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The combination of driving and dissipation guides a quantum system into a nonequilibrium steady state
(NESS). It is an intriguing question, in how far this principle can be exploited for the robust preparation of
interesting many-body target states beyond the strict constraints of thermal equilibrium. We consider an open
system of ultracold bosonic atoms coupled to a heat bath and show that, counterintuitively, the interplay of
bath-induced dissipation and controlled Floquet (i.e., driving-induced) heating can give rise to nonequilibrium
Bose condensation in a quantum-scar-like mode protected from the drive. In particular, we use Floquet-Born-
Markov theory to microscopically derive kinetic equations for a one-dimensional system of bosonic atoms in an
optical lattice of finite extent coupled to a three-dimensional thermal bath of weakly interacting bosons treated
in Bogoliubov theory. The bath temperature T is assumed to lie well above the crossover temperature, below
which the majority of the system’s particles form a (finite-size) Bose condensate in the single-particle ground
state in equilibrium. However, when a strong local potential modulation is switched on, which resonantly excites
the system, a nonequilibrium Bose condensate is formed in an excited state that decouples from the drive. This
strategy of engineering the NESS of an open quantum system via tailored Floquet heating is likely to find
applications also for different systems and target states.

DOI: 10.1103/PhysRevA.107.L021301

I. INTRODUCTION

Floquet engineering is a powerful tool for controlling
isolated quantum systems by means of time-periodic forc-
ing [1–4]. Prominent examples include the control of phase
transitions [5–9], the engineering of artificial magnetic fields
and topological band structures in systems of charge-neutral
particles such as atoms or photons [10–17], as well as the
realization of so-called anomalous Floquet topological states
that cannot exist in undriven systems [18–21]. Nevertheless,
Floquet (i.e., periodically driven quantum) systems also suffer
from heating, as it is caused by unwanted resonant excita-
tion processes [22–28]. Such Floquet heating will generically
guide an isolated system towards an infinite-temperature
state, corresponding to eigenstate thermalization without en-
ergy conservation [29,30]. However, when a Floquet system
is coupled to a bath [31–46], it will not approach infinite
temperature, but a nonequilibrium steady state.

Previous work addressed the preparation of equilibriumlike
states in open Floquet systems [47–51]. Here, we show that
Floquet heating can be exploited for robust preparation of
interesting nonequilibrium states. Namely, we consider a Bose
gas in contact with a thermal bath of temperature well above
the critical temperature and find that the heating induced by
strong resonant driving can make the system Bose condense
into an excited state, which is decoupled from the drive. In
the following, we discuss this intriguing effect using a re-
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alistic microscopic model describing a two-species mixture
of ultracold atoms [52–65]. We solve this model numerically
using kinetic equations and stochastic equations [36,39] based
on Floquet-Born-Markov theory [31,32,34] and provide an
intuitive explanation of the effect.

II. THE SYSTEM

We consider N noninteracting bosonic atoms in a one-
dimensional (1D) optical lattice with strong transverse
confinement, described by the tight-binding Hamiltonian

Ĥ0 = −J
M−1∑
i=1

(â†
i+1âi + â†

i ai+1) =
∑

k

εkb̂†
kb̂k, (1)

with tunneling parameter J , number of lattice sites M (as-
suming box-type confinement), and annihilation operator
âi for a boson on site i. The eigenmodes, with annihila-
tion operators b̂k = ∑

i〈ψk|i〉âi, are characterized by wave
functions 〈i|ψk〉 = √

2/(M + 1) sin(kai) and energies εk =
−2J cos(ka), with lattice spacing a and wave numbers k =
νπ/[a(M + 1)], with ν = 1, . . . , M. Additionally, the system
is subjected to a local time-periodic potential modulation of
amplitude A and frequency ω on site � [see Fig. 1(a)], giving
the total Hamiltonian

Ĥ (t ) = Ĥ0 + ĤD(t ), ĤD(t ) = A[1 + cos(ωt )]â†
� â�. (2)

