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The hyperfine structures of the 2 3S1 and 2 3PJ states of 7Be2+ and 9Be2+ are investigated within the framework
of the nonrelativistic quantum electrodynamics, including relativistic and radiative corrections up to order mα6.
The uncertainties of the calculated hyperfine splittings are on the order of tens of ppm, and for 9Be2+ our results
improve the previous theoretical and experimental values by at least two orders of magnitude. The improved
sensitivity of the hyperfine splittings of 7,9Be2+ to the nuclear Zemach radius and electric quadrupole moment
opens the way to future measurements to extract the atomic physics values of these two nuclear properties to an
accuracy of 5% or better.
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I. INTRODUCTION

Helium and heliumlike ions are among the simplest atomic
systems whose electronic structures can be calculated with
high precision using the well-developed theoretical methods
[1–7] of which the nonrelativistic quantum electrodynamics
(NRQED) is the most effective approach for light atomic sys-
tems [8–11]. For the helium 2 3PJ fine-structure, for example,
the NRQED-based calculation has achieved a precision of
about 1.7 kHz, far exceeding all other theoretical methods
that were based on Dirac-like formalism [12]. Experimen-
tally, Clausen et al. [13] recently reported a much improved
determination of the He 2 1S0 ionization energy at the level
of 32 kHz, which is in good accord with theory. However,
the derived experimental ionization energies of the 2 3S1 and
2 3PJ states are in disagreement with theoretical predictions by
6.5σ and 10σ , respectively. Li+ is very similar to helium with
a higher Z and its QED effect is more significant than helium.
For the 2 3P1 -2 3P2 fine-structure interval, for example, the
QED contribution of order mα6 and higher in Li+ is a factor
of 26 larger than helium [14]. The hyperfine splittings (hfs)
of Li+ were studied in our previous work using the NRQED
theory [5]. The theoretical uncertainty is reduced to less than
100 kHz by a complete calculation of all the QED corrections
up to mα6. The so-called Zemach radius, which is defined
as the convolution of the electric charge and the magnetic
moment distributions inside the nucleus, can be extracted
by combining precision measurements [14]. The obtained
Zemach radius for 7Li is in good agreement with previous
values, but the value for 6Li disagrees with the nuclear physics
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one [15] by more than 6σ , indicating an anomalous nuclear
structure for 6Li.

The next low-Z atom in the periodic table is beryllium,
which has many isotopes, including a one-neutron halo 11Be
and a two-neutron halo 14Be [16–19]. With the exception
of the stable 9Be nucleus, all other isotopes are unstable
and thus atomic spectroscopy at the single-atom limit pro-
vides a uniquely powerful probe of their nuclear properties.
There are some spectroscopic measurements to explore Be
nuclear structure [16,18,20–24]. Blachman and Lurio [20]
measured the 9Be hyperfine structure and determined the
nuclear quadrupole moment. Using laser-fluorescence mass
spectroscopy, Wineland et al. [21] measured the 9Be+ hyper-
fine A constant and derived indirectly the proton-to-electron
mass ratio and the bound electron g factor. Okada et al. [22]
determined the 7Be nuclear magnetic dipole moment to high
precision by laser-microwave double-resonance spectroscopy.
The nuclear charge radii of 7,9,10,11,12Be were determined by
Nörtershäuser et al. [16,18] using collinear laser spectroscopy.
Puchalski et al. [25] calculated the hyperfine splittings of
9Be using explicitly correlated Gaussian (ECG) functions
and accurately extracted the nuclear quadrupole moment by
combining the hyperfine structure measurements of Blachman
and Lurio [20], although it was inconsistent with most of the
previous determinations. However, for the 7Be nucleus, only
nuclear physics determinations of the nuclear quadrupole mo-
ment exist and there are noticeable differences between them,
e.g., −6.11 fm2 [26], −5.50(48) fm2, and −4.68(28) fm2

[27].
Here we choose the helium-like Be2+ isotopes and explore

their nuclear properties for the following reasons. First, they
are suitable candidates for laser spectroscopy measurements
because the transition wavelength of 2 3S −2 3P is 372 nm
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[28], which is near to the visible region. Second, since Be2+ is
a three-body system, the QED theory is relatively simpler than
for neutral Be. Third, experimental work on Be2+ is sparse
compared to helium and Li+. Scholl et al. [28] measured
the 1s2s 3S1 −1s2p 3PJ transition of the 9Be2+ ion by applying
the fast ion beam laser fluorescence method with an accuracy
of 1 part in 108, which represents a three orders of magni-
tude improvement over previous measurements. The extracted
fine and hyperfine splittings are accurate to the order of tens
of ppm and a few parts in 103, respectively. Johnson et al.
[29] calculated the 2 3PJ hfs of 9Be2+ to four-figure accuracy
using the relativistic configuration interaction method. With
advances in experimental techniques, especially the emer-
gence of new light sources with narrow linewidths in the XUV
region [30–32], it is now possible to improve the measurement
of Be2+ to a new level of accuracy.

The purpose of this paper is to present a systematic calcula-
tion of hyperfine splittings for the 2 3S1 and 2 3PJ states of the
7,9Be2+ ions by including QED corrections up to order mα6.
The possibility of determining the nuclear Zemach radius
and the electric quadrupole moment of a Be isotope based
on Be2+ spectroscopy will be discussed. The remaining part
of the Letter is organized as follows. Section II outlines the
basic theoretical framework. Section III details various QED
contributions to the hfs of 2 3S1 and 2 3PJ states of 7,9Be2+.
Some discussion on the impact of nuclear properties on hfs is
presented in Sec. IV. Finally, a summary is given in Sec. V.
Atomic units (a.u.) are used unless otherwise stated.

