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We express the photoionization cross section of an atomic or molecular shape resonance in the form σ ∝
sin2 δ� which connects the cross section with the photoelectron scattering phase in the dominant partial wave �.
This expression allows us to relate the cross section with the photoelectron group delay (Wigner time delay) τW =
∂δ�/∂E which is measurable by recently developed laser interferometric techniques. Such a direct connection is
a fundamental property of shape resonances which provides a comprehensive test of time delay measurements
against a large body of older synchrotron cross-section data.
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Shape resonances (SRs) affect profoundly numerous phe-
nomena in physics, chemistry, and biology (see the Intro-
duction section of Ref. [1] for several fascinating examples).
SRs have long been intensely studied in electron-molecule
scattering [2] and molecular photoionization [3]. Similar reso-
nant features are observed in electron-atom scattering [4] and
atomic photoionization [5–7]. The formation of SRs is well
understood [2–4,8,9]. SRs are associated with the shape of
some effective potential in an open channel, normally a com-
bination of short-range attractive and long-range repulsive
potentials. Such a combination forms a barrier holding a large
portion of the electron wave function while the remaining part
of this wave function tunnels out. This normally occurs at
energies above and usually close to the threshold of that open
channel and is typically associated with a large photoelectron
angular momentum � � 2. A common property of SRs is that
they can be turned into bound states by a slight modification
of the target Hamiltonian [10,11]. In molecules, SRs can be
associated with antibonding vacant orbitals, typically of the
σ ∗ character [12,13].

A renewed interest in studying SRs has been promoted
by the recent development of laser interferometric tech-
niques which allowed one to resolve atomic and molecular
photoionization in time. One such technique, known as recon-
struction of attosecond beating by interference of two-photon
transitions (RABBITT), allowed experimentalists to measure
the photoelectron group delay in the SR region of various
molecules: N2 [1,14,15], N2O [16], CO2 [17], NO [18], and
CF4 [19,20]. A similar SR measurement in NO [21] was con-
ducted using an attosecond angular streaking technique [22].
The photoelectron group delay, also known as the Wigner time
delay, was introduced into particle scattering theory [23–25]
and then extended to various applications including photoion-
ization (see reviews [26–28]). In the presence of a SR, the
photoelectron propagation is naturally delayed relative to the
free-space propagation. Thus the Wigner time delay acquires
large positive values in the hundreds of attoseconds range
(1 as = 10−18 s).

In general, an accurate determination of the Wigner
time delay requires detailed knowledge of elastic scattering
phases and ionization amplitudes in various photoemission

channels. Gaining knowledge of all these quantities amounts
to performing a so-called complete photoemission experi-
ment [29–31]. However, in a simple case of an isolated SR
in a strongly dominant channel, the Wigner time delay can
be expressed as the energy derivative of the photoelectron
scattering phase in this particular channel τW = ∂δ�/∂E . In
this Letter, we demonstrate that the phase in such a case
can be extracted straightforwardly from the measured pho-
toionization cross section. The latter is connected with the
phase by a simple formula σ ∝ sin2 δ�. We derive this relation
from the integral equation relating the photoionization cross
section with the transition T matrix. The diagonal T matrix
allows us to express the unitary scattering S matrix and to
find the elastic scattering phase. We examine several shape
resonances in the nd → ε f , n = 3, 4 ionization channels of
the Xe atom and the I− negative ion which demonstrate the
σ (δ) relation to a very high precision. Then we examine the
SR in the NO molecule and find a consistency between the
measured photoionization cross section [32] and the resonant
Wigner time delay [30]. This way the experimental results
obtained over a span of 30 years are seamlessly bridged. The
SR analysis in the N2 molecule also supports our findings.

We start our derivation by expressing the photoionization
amplitude as an integral of with the transition T matrix,

Di(k) = di(k) +
∑

j

∫
p2d p d j (p)Gi, j (p, k)Ti j (p, k). (1)

Here, the indices i, j describe the residual ion and p, k denotes
the photoelectron momenta. The Green’s function