The box confinement and the local modulation can be realized
using spatial light modulators. The single-particle Floquet
states, |ϕα (t )〉 = e−iεαt/h̄|uα (t )〉, labeled by α = 1, . . . , M, are
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FIG. 1. (a) System: N = 200 noninteracting bosons in a 1D opti-
cal lattice of M = 49 sites subject to local time-periodic potential
modulations of amplitude A, frequency h̄ω = 1.5J at site � = 20.
Bath: Weakly interacting 3D Bose condensate of temperature T ≈
2.38J well above the crossover temperature T eq

c ≈ 0.7J below which
the majority of lattice bosons occupies the ground state in absence of
driving. (b, c) Monte Carlo simulation of the relaxation dynamics
of the mean occupations of (b) the single-particle eigenstates for the
undriven system with A = 0 and (c) the single-particle Floquet states
of the driven system with A = J . Statistical errors are smaller than
the linewidth and therefore not shown. Dotted line, thermal ground-
state occupation; blue bullets, occupation 〈nkc 〉 of the undriven
eigenstate kc = 2π/(�a).

characterized both by the quasienergies εα and the time-
periodic Floquet modes |uα (t )〉 = |uα (t + T )〉, with driving
period T = 2π/ω. They are the eigenstates with eigenvalues
exp(−iεαT /h̄) of the single-particle one-cycle evolution op-
erator from time t to t + T . We also define the Floquet-mode
annihilation operators f̂α = ∑

i〈uα (t )|i〉âi.

III. THE BATH

The system interacts weakly with a bath given by a
weakly interacting three-dimensional Bose-Einstein conden-
sate of another atomic species. The bath temperature lies
well below the bath’s critical temperature, but well above
the crossover temperature T eq

c below which the majority of
lattice bosons occupies the ground state in absence of driving
[see Fig. 1(a)]. Similar scenarios have recently been realized
experimentally [52–59]. Approximating the bath as homoge-
neous with number density nB over the extent of the lattice
system and applying standard Bogoliubov theory [66], the
bath Hamiltonian reads ĤB = ∑

�q EB(q)β̂†
�q β̂�q. Here EB(q) =√

E2
0 (q) + 2GE0(q) is the energy and β̂�q the annihilation op-

erator of a Bogoliubov quasiparticle with momentum h̄�q, with
q = |�q|, E0(q) = h̄2q2/(2mB), bare mass mB, G = gnB, and
intrabath contact interaction strength g.

The system particles interact with the bath particles
via contact interactions of strength γ , described by ĤSB =
γ

∫
d3�r n̂S(�r)B̂(�r), and B̂(�r) = [n̂B(�r) − nB], where n̂S(�r) =∑

i j wi(�r)w∗
j (�r)â†

i â j , with Wannier function wi(�r) = 〈�r|i〉 of
lattice site i, describes the density of the system particles
and n̂B(�r) the density of (bare) bath particles. Subtracting

the mean density nB, corresponding to an irrelevant energy
shift, ensures that TrB(�̂BĤSB) = 0, as required by the Born-
Markov formalism [67]. The bath state is given by �̂B =
exp(−ĤB/T )/ZB (with kB ≡ 1). In leading (linear) order with
respect to the Bogoliubov modes (describing single-phonon
scattering, which is dominant for low bath temperatures [60]),
B̂(�r) 	 √

nB/V
∑

�q 
=�0 ei �q·�r[uqβ̂�q − vqβ̂
†
−�q], where uq and vq,

with u2
q − v2

q = 1 and 2uqvq = G/EB(q), are the usual Bogoli-
ubov coefficients [67].

