ (x)| for x > 0, are char-
acterized by a �nR(X ) whose main contributions come from
ψL±(X ), since ψR(X ) is defined by right-wedge values of
ψ (x). This means that �nR(X ) ≈ |ψL+(X )|2 + |ψL−(X )|2
and that most of the contributions for �nR(X ) come from
ψ (x), with x as the specular point of X in the Minkowski
space-time with respect to the horizon, i.e., x = −xR(X ).

It is also possible to notice from Fig. 2(b) that | fR±(ξ )| �
1. Therefore, if ψ (x) is localized in a region R, i.e., |ψ (x)| is
small outside a finite region R, and if R is in the right wedge
and with a width �x � a−1, then ψR±(X ) are expected to
be negligible with respect to ψR(X ). The same happens for
states with �x ∼ a−1 but with R far away from the origin
with respect to a, i.e., x � a−1 for any x ∈ R. This last result
can be motivated by the fact that the transformed region xR(R)
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becomes way smaller than a−1 when x � a−1 for any x ∈ R
and, therefore ψR(X ) is non-negligible within a region way
smaller than a−1. In summary, |ψR±(X )| � |ψR(X )| for any
X and for wave functions well localized in the right wedge,
i.e., when �x � a−1 and x � a−1 for any x ∈ R or when
x � a−1 for any x ∈ R. Moreover, for such states, ψL±(X ) are
negligible and therefore �nR(X ) ≈ |ψR(X )|2. In other words,
ψR(X ) acts as a probability amplitude for wave functions well
localized in the right wedge and it appears as the dominant
term in Eq. (11), with ψL,R±(X ) as small corrective terms.

We remark that the wave function can still have infinite
tails. To give a quantitative example, we consider a normalized
Gaussian wave functions, whose localization degree is given
by the variance σ :

ψ (x) = 1
4
√

π
√

σ
exp

(
− (x − x0)2

2σ 2

)
. (16)

We are interested in the limit aσ → 0 for fixed x0 �= 0
and the limit ax0 → ±∞ for fixed σ , which correspond to
the case of well-localized states in the left or right wedge.
It is possible to prove that for Gaussian wave functions the
limit aσ → 0 is equivalent to a|x0| → ∞ up to a translation
of �nR(X ) with respect to X (SM [12]). More specifically,
it is possible to prove that when x0 �= 0, any transforma-
tion x0 �→ αx0 with α > 0 acting on ψR(X ) is equivalent to
σ �→ σ/α, aX �→ aX − ln α. This also applies to ψL,R±(X )
and �nR(X ). Given the invariance under the transformation
x0 �→ x0/α, σ �→ σ/α, aX �→ aX − ln α for any α > 0, the
functions ψR(X ), ψL,R±(X ), and �nR(X ) can be put in a form
depending on sgn(x0), σ/|x0|, and X − XR(|x0|) instead of σ ,
x0, and X . This feature is adopted in Fig. 3, where we show
�nR(X ) for different σ/x0.

The limit of well-localized wave functions is identified
with σ/|x0| → 0. In Fig. 3, we show how Gaussian wave
functions give the same results expected for the general case.
Specifically, Fig. 3(a) shows that for wave packets well lo-
calized in the left wedge, �nR(X ) ≈ |ψL+(X )|2 + |ψL−(X )|2.
Figure 3(b) shows that �nR(X ) ≈ |ψR(X )|2 when σ/|x0| → 0
and x0 > 0. This result can be proven analytically (SM [12]),

|ψR(X )|2

=

⎧⎪⎨
⎪⎩

δ(X − XR(x0)) + O
[

|x0|
σ

exp
(
−|x0|2

2σ 2

)]
if x0 > 0,

O
[

|x0|
σ

exp
(
− x2

0
2σ 2

)]
if x0 < 0,

(17a)

|ψL,R±(X )|2

=
⎧⎨
⎩

FL,R±(X ) + o
(

σ
|x0|

)
if sL,Rx0 > 0,

o
[

σ
|x0| exp

( − x2
0

2σ 2

)]
if sL,Rx0 < 0,

(17b)

with

FL,R±(X ) = σ

|x0|2
√

πa f 2
L,R+[aXR(|x0|) − aX ]. (18)