Gi j (k, p) = (εi + k2/2 − ε j − p2/2 − iε)−1 (2)

accounts for the energy nonconservation in the intermedi-
ate virtual state. We used Eq. (1) previously in convergent
close-coupling calculations of single-photon two-electron
ionization [double photoionization (DPI)] [33,34] which is
inherently related with inelastic electron scattering [35]. This
equation is exhibited graphically in the top row of diagrams
shown in Fig. 1. The transition T matrix is expressed via
the Coulomb V matrix by an infinite sequence of diagrams
displayed in the bottom row of this figure. The knowledge
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FIG. 1. Diagrammatic representation of the integrated dipole
matrix element D(k) (top) and the scattering T matrix (bottom). The
following graphical symbols are in use: The straight line with an
arrow to the right and left denotes a photoelectron and an ionic (hole)
state, respectively. The dotted line exhibits a photon, and the wavy
line stands for the Coulomb interaction. The shaded circle and oval
are used to represent the D and T matrices, respectively. The black
dot stands for the bare dipole matrix element D(k).

of the T matrix allows us to express the unitary scattering
S matrix. In the case of a single-channel scattering, the said
matrix is related to the elastic scattering phase [36]

S(k) = e2iδ(k) = 1 − i2πkT (k, k) = 1 + 2 Im G(k)T (k, k).
(3)

In the above expression, we dropped the single valued indices
i, j defining the ionic state in the dominant scattering channel.
The integral equation for the ionization amplitude (1) in a
single channel approximation is reduced to

D(k) = d (k) +
∫

d p d (p)G(p)T (p, k)

≈ d (k)Im G(k)T (k, k) = 1

2
d (k)[e2iδ(k) − 1]. (4)

Here, we assume that the integral term on the right-hand side
of Eq. (4) is dominant over the bare term near the resonance
and the Green’s function can be represented by its on-shell
imaginary part. Our numerical examples show that both as-
sumptions are satisfied to a high accuracy near a SR. By
squaring the modulus of the ionization amplitude (4) we arrive
at the cross section

σ = σmax sin2 δ(k). (5)

Here, σmax is the cross-section maximum at the resonance
which corresponds to δ(k) = π/2. A similar expression is
valid for the SR in the electron scattering,

σ�(k) = 4πk−2(2� + 1) sin2 δ�(k) (6)

(see Refs. [11,37]).
In our numerical demonstrations of the validity of Eq. (5),

we use several approximations of reducing complexity. The
most accurate photoionization calculations account for inter-
channel coupling between various atomic shells (intershell
correlation). Such calculations are performed using the ran-
dom phase approximation (RPA) [38]. In lesser accurate
calculations, we switch off the intershell correlation and
evaluate the ionization amplitude as a radial integral be-
tween the bound and continuum wave functions found in the
Hartree-Fock (HF) approximation [39,40]. By observing a
close agreement between the RPA and HF photoionization

FIG. 2. Top: Photoionization cross sections of the nd shells of
I− (left) and Xe (right). The HF cross sections in the dominant
nd → ε f channels are compared with the cross sections derived
from the corresponding HF phases using Eq. (5). Also shown are
the RPA calculation for the whole 4d shell of I− correlated with
the 5s and 5p shells. A similar 4d RRPA calculation by Radojević
and Kelly [41] is marked RK. The 4d cross section of Xe is com-
pared with the experimental data [42,43]. Bottom: Time delay in the
nd → ε f , n = 3, 4 channels of I− (left) and Xe (right) as calculated
from the corresponding scattering phases and the photoionization
cross sections. In Xe, the scattering phase and time delay are also
derived from the experimental cross sections (dots) and the spherical
well model [7] (black solid lines).

cross sections we ensure the SR is indeed a single-channel
phenomenon. Finally, we evaluate the cross section from the
elastic scattering phase δ� found in the HF approximation. For
neutral atomic targets, we subtract the long-range Coulomb
phase and use the phase difference Δ� = δ� − σ�. It appears
that the smooth Coulomb phase plays an insignificant role in
the SR formation.

We start our numerical demonstrations with the SR in the
nd → ε f , n = 3, 4 ionization channels of the I− negative ion.
We use the ionic target to eliminate the long-range Coulomb
potential which would otherwise dominate the nonresonant
Wigner time delay near the threshold. The top left panel of
Fig. 2 displays the photoionization cross sections of the 3d
and 4d shells of I− calculated in the HF approximation as well
as derived from the corresponding elastic scattering phases
using Eq. (5). For comparison we display the RPA calculation
for the whole 4d shell cross section correlated with the 5s
and 5p shells. The relativistic RPA (RRPA) calculation for the
4d shell [41] is also shown. We observe a close proximity of
the RPA and HF cross sections which differ only marginally
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from the phase-derived cross sections. The relativistic effects
are also insignificant here. These observations support our as-
sumption that the SR is largely a single-channel phenomenon
and the cross section is derived mostly from the elastic scat-
tering phase in a given partial wave. The bottom left-hand
panel of Fig. 2 displays the time delay in the nd → ε f , n =
3, 4 ionization channels. The two sets of differently styled
curves exhibit the time delay in each channel as obtained by
energy differentiation of the corresponding elastic scattering
phase τ (δ) and as obtained from the photoionization cross
section τ (σ ) using Eq. (5). The two methods of time delay
determination produce very close results.