We assume ultraweak system-bath coupling, which is
small compared to all single-particle (quasi)energy split-
tings in the system (so that also bath-mediated interactions
are negligible). Under this assumption, we derive a master
equation using Floquet-Born-Markov theory in secular ap-
proximation [32–34,68–70]. Then, the off-diagonal matrix
elements of the density matrix ρ in Floquet-state represen-
tation decouple from the diagonal ones and decay rapidly
[33,34,69], so that �̂(t ) 	 ∑

n pn(t )|n〉〈n|, where pn(t ) is the
probability of the system being in the many-body Floquet
state |n〉 = |n(t )〉 = |n(t + T )〉, characterized by the vector
of occupation numbers n = (n1, . . . , nM ) for single-particle
Floquet modes |uα (t )〉. The probabilities follow the classical
many-body rate equation [39]

ṗn(t ) =
∑
αβ

(1 + nβ )nα[Rαβ pnα←β
(t ) − Rβα pn(t )], (3)

where nα←β are occupation numbers obtained from n by
transferring a particle from mode β to α and Rαβ denotes the
corresponding Fermi’s “golden rule” type of single-particle
rate:

Rαβ = 2πγ 2

h̄

∑
K∈Z

∑
i j

(vi )
(K )∗
αβ (v j )

(K )
αβ Wi j

(
�

(K )
αβ

)
. (4)

Here (vi )
(K )
αβ = T −1

∫ T
0 dt e−iKωt 〈uα (t )|i〉〈i|uβ (t )〉 are

matrix elements and Wi j (E ) = Ji j (E )/(eE/T − 1) bath
correlation functions, with spectral densities Ji j (E ) =
sgn(E )nBq(E )3Ii j[q(E )]/(8π2

√
E2 + G2), wave number

q(E ) for a bath quasiparticle with energy E , and
Ii j (q) ≈ e− 1

2 q2d2
2sinc[qa(i − j)] (obtained by approximating

Wannier functions by oscillator ground states with isotropic
oscillator length d) [67].

Equation (3) describes exponentially many probabilities
pn(t ), but single- and few-particle expectation values, like
〈n̂α〉(t ) or 〈n̂α n̂β〉(t ) with n̂α = f̂ †

α f̂α , can be obtained effi-
ciently by quantum-jump Monte Carlo simulations [71], i.e.,
by sampling over random walks (trajectories) between differ-
ent Fock states |n〉 [39]. This method gives quasiexact results,
in the sense that the accuracy is controlled by the number
of trajectories. Alternatively, we can obtain 〈n̂α〉(t ) from the
equations of motion [36,39,72] d〈n̂α〉/dt = ∑

β[Rαβ〈(n̂α +
1)n̂β〉 − Rβα〈(n̂β + 1)n̂α〉]. These depend, however, on two-
body correlations 〈n̂α n̂β〉, which reflects that, even though we
assume vanishing intrasystem interactions, we are still dealing
with an interacting problem, since the coupling operator ĤSB

is cubic in the system and bath (quasiparticle) operators. We
obtain a closed set of nonlinear kinetic equations for the
mean occupations 〈n̂α〉(t ) by additionally making the mean-
field approximation 〈n̂α n̂β〉 ≈ 〈n̂α〉〈n̂β〉 (corresponding to
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FIG. 2. (a, b) Snapshots of the momentum distribution 〈nk〉 cor-
responding to Figs. 1(b) and 1(c), respectively, at times t/tref =
0, 0.01, 0.05, 0.2, 1 (red, green, blue, gray, orange). Dashed line,
steady-state distribution inferred from the mean-field theory; dotted
lines, critical momenta kcrit below (above) which one-phonon scatter-
ing is suppressed in the undriven case. (c) Top: Collision leading to
the emission of a bath phonon. Bottom: Bogoliubov dispersion of the
bath (green) and lattice dispersion (red). Only after shifting the bath
dispersion (dash dotted) by k′ � kcrit there are multiple intersections.
(d) Largest overlap Ukα = 〈ψk |uα (0)〉 between the eigenstates k of
the undriven and the Floquet states α of the driven system. (e) Cycle-
averaged standard deviation σ̄ 2