From Eqs. (17) we obtain the explicit limit σ/|x0| →
0 of �nR(X ) for Gaussian wave functions. When x0 < 0,
�nR(X ) → 0 with leading term FL+(X ) + FL−(X ) which is
proportional to σ/|x0|. When the degree of localization of

FIG. 3. Profile of �nR(X ) defined by Eq. (12a) for different
Gaussian single-particle states (16). In (a), the configurations are
defined by x0 < 0 and different values of σ/|x0|. |ψL+(X )|2 +
|ψL−(X )|2 is the dominant contribution of Eq. (11) when σ/|x0| → 0
and x0 < 0. We also show the function FL+(X ) + FL−(X ) defined in
Eq. (18). In (b), the profile of �nR(X ) and |ψR(X )|2 for configura-
tions with x0 > 0 is shown. In this case, the dominant contribution to
�nR(X ) is |ψR(X )|2, which, in the particular case of Gaussian wave
functions, has Eq. (17a) as the distributional limit.

the particle increases, the probability of detection in the right
wedge decreases. Nevertheless, if σ � |x0| but σ �= 0, the
profile of �nR(X ) is approximately FL+(X ) + FL−(X ), as in
Fig. 3(a). Accelerated observers can still see a difference
with respect to the vacuum state, even when the particle is
localized beyond the horizon. The result does not depend on
the presence of a tail in the right Rindler wedge, since most
of the contributions for �nR(X ) come from values of ψ (x)
beyond the horizon. Indeed, ψR(X ) and ψR±(X ) are vanishing
with exponential orders, while ψL±(X ) are linear in σ/|x0|.

The peak of FL+(X ) + FL−(X ) in X = XR(|x0|) results in
a maximum probability to find the particle in X = XR(−x0).
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In the Minkowski space-time, such a point corresponds to
the specular counterpart of x0 with respect to the horizon:
xR(X ) = −x0.

When x0 > 0, the distributional limit of �nR(X ) is δ(X −
XR(x0)), as in Fig. 3(b). The single-particle appears perfectly
localized in both inertial and accelerated frame at the same
position (up to the coordinate transformation).

In conclusion, we have provided a complete description
for single-particle states in accelerated frames ρ̂ through
their characteristic functions χ [ξ, ξ ∗]. By the derivatives of
χ [ξ, ξ ∗], we obtain original expressions for the right-wedge
density function 〈n̂R(X )〉ρ̂ for a general state. A significant
outcome of this theoretical analysis is that 〈n̂R(X )〉ρ̂ receives
non-negligible contributions from left-wedge values of ψ (x).
This points toward the possibility for single-particle quantum
states to tunnel from the left to the right wedge, across the
Rindler horizon. We want to point out that such a result does
not depend on the particular form of ψ (x). Nevertheless, we
have tested the extreme case in which almost all the wave
function is localized beyond the horizon. Specifically, we
have considered in detail the case of Gaussian wave function
ψ (x) and verified that in the limit of high locality degree,
i.e. σ/|x0| → 0, the dominant term of �nR(X ) is related to

left-wedge values of ψ (x) while the contributions coming
from the right tail go to zero exponentially faster.

The use of the characteristic function has played a cru-
cial role for deriving the results for single-particle states.
Possible generalizations for χ [ξ, ξ ∗] in the case of general
Minkowski-Fock states can be obtained through the use of
the same identities that have led to Eq. (8), such as Eq. (5).
The development of an explicit form for such characteristic
functions has been reported in Ref. [14].

Analyses of the results in the context of quantum informa-
tion are out of the scope of the present Letter. However, it is
worth mentioning that in spite of the nonlocal effect described
here, no superluminal communication between the inertial
and the accelerated observer occurs when they are separated
by the Rindler horizon. The accelerated observer detects the
presence of single particles emitted by the inertial observer in
the other wedge; however, the two observers cannot use this
effect to communicate. One can see this by assuming that the
two observers are supplied with Unruh-DeWitt detectors [1,2]
as a particle emitter and detector and by using the same argu-
ments of Refs. [15,16] to prove that no violation of causality
holds. We believe that a complete discussion about this topic
is worthwhile for dedicated future works.
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