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Inner products of pure states and their antidistinguishability
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We study the antidistinguishability problem, which is a fundamental task in quantum computing. A set of
d quantum states is said to be antidistinguishable if there exists a d-outcome positive-operator-valued measure
that can perfectly identify which state was not measured. We revisit a conjecture by Havlíçek and Barrett which
states that if a set of d pure states has small pairwise inner products, then the set must be antidistinguishable.
We develop a certificate of antidistinguishability via semidefinite programming duality and use it to provide a
counterexample to this conjecture when d = 4. Our work thus opens up again the investigation into which sets
of pure states are antidistinguishable.
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I. INTRODUCTION

The distinguishability of a set of quantum states is of
central importance in the study of quantum computing. In-
deed, many fundamental problems can be cast in terms of
how well one can infer the identity of which quantum state
one might be holding. Formally, suppose we fix a set of
quantum states {ρ1, . . . , ρn} and we set up a game where
Alice selects one of them, hands it to Bob, and his task
is to determine which state it is. To quantify how well
Bob can play this game, it often depends on how Alice
selects the state (e.g., randomly, adversarially, etc.). How-
ever, if we put the strict condition on Bob having to always
give the right answer, then we get the necessary and suffi-
cient condition that the states must be pairwise orthogonal.
To argue this, we note that by Born’s rule, when mea-
suring a quantum state ρ with a positive operator-valued
measure (POVM) {M1, . . . , Mn}, the probability of the out-
come i is given by Tr(Miρ). Therefore, if the states in
the set are pair-wise orthogonal, then it is easy to find a
measurement which never fails (simply use a projective mea-
surement which includes the projections onto their supports).
On the other hand, suppose we have (M1, . . . , Mn) being a
perfectly distinguishing POVM, i.e., Tr(Miρ j ) = 0, or equiv-
alently, Miρ j = 0, for all i �= j. Then, for i �= j, Tr(ρiρ j ) =
Tr[ρi(

∑
k Mk )ρ j] = 0, thus the states must be pairwise or-

thogonal. Therefore, in order to certify that a set of states
is not perfectly distinguishable, it is sufficient to find two
nonorthogonal states in the set. Certificates are convenient
proof tools since they show the nonexistence of something,
which can sometimes be a challenging task. We explore (more
involved) certificates for a different distinguishing task in this
note.
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Suppose we change the game above and instead of tasking
Bob to guess which state he is given, he has to produce a
guess for a state he is not given. For example, if he is given
the state ρ1 and he responds “the state is not ρ2,” then this
would correspond to a correct guess. It is worth mentioning
that the point here is not trying to “be wrong” in guessing the
state (which might be an interpretation after the previously
discussed game), but rather to exclude a state which was not
given. If Bob is able to play this game and win perfectly, we
say that the set of states is antidistinguishable. Mathemati-
cally, this requires an antidistinguishing POVM {N1, . . . , Nn}
satisfying Tr(Niρi ) = 0, for all i. Again, the interpretation of
the outcome i is “the state is not ρi” (which is why we chose
the letter N for the notation of such a POVM). It is worth
noting that we must exclude a state which is in the given
set; we cannot have an extra measurement operator which
outputs “I do not know,” which is sometimes allowable in state
discrimination tasks.

Finding nontrivial necessary and/or sufficient conditions
governing when a set of quantum states is antidistinguishable
or not is tricky. This is in stark contrast to the simple condition
of pairwise orthogonality for the case of perfect distinguisha-
bility. Of course, in the case of antidistinguishability, we can
always exhibit a measurement and check that it satisfies the
defining conditions above. However, in the case of not being
antidistinguishable, this is more challenging since this implies
the nonexistence of a particular measurement. We soon dis-
cuss how to find such a certificate (which we put to use in a
later discussion).

Antidistinguishability is an interesting property a set of
states may have. Relaxing the notion of perfect antidistin-
guishability to the task of “how antidistinguishable are the
states?” was studied in [1] in which they drew connections
to the Pusey-Barrett-Rudolph theorem [2]. In [3], the work
that inspired this note, the authors used this concept to study
communication complexity separations. Moreover, they posed
an antidistinguishability conjecture as a means to prove the
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existence of a two-player communication game that can be
won with log(d ) qubits but would require a one-way com-
munication of �(d log d ) classical bits, thereby providing a
(stronger) exponential separation between classical and quan-
tum communication complexities. Their antidistinguishability
conjecture is as follows.