E = T −1
∫ T

0 〈uα (t )|Ĥ 2(t )|ua(t )〉dt −
E 2

avg,α of the energy Eavg,α = T −1
∫ T

0 〈uα (t )|Ĥ (t )|ua(t )〉dt of the Flo-
quet mode α. (d, e) Undriven modes colored green.

a Gaussian ansatz for the system state) [39,67]. In the fol-
lowing, we mainly show exact Monte Carlo solutions of
Eq. (3). However, when scanning large parameter spaces for
steady states, we employ also the kinetic equations, which still
provide an excellent approximation. This can be seen from
Fig. 2(b), where the orange solid line, showing the late-time
momentum distribution of the driven system, agrees very well
with the black dashed line, giving the steady-state prediction
of the kinetic theory.

IV. PARAMETERS

Inspired by recent experiments [52–58], we assume N =
200 bosonic 39K atoms on M = 49 lattice sites immersed
in a bath of 87Rb (and discuss results for Cs in Rb in the
Supplemental Material [67]). We consider a lattice depth of
V0 = 6ER, with recoil energy ER = h̄2k2

L/(2mS), potassium
mass mS, lattice momentum kL = π/a, and lattice spacing
a = 395.01 nm corresponding to the Rb tune-out wavelength
of 790.01 nm [73,74]. For convenience, the lattice minima
are considered to be isotropic, which slightly underestimates
the transverse confinement. Moreover, the bath particles inter-
action parameter reads G = gnB = 0.05ER (corresponding to
g = 2π h̄2aRb/mB, aRb = 104 Bohr radii, and nB = 6.29/a3).
Within our theoretical framework, the system-bath coupling
γ enters through the time scale tref = 16π h̄3/(mBkLnBγ 2) of
the relaxation dynamics. In an experiment γ = 2π h̄2aSB/m̃ is

given by the K-Rb scattering length aSB and reduced mass m̃.
The bath possesses the temperature T = 2.38J , corresponding
to 15% of its estimated critical temperature T Bath

c = 15.9J ,
and the system is initialized in an infinite-temperature state
(within the lowest band), with all Floquet and eigenmodes
populated equally.

V. RELAXATION DYNAMICS
OF THE UNDRIVEN SYSTEM

Let us first discuss the equilibration dynamics of the un-
driven system, A = 0. Here the Floquet modes and quasiener-
gies equal the single-particle eigenstates of Ĥ0 and their
energies. In Fig. 1(b) we show the time evolution of their mean
occupations 〈n̂k〉 = 〈b̂†

kb̂k〉 using the Monte Carlo simulations.
Since the system is one-dimensional, equilibrium Bose con-
densation is a finite-size effect. The corresponding crossover
temperature, below which the majority of bosons occupies the
single-particle ground state and the coherence length exceeds
the system extent, can be estimated as T eq

c ≈ 8.3JN/M2 ≈
0.69J [67,75]. As the bath temperature T = 2.38J lies above
this crossover temperature, at equilibrium, Bose condensation
is not expected. This is confirmed in Fig. 1(b), where the
dotted line indicates the thermal occupation of the ground
state, which is approached in the long-time limit.

We, moreover, observe that a rather fast dynamics for
t � 0.1tref is followed by very slow relaxation taking much
longer than tref. The reason for this separation of time scales
becomes apparent from Fig. 2(a) where we depict snapshots
of the distribution 〈n̂k〉 at intermediate times t (solid lines)
and compare them to the equilibrium distribution at the bath
temperature (dashed line). Below (above) the critical wave
numbers kcrit (kL − kcrit) the absorption or emission of bath
excitations is strongly suppressed, since in an infinite system it
would not be possible to conserve both energy and momentum
in such a process. Namely, for a transition k → k′, the abso-
lute value of the quasiparticle momentum obeys q > |qx| =
|k − k′| [see Fig. 2(c)] [76], corresponding to quasiparticle
energies EB(q) � EB(|k − k′|) that have to match |εk − εk′ |,
which is impossible for too small or too large k′. This is
illustrated in Fig. 2(c): Only after shifting the Bogoliubov
dispersion EB(q) (green line) from the origin to the point
(kcrit, εkcrit ) (dashed-dotted line) or further to k′ � kcrit , there
is more than one intersection with the lattice dispersion of
the system εk (red line) where, for the corresponding k′, k
energy and momentum conservation can be fulfilled. Similar
behavior has been found for a free impurity immersed in a
superfluid [60] (where such a critical momentum only exists
for mS > mB). Since for the finite lattice of M sites momentum
is conserved only approximately, ultimately, for t � tref, the
system thermalizes with temperature T .