Similar data for Xe are presented in the right-hand set
of panels in Fig. 2. The calculated 4d cross sections are
compared with the experimental data [42,43]. For the reso-
nant time delay calculations, the effect of the Coulomb field
is removed by using the reduced HF phases Δ� = δ� − σ�

where the analytically known Coulomb phases σ� [44] are
subtracted. Both the phase-derived τ (�) and cross-section-
derived τ (σ ) time delays are even closer in Xe than in the
case of I− as correlation effects are weakened in Xe by the
Coulomb field of the ion remainder.

In both considered targets, I− and Xe, the SR position de-
pends very strongly on the depth of the nd hole. The Coulomb
attractive potential acting on the departing photoelectron is
stronger for a deeper 3d hole which is screened less by outer
atomic shells. Such an un-screened Coulomb potential coun-
ters the repulsive centrifugal potential more efficiently. As a
result, the lower-energy photoelectrons are trapped into the
SR. This effect is somewhat stronger in the neutral Xe atom
in comparison with the negative I− ion. The photoelectron
phase variation in the SR is close to one unit of π . When this
variation occurs inside a narrow SR, the energy derivative of
the phase and the corresponding Wigner time delay increase
proportionally.

Connerade [37] applied a simple spherical well model to
describe the SR in the 4d photoionization of Xe and neigh-
boring atoms. In this model, the photoelectron phase in the f
wave is expressed analytically via the spherical Bessel func-
tions

tan δ3 = z j3(z′) j2(z) − z′ j3(z) j2(z′)
z j3(z′) j−3(z) + z′ j−4(z) j2(z′)

. (7)

Here, z = ak and z′ = a
√

k2 + 2D are functions of the photo-
electron momentum k, depth D, and radius a of the spherical
potential well. Thus the found phase δ3 is fed into Eq. (6)
with � = 3 to find the cross section which is displayed in the
bottom panel of Fig. 1 of Ref. [37]. We retrofit this cross
section with Eq. (6) and display thus extracted phase and
time delay in the middle and bottom right-hand panels of
Fig. 2. The time delay in this model is markedly different
from our calculations and the time delay obtained by feeding
the experimental data [42,43] into Eq. (5). More notably,
the spherical well model fails completely for the SR in the
3d photoionization. This indicates a much more complicated
structure of this SR.

Next, we apply our analysis to the NO molecule. Here,
the SR occurs because an unoccupied antibonding 6σ (σ ∗)
orbital appears at a positive energy and merges with the kσ

final state continua. In the meantime, an antibonding 2π (π∗)

FIG. 3. Top: Photoionization cross sections of the core O 1s [32]
and valence 4σ [30] photoionization of NO. Middle: The photoelec-
tron phases δ(σ ) derived from the cross sections exhibited in the
top panel. The 4σ → kσ eigenphase from Ref. [30] is shown for
comparison. Bottom: The Wigner time delay τW obtained by energy
differentiation of the phases derived from the corresponding cross
sections. The τ (σ ) time delay is compared with the Fano formula
delays calculated and measured in Ref. [30].

orbital falls into the discrete spectrum and manifests itself as
an isolated peak in the photoabsorption cross section. Due to
this mechanism, the σ ∗ resonance is expected to be similar
both in the core and valence shell ionization. We demon-
strate this effect in Fig. 3 where we compare the oxygen 1s
[32] and the valence 4σ [30] photoionization of NO. The
corresponding photoionization cross sections are displayed in
the top panel of the figure. The absolute 4σ photoionization
cross section is read from Fig. 1 of Ref. [30]. The relative
O 1s cross section is read from Fig. 2 of Ref. [32] and
scaled arbitrarily. In the middle panel of Fig. 3 we display
the photoelectron scattering phases δ(σ ) extracted from the
photoionization cross sections exhibited in the top panel. For
the valence 4σ ionization, we make a comparison with the
photoelectron scattering eigenphase exhibited in Fig. 5 of
Ref. [30]. The latter phase is shifted vertically to match the
cross-section-derived phase. This shift does not affect the time
delay which is expressed via the phase derivative. The phase
comparison shows their rather similar slopes which are trans-
lated into similar time delays displayed in the bottom panel
of Fig. 3. In the case of the valence 4σ ionization, the time
delay compares very closely with the Fano-derived delays
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FIG. 4. Top: Photoionization cross sections of the N2 molecule
as calculated in Ref. [1] and measured in Refs. [45,46]. The ex-
perimental cross section is fitted with the spherical well ansatz (6).
Bottom: The time delay derived from the calculated and measured
cross sections are compared with direct calculations of Ref. [1] for
the two lowest vibrational states ν = 0, 1 of the final X 2+