Conjecture 1. [3] If a set of d pure states

{|ψ1〉, . . . , |ψd〉} ⊂ Cd (1)

satisfies |〈ψi|ψ j〉| � (d − 2)/(d − 1) for all i �= j, then the
set is antidistinguishable.

The conjecture holds for the case of d = 2 (trivially) and
also d = 3 (from the work of [4]), but was previously not
known to be true for d > 3. Numerical approaches to search
for counterexamples for d ∈ {4, 5, 6} in [3] did not produce
any.

In this Letter, we provide an explicit counterexample to
Conjecture 1 when d = 4. We do this by presenting four
four-dimensional pure states that are deemed to not be antidis-
tinguishable via a particular semidefinite program from [1]
(which we detail below), and yet, do have small pairwise inner
products. We obtained this counterexample by first randomly
generating a set of pure states according to the Haar measure,
then determining whether this set is antidistinguishable via
semidefinite programming along with a check to determine
if their pairwise inner products satisfy the bound in the con-
jecture. The specific counterexample presented in this Letter
was found after running more than 1 × 106 random examples.
Other counterexamples of this dimension were found, but
the one presented here has the greatest optimal value of the
semidefinite program that was found via our computational
search (and thus is the least antidistiguishable, in a sense).

We also provide numerical tools that can be used to study
different aspects of the antidistinguishability conjecture for
higher dimensions as well as the general principle of antidis-
tinguishability on its own [5].

II. A CERTIFICATE OF NONANTIDISTINGUISHABILITY

We first discuss a semidefinite program (SDP) which is
mostly identical to the one in [1]. The only difference is that
we do not need to be concerned with any probabilities with
which each state is chosen.

Suppose we fix a set of quantum states {ρ1, . . . , ρn} and we
consider the following SDP:

α := min

{
n∑

i=1

Tr(Niρi ) :
n∑

i=1

Ni = I, N1, . . . , Nn � 0

}
.

(2)
Note that the optimal value is indeed attained, hence the use of
“min,” since the feasible region is compact. We see that α � 0
and, moreover, α = 0 if and only if the set is antidistinguish-
able. The dual SDP is given by

β := max {Tr(Y ) : Y � ρi, ∀i ∈ {1, . . . , n}}, (3)

where Y is understood to be Hermitian. Strong dual-
ity was proven in [1], namely, that α = β and that the
dual attains its optimal value (and hence our use of
“max” above is justified). Therefore, we have the following
lemma.

Lemma 2. A set of states {ρ1, . . . , ρn} is not antidistin-
guishable if and only if there exists a Hermitian matrix Y such
that Tr(Y ) > 0 and Y � ρi, for all i ∈ {1, . . . , n}.

Now it is straightforward to prove a set of states is
not antidistinguishable; one must only exhibit a certifi-
cate Y satisfying the conditions above. Being able to
find this certificate is easy in theory; one can solve the
dual SDP given in Eq. (3), and for reasonably small ex-
amples (say, d up to 1000) this can be done quickly
in practice.

III. OUR COUNTEREXAMPLE (WHEN d = 4)

Define the following four pure states:

|ψ1〉 =

⎡
⎢⎢⎢⎢⎣

+0.501 271 98 − 0.037 607i

−0.006 981 52 − 0.590 973i

+0.081 865 14 − 0.449 754 8i

−0.012 998 83 + 0.434 584 91i

⎤
⎥⎥⎥⎥⎦,

|ψ2〉 =

⎡
⎢⎢⎢⎢⎣

−0.071 153 45 − 0.270 803 26i

+0.820 477 12 + 0.263 208 23i

+0.221 050 89 − 0.209 199 6i

−0.235 755 91 − 0.175 876 9i

⎤
⎥⎥⎥⎥⎦,

|ψ3〉 =

⎡
⎢⎢⎢⎢⎣

+0.313 609 06 + 0.463 393 13i

−0.046 582 5 − 0.478 250 17i

−0.104 703 94 − 0.117 764 04i

+0.602 315 15 + 0.261 549 59i

⎤
⎥⎥⎥⎥⎦,

|ψ4〉 =

⎡
⎢⎢⎢⎢⎣

−0.535 321 22 − 0.036 546 32i

+0.409 559 41 − 0.151 505 76i

−0.057 413 86 + 0.238 739 85i

−0.473 711 3 − 0.486 525 64i

⎤
⎥⎥⎥⎥⎦.