VI. DRIVEN-DISSIPATIVE SYSTEM

We now turn to the dynamics of the driven system with
driving amplitude A = J , frequency h̄ω = 1.5J , and position
� = 20. Unlike in the typical regime of Floquet engineering,
the driving frequency is not large compared to the system’s
bandwidth 4J . Thus, driving-induced heating via resonant
excitation [77] is not suppressed, but a dominant impact of
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the drive. In Fig. 1(c) we depict the evolution of the mean
occupations of the Floquet modes α on the same time interval
as in Fig. 1(b). We can observe that, in contrast to the undriven
scenario, the system quickly relaxes to a steady state on a
time t � tref/2. This is not surprising, since the local driv-
ing potential breaks both energy and approximate momentum
conservation, which suppress the relaxation in the undriven
case.

However, the most striking effect is that in the presence of
driving the system approaches a nonequilibrium steady state,
where more than 60% of the particles form a nonequilibrium
Bose condensate by occupying the same single-particle Flo-
quet state. Remarkably, this effect happens despite the Floquet
(i.e., driving-induced) heating. In fact we will argue below
that it is actually the interplay between the driving-induced
heating and the dissipation from the bath, which causes the
nonequilibrium condensation. In Fig. 2(b) we plot snapshots
of the mean occupations 〈n̂k〉 of the undriven eigenmodes and
we can see that the condensate occurs in a state having a
large overlap with the excited undriven eigenstate |ψkc〉 with
wave number kc = 2π/(�a). Plotting the occupation of this
mode as blue bullets in Fig. 1(c), we can see that it perfectly
matches the occupation of the most populated Floquet mode,
indicating that both modes are in fact identical. This leads
us to the following intuitive explanation of the at first glance
counterintuitive effect.

The mode kc possesses a node at lattice site �. It is the
lowest-energy state of a series of modes kν = ν2π/(�a), with
ν = 1, 2, . . . , M − 1, which decouple from the drive, since
sin(kνa�) = 0. These undriven eigenstates remain Floquet
states of the driven system, as can be inferred from Fig. 2(d),
where we plot for each undriven mode k its maximum overlap
maxα |〈ψk|uα (0)〉|2 with a Floquet mode α. We can clearly see
that the kν , which are colored green, correspond to Floquet
modes of the problem. In Fig. 2(e) we plot the (period-
averaged) standard deviation of the energy of each Floquet
mode α. As a result of the strong and resonant driving, al-
most all modes are well delocalized in energy, except for
those Floquet states corresponding to the undriven modes kν

(green bullets), which possess sharp energies. We can con-
clude that the undriven modes kν play a role very similar
to quantum many-body-scar states [78–80]. In a quantum
many-body system, where the majority of states follows the
eigenstate thermalization hypothesis (ETH), so that they give
rise to thermal expectation values, such many-body scars cor-
respond to a small set of nonergodic quantum states violating
the ETH. In a many-body Floquet system, a generic Floquet
state is completely delocalized in energy, corresponding to an
infinite-temperature state [29,30]. The Floquet modes |uα (t )〉
of our system are single-particle states of a finite system
and, thus, cannot be expected to provide infinite-temperature
expectation values. Nevertheless, we can clearly see that they
are broad in energy, while, in stark contrast, the undriven
modes kν have sharp energies and, in this sense, resemble
quantum many-body scars [81]. It is an interesting open ques-
tion, though, whether these scarlike single-particle modes can
be related or generalized to actual quantum-many-body scars
in large interacting systems.