g ionic
state.

obtained from the calculated and measured data in Ref. [30].
These observations support the validity of the phase and time
delay extraction from the corresponding photoionization cross
sections. We also observe a rather similar phase variation
and time delay in the core and valence shell photoionization.
This is in sharp contrast to the atomic case illustrated in
Fig. 2. Such a profound difference is explained by different
mechanisms of the SR formation. In atoms, it is a com-
petition of the attractive Coulomb and repulsive centrifugal
potentials that leads to trapping the photoelectron in a SR.
In molecules, it is the trapping the photoelectron into a va-
cant antibonding σ ∗ orbital which is rather insensitive to the
photoelectron birth orbital. The only difference is an insignif-
icant shift of the resonance energy which is marginal on the
scale of the vastly different core and valence shell ionization
potentials.

Finally, we derive the Wigner time delay from the cross
section of the valence 3σ photoionization of the N2 molecule.
Here, the (3σ−1

g )X 2+
g channel contains a σ → σ ∗ shape

resonance merging with the 3σg → kσu continuum. For our
analysis, we take the measured and calculated cross sections

displayed in Fig. 3(B) of Ref. [1] and replot them in the
top frame of Fig. 4. There is an insignificant energy shift
between the calculation and experiment due to the simplicity
of the used theoretical model. The experimental data points
are scattered and an analytic fit with Eq. (6) is applied to feed
them, along with the calculated cross section, to Eq. (5). Thus
derived phases are converted to the Wigner time delay by en-
ergy differentiation and the results are displayed in the bottom
frame of Fig. 4. These results are compared with the time
delays calculated in Ref. [1] for the two lowest vibrational
states ν = 0, 1 of the final X 2+

g ionic state which contains
the SR. While the fine details of the cross-section-derived and
directly calculated time delays differ, the overall shape and
magnitude of both sets are quite similar.

In conclusion, we derive and test a fundamental relation
between the cross section and the time delay in the region of a
shape resonance in photoionization of atoms and molecules.
While this relation is natural in electron scattering, it is
demonstrated and rigorously proven in photoionization. This
relation signifies an intimate link of photoionization and elec-
tron scattering processes which was demonstrated previously
in DPI [33–35]. We support our findings by considering sev-
eral examples of atomic SRs in the nd shells of Xe and I−
and molecular SRs in the nσ shells of N2 and NO. In the
latter molecule, the SR in the core O 1s photoionization is
also considered. In the atomic cases, the δ(σ ) scattering phase
produces the time delay which is almost identical with the
directly calculated value. In molecules, small differences exist
between the two sets but, generally, they agree remarkably
well for such a simple model that we offer. The importance
of the present findings is that they help to link a large data
set of synchrotron measurements (see, e.g., Ref. [47]) with
the recent laser-based interferometric experiments. This link
offers a rigid test that allows one to examine the consistency
of the two sets of data. Another important observation is
how the time delay varies when the depth of the atomic or
molecular hole state changes. In atoms, the time delay grows
for inner shells in comparison with their valence counterparts.
This finding supports the SR model in which the Coulomb
field of the ionic core counterbalances the centrifugal potential
in a large � partial wave. In molecules, another competing
explanation is more relevant in which the SR occurs due to a
trapping of the photoelectron in a nonbonding vacant orbital.
Such a trapping is rather insensitive to the birth place of the
photoelectron.

Extension of the present work to spin-resolved shape reso-
nances as in Refs. [48,49] is underway.

The authors thank James Cryan and Taran Driver for many
stimulating discussions.
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[11] J. Horáček, Resonance cross-section formula for low-energy
elastic scattering, Phys. Rev. A 100, 032709 (2019).