(4)

We can easily verify that

max
i �= j

{|〈ψi|ψ j〉|} ≈ 0.645 142 35 <
d − 2

d − 1
= 2

3
. (5)

By solving the dual SDP from Eq. (3) with respect
to these four pure states, we can ascertain that
{|ψ1〉〈ψ1|, |ψ2〉〈ψ2|, |ψ3〉〈ψ3|, |ψ4〉〈ψ4|} is not antidis-
tinguishable. We now use its numerically found optimal
solution and Lemma 2 to provide a certificate of its
nonantidistinguishability.

Define the Hermitian operator Y on the following page [see
Eq. (6)].
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Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.002 352 578 004 032 −0.006 139 429 568 647+ −0.004 431 710 991 48 5− 0.004 045 982 033 136−
0.002 253 370 306 853i 0.000 778 124 769 934i −0.002 181 583 048 532i

−0.006 139 429 568 647− 0.003 589 384 258 236 0.002 517 710 068 163− −0.009 308 704 240 406−
0.002 253 370 306 853i 0.002 392 391795 840i 0.000 168 259 372 307i

−0.004 431 710 991 485+ 0.002 517 710 068 163+ −0.002 123 263 811 620 −0.001 232 775 598 439+
0.000 778 124 769 934i 0.002 392 391 795 840i 0.000 491 834 467 627i

0.004 045 982 033 136+ −0.009 308 704 240 406+ −0.001 232 775 598 439− 0.001 280 27 058 627 9
0.002 181 583 048 532i 0.000 168 259 372 307i 0.000 491 834 467 627i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

Observe that

Tr(Y ) ≈ 0.000 393 813 028 863 019 4 > 0. (7)

We now wish to show that |ψi〉〈ψi| − Y � 0 holds for each
i ∈ {1, 2, 3, 4}. Below we list the eigenvalues of each matrix
of interest:

eigs(|ψ1〉〈ψ1| − Y ) =

⎡
⎢⎢⎣

0.000 000 000 780 951
0.000 159 290 602 031
0.007 593 054 347 881
0.991 853 848 824 242

⎤
⎥⎥⎦,

eigs(|ψ2〉〈ψ2| − Y ) =

⎡
⎢⎢⎣

0.000 000 000 845 682
0.000 170 622 302 504
0.006 501 501 274 832
0.992 934 060 068 367

⎤
⎥⎥⎦,

eigs(|ψ3〉〈ψ3| − Y ) =

⎡
⎢⎢⎣

0.000 000 000 751 231
0.000 136 742 588 802
0.009 100 561 906 205
0.990 368 883 698 794

⎤
⎥⎥⎦,

eigs(|ψ4〉〈ψ4| − Y ) =

⎡
⎢⎢⎣

0.000 000 000 905 010
0.000 186 792 438 756
0.007 152 857 760 097
0.992 266 545 011 053

⎤
⎥⎥⎦.

(8)

Therefore, Y satisfies all the conditions in Lemma 2 implying
the set is not antidistinguishable and thus a counterexample to
Conjecture 1.

IV. SUPPLEMENTARY SOFTWARE

Supplementary software showcasing the counterexample
for d = 4 may be found at the following software repository
[5]. The repository contains PYTHON code that makes use of
the PICOS PYTHON package [6] to invoke the CVXOPT solver
[7] for the SDP in Eq. (3).

The set of vectors from Eq. (4) was generated randomly ac-
cording to the Haar distribution. The authors in [3] followed a
similar approach; we simply left our search algorithm running
for a very long time [8]. The states provided in the coun-
terexample were found after millions of Haar-random states
were generated. Indeed, other such examples were found in
this search as well, but the set of states provided here yielded
the highest value for Tr(Y ) [see Eq. (7)]. The software from
[5] also allows the user to generate a random collection of d
d-dimensional pure states and check whether they are antidis-
tinguishable by solving the SDP in Eq. (3). These numerical
tools may be of interest to further study the notion of antidis-
tinguishability for larger values of d . On this note, we leave it
as an open problem to find the optimal threshold on the inner
products when d = 4 and, in general, for larger values of d .
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