We can now divide the system into two parts, given by the
minority of undriven scarlike modes kν , which are local and
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FIG. 3. Mean-field solutions for mean occupations 〈nk〉 of quasi-
momenta k vs (a) driving strength A and (b) bath temperature T
for t → ∞ (dashed lines) and t = tref (solid lines). Dotted line,
thermal ground-state occupation. Parameter as in Fig. 1(c), where
G = 0.05ER. (c) Like (a) but for increased intrabath iterations G =
0.1ER. At t = tref a metastable condensate is formed in the mode
k = 4π/(�a). (d) Like Fig. 2(b) but for G = 0.1ER.

well separated in energy, on the one hand, and the majority
of “actual” Floquet states on the other. As a consequence
of the large level splitting, within the undriven subspace the
bath will efficiently transport particles to the lowest state, kc.
Moreover, among the driven states the mixing of low-energy
with more excited states raises their energies on average,
corresponding to Floquet heating, so that, as a result, we find
also an enhanced bath-induced transfer from driven modes
towards kc (this might be viewed as a Floquet-heating-induced
thermoelectric effect). Both effects together then lead to the
observed nonequilibrium Bose condensation in the excited
state kc.

A somewhat related but in its origin rather different effect
can be observed, when instead of being driving periodically
the system is coupled to a very hot local bath [75]. However, in
stark contrast to the driven system, in this scenario the eigen-
state structure of the system is not altered at all. Moreover, the
experimental realization of a local drive is much easier than
that of an additional hot local bath.

The nonequilibrium condensation does not rely on fine
tuning. We equally find it for caesium atoms in a rubidium
bath [67]. In Fig. 3 we also investigate its dependence on both
the driving strength A/J [Fig. 3(a)] and the bath temperature
T/T bath

c [Fig. 3(b)] by plotting 〈n̂k〉 at time t/tref = 1 (solid
line) and in the steady state (dashed lines) (the dotted line
is the equilibrium ground-state occupation). The majority of
particles occupies a single mode for A/J � 0.5 [Fig. 3(a)] and
T � T ne

c = JN/M ≈ 4J � T eq
c ≈ 0.69J [Fig. 3(b)]. Here T ne

c
denotes a rough estimate of the nonequilibrium condensation
temperature below which half the particles occupy kc. It is
obtained by assuming that within the cold undriven modes the
large level splitting causes the bath to transport all particles
to kc, while the remaining N ′ particles are equally distributed
over the driven modes. T ne

c then results from setting N ′ = N/2
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and approximating the coupling between driven and undriven
modes by nonresonant (K = 0) transitions [67].

VII. TRANSIENT CONDENSATION

Also for the driven system the relaxation is slower for
k < kcrit. When kc < kcrit < k2 (which can be achieved by
increasing G/ER to 0.1, e.g., via the bath density nB), we
observe that during the evolution first the undriven mode k2 =
2kc = 4π/(�a) acquires a large occupation [see Figs. 3(c) and
3(d)]. However, ultimately the system relaxes to its true steady
state with a condensate in k = kc (dashed lines).

VIII. CONCLUSIONS

We have described a mechanism for the controlled prepa-
ration of nonequilibrium steady states. It relies on the

combination of bath-induced dissipation and the driving-
induced engineering of scarlike quantum modes that, unlike
all other Floquet modes, do not suffer from Floquet heating.
Using realistic parameters for a system of bosonic atoms in
an optical lattice, we have demonstrated the preparation of
an excited-state Bose condensate for bath temperatures well
above the equilibrium condensation temperature. It will be
interesting to explore the construction of similar condensates
for the preparation of correlated target states of interacting
systems.
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