[12] P. W. Langhoff, Molecular photoionization resonances. A
theoretical chemist’s perspective, in Resonances in Electron-
Molecule Scattering, van der Waals Complexes, and Reactive
Chemical Dynamics, edited by D. G. Truhlar, ACS Symposium
Series Vol. 263 (American Chemical Society, Washington, DC,
1984), Chap. 7, pp. 113–138.

[13] M. Piancastelli, The neverending story of shape resonances, J.
Electron Spectrosc. Relat. Phenom. 100, 167 (1999).

[14] S. Haessler, B. Fabre, J. Higuet, J. Caillat, T. Ruchon, P.
Breger, B. Carré, E. Constant, A. Maquet, E. Mével, P. Salieres,
R. Taieb, and Y. Mairesse, Phase-resolved attosecond near-
threshold photoionization of molecular nitrogen, Phys. Rev. A
80, 011404(R) (2009).

[15] V. Loriot, A. Marciniak, S. Nandi, G. Karras, M. Hervé, E.
Constant, E. Plésiat, A. Palacios, F. Martín, and F. Lépine,
Attosecond ionization time delay around a shape resonance
in nitrogen measured by the RABBIT-2ω method, in 2021
Conference on Lasers and Electro-Optics Europe & Euro-
pean Quantum Electronics Conference (CLEO/Europe-EQEC)
(IEEE, New York, 2021), pp. 1–1.

[16] M. Huppert, I. Jordan, D. Baykusheva, A. von Conta, and
H. J. Wörner, Attosecond Delays in Molecular Photoionization,
Phys. Rev. Lett. 117, 093001 (2016).

[17] A. Kamalov, A. L. Wang, P. H. Bucksbaum, D. J. Haxton, and
J. P. Cryan, Electron correlation effects in attosecond photoion-
ization of CO2, Phys. Rev. A 102, 023118 (2020).

[18] X. Gong, W. Jiang, J. Tong, J. Qiang, P. Lu, H. Ni, R. Lucchese,
K. Ueda, and J. Wu, Asymmetric Attosecond Photoionization in
Molecular Shape Resonance, Phys. Rev. X 12, 011002 (2022).

[19] H. Ahmadi, E. Pl/’esiat, M. Moioli, F. Frassetto, L. Poletto,
P. Decleva, C. D. Schröter, T. Pfeifer, R. Moshammer, A.
Palacios et al., Attosecond photoionisation time delays reveal
the anisotropy of the molecular potential in the recoil frame,
Nat. Commun. 13, 1242 (2022).

[20] S. Heck, D. Baykusheva, M. Han, J.-B. Ji, C. Perry, X. Gong,
and H. J. Wörner, Attosecond interferometry of shape reso-
nances in the recoil frame of CF4, Sci. Adv. 7, eabj8121 (2021).

[21] T. Driver, E. G. Champenois, J. P. Cryan, S. Li, A. Marinelli,
P. Rosenberger, M. F. Kling, L. Ortmann, and A. Landsman,

Attosecond electron correlation and molecular resonance in K-
shell pPhotoexcitation of nitric oxide, in 51st Annual Meeting
of the APS Division of Atomic, Molecular and Optical Physics
(APS, New York, 2020).

[22] A. S. Kheifets, R. Wielian, V. V. Serov, I. A. Ivanov, A. L.
Wang, A. Marinelli, and J. P. Cryan, Ionization phase retrieval
by angular streaking from random shots of XUV radiation,
Phys. Rev. A 106, 033106 (2022).

[23] L. Eisenbud, Formal properties of nuclear collisions, Ph.D. the-
sis, Princeton University, 1948.

[24] E. P. Wigner, Lower limit for the energy derivative of the scat-
tering phase shift, Phys. Rev. 98, 145 (1955).

[25] F. T. Smith, Lifetime matrix in collision theory, Phys. Rev. 118,
349 (1960).

[26] C. A. A. de Carvalho and H. M. Nussenzveig, Time delay, Phys.
Rep. 364, 83 (2002).

[27] P. C. Deshmukh and S. Banerjee, Time delay in atomic and
molecular collisions and photoionisation/photodetachment, Int.
Rev. Phys. Chem. 40, 127 (2021).

[28] P. C. Deshmukh, S. Banerjee, A. Mandal, and S. T. Manson,
Eisenbud-Wigner-Smith time delay in atom-laser interactions,
Eur. Phys. J. Spec. Top. 230, 4151 (2021).

[29] N. A. Cherepkov, G. Raseev, J. Adachi, Y. Hikosaka, K. Ito, S.
Motoki, M. Sano, K. Soejima, and A. Yagishita, K-shell pho-
toionization of CO: II. Determination of dipole matrix elements
and phase differences, J. Phys. B: At., Mol. Opt. Phys. 33, 4213
(2000).

[30] F. Holzmeier, J. Joseph, J. C. Houver, M. Lebech, D. Dowek,
and R. R. Lucchese, Influence of shape resonances on the
angular dependence of molecular photoionization delays, Nat.
Commun. 12, 7343 (2021).

[31] J. Rist, K. Klyssek, N. M. Novikovskiy, M. Kircher, I. Vela-
Pérez, D. Trabert, S. Grundmann, D. Tsitsonis, J. Siebert, A.
Geyer et al., Measuring the photoelectron emission delay in the
molecular frame, Nat. Commun. 12, 6657 (2021).

[32] N. Kosugi, J. Adachi, E. Shigemasa, and A. Yagishita,
High-resolution and symmetry-resolved N and O K-edge
absorption spectra of NO, J. Chem. Phys. 97, 8842
(1992).

[33] I. Bray, D. V. Fursa, A. S. Kheifets, and A. T. Stelbovics, Theory
of electrons and photons colliding with atoms, J. Phys. B: At.,
Mol. Opt. Phys. 35, R117 (2002).

[34] I. Bray, D. Fursa, A. Kadyrov, A. Stelbovics, A. Kheifets,
and A. Mukhamedzhanov, Electron- and photon-impact atomic
ionisation, Phys. Rep. 520, 135 (2012).

[35] J. A. R. Samson, Proportionality of Electron-Impact Ioniza-
tion to Double Photoionization, Phys. Rev. Lett. 65, 2861
(1990).

[36] B. Bransden, Atomic Collision Theory, Lecture Notes and Sup-
plements in Physics (W. A. Benjamin, New York, 1970).

[37] J. P. Connerade, A general formula for the profiles of “giant
resonances”, J. Phys. B 17, L165 (1984).

[38] M. Y. Amusia, Atomic Photoeffect (Plenum, New York, 1990).
[39] L. V. Chernysheva, N. A. Cherepkov, and V. Radojevic, Self-

consistent field Hartree-Fock program for atoms, Comput.
Phys. Commun. 11, 57 (1976).

[40] L. V. Chernysheva, N. A. Cherepkov, and V. Radojevic,
Frozen core Hartree-Fock programm for atomic discrete
and continuous states, Comput. Phys. Commun. 18, 87
(1979).

L021102-5

https://doi.org/10.1103/PhysRev.167.7
https://doi.org/10.1103/RevModPhys.40.441
https://doi.org/10.1109/TNS.1983.4332445
https://doi.org/10.1088/0953-4075/31/7/007
https://doi.org/10.1103/PhysRevA.100.032709
https://doi.org/10.1016/S0368-2048(99)00046-8
https://doi.org/10.1103/PhysRevA.80.011404
https://doi.org/10.1103/PhysRevLett.117.093001
https://doi.org/10.1103/PhysRevA.102.023118
https://doi.org/10.1103/PhysRevX.12.011002
https://doi.org/10.1038/s41467-022-28783-x
https://doi.org/10.1126/sciadv.abj8121
https://doi.org/10.1103/PhysRevA.106.033106
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1103/PhysRev.118.349
https://doi.org/10.1016/S0370-1573(01)00092-8
https://doi.org/10.1080/0144235X.2021.1838805
https://doi.org/10.1140/epjs/s11734-021-00225-7
https://doi.org/10.1088/0953-4075/33/20/302
https://doi.org/10.1038/s41467-021-27360-y
https://doi.org/10.1038/s41467-021-26994-2
https://doi.org/10.1063/1.463359
https://doi.org/10.1088/0953-4075/35/15/201
https://doi.org/10.1016/j.physrep.2012.07.002
https://doi.org/10.1103/PhysRevLett.65.2861
https://doi.org/10.1088/0022-3700/17/6/003
https://doi.org/10.1016/0010-4655(76)90040-0
https://doi.org/10.1016/0010-4655(79)90026-2


ANATOLI S. KHEIFETS AND STEPHEN CATSAMAS PHYSICAL REVIEW A 107, L021102 (2023)
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