II. THEORETICAL METHOD

The NRQED theory for quasidegenerate states was applied
to calculate fine- and hyperfine structure splittings of light
atomic systems [4,5,33–35]. Here we outline the framework
for calculating relativistic and QED corrections to an energy
level. Figure 1 shows the energy level diagram for 9Be2+ (the
diagram for 7Be2+ is similar to 9Be2+ since they have the same
nuclear spin 3/2). The energies of the 2 3S1 and 2 3PJ states are
obtained by diagonalizing the effective Hamiltonian H with
matrix elements

EF
JJ ′ ≡ 〈JFMF |H |J ′FMF 〉, (1)

where MF is the projection of the total angular momentum
F , which can be fixed arbitrarily since the energies are inde-
pendent of it. For convenience, we take the 2 3PJ centroid as
the reference point. The above matrix elements Eq. (1) can be
expanded in powers of the fine-structure constant α,

EF
JJ ′ = 〈Hfs〉JδJJ ′ + 〈

H (4+)
hfs

〉 + 〈
H (6)

hfs

〉

+ 2
〈
H (4)

hfs ,
[
H (4)

nfs + H (4)
fs

]〉 + 〈
H (4)

hfs , H (4)
hfs

〉

+ 〈
H (6)

QED

〉 + 〈
Hho

QED

〉 + 〈Hnucl〉 + 〈Heqm〉, (2)

where 〈A, B〉 ≡ 〈A 1
(E0−H0 )′ B〉, with H0 and E0 being the non-

relativistic Hamiltonian and its eigenvalue. Hfs is the effective
operator that does not depend on the nuclear spin and is
responsible for the fine-structure splittings [12,36]. All other
terms in Eq. (2) are nuclear spin-dependent contributions.
H (4)

hfs is the leading-order hyperfine Hamiltonian of mα4 and
H (4+)

hfs is H (4)
hfs with the higher-order terms from the recoil
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FIG. 1. Hyperfine energy levels (not to scale) of the 2 3S1 and
2 3PJ states of 9Be2+.

and anomalous magnetic moment effects included. H (6)
hfs is the

effective operator for the hyperfine splittings of order mα6.
H (4)

fs and H (4)
nfs are the Breit Hamiltonians of order mα4 with

and without electron spin. The fifth term in Eq. (2) is the
second-order hyperfine correction, which contributes to the
isotope shift, and fine and hyperfine splittings. H (6)

QED and Hho
QED

are the two effective operators for the QED corrections of
order mα6 and higher ∼mα7. Finally, Hnucl and Heqm represent
the nuclear effects due to the Zemach radius and the nuclear
electric quadrupole moment.

We solve the eigenvalue problem of H0 variationally in
Hylleraas coordinates. The relativistic and QED corrections,
as well as the corrections due to nuclear structure, are evalu-
ated perturbatively. The Hylleraas basis set [37] is constructed
according to

ψ�mn(�r1, �r2) = r�
1rm

2 rne−αr1−βr2−γ rYLM
�1�2

(r̂1, r̂2), (3)

where �r = �r1 − �r2 and YLM
�1�2

(r̂1, r̂2) is the vector-coupled
product of spherical harmonics for the two electrons. The
mass polarization operator due to finite nuclear mass is in-
cluded explicitly in the Hamiltonian for all terms in Eq. (2)
except for the small second-order terms, and 〈Hfs〉, which is
determined from the experiment. The rate of convergence of
some of the second-order terms can be greatly accelerated by
including in the pseudostate basis sets terms that are more
singular by an additional factor of 1/r1 or 1/r2 [38]. These
terms do not contribute to the nonrelativistic wave function,
but they do contribute to the solution to the correspond-
ing perturbation equation. The necessary angular momentum
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TABLE I. Expectation values of hfs operators for the 2 3S1 and
2 3PJ states of 7Be2+ and 9Be2+. The listed numerical values are
uncertain only at the last digits. In atomic units.

State Operator 7Be2+ 9Be2+

2 3S1 4πδ3(�r1) 137.731960 137.739110

K ′ −157.232037 −157.232037

2 3PJ 4πδ3(�r1) 126.232881 126.239606

(�r1 × �p1)/r3
1 1.814143 1.814146

(�r1 × �p2)/r3
1 −2.602150 −2.602181

(δi j − 3ri
1r j

1/r2
1 )/r3

1 −0.671762 −0.671769

K ′ 55.3670854 55.3670854
�K −145.86034 −145.86034

K̂ −82.07829 −82.07829

operators, which can be evaluated analytically [5,34], are SiLi,
I iLi, I iSi, {SiS j}{LiL j}, I iS j{LiL j}, I iL j{SiS j}, {I iI j}{SiS j},
{I iI j}{LiL j}, {I iI j}LiS j , and {I iI j}[{SmSn}{LkLl}]i j , where
{SiS j} ≡ 1

2 SiS j + 1
2 S jSi − 1

3
�S2δi j and the summation over re-

peated indices is assumed.

III. HFS OF 2 3S1 AND 2 3PJ STATES

The hyperfine structure operators responsible for relativis-
tic and QED corrections to the 2 3S1 and 2 3PJ states of
helium-like ions are defined in our previous Ref. [5] and the
present Supplemental Material [39]. Table I lists the results of
first-order perturbation for the mα4 and mα6 operators.

The second-order corrections of mα6 can be divided into
several parts according to the symmetries of the intermedi-
ate states. For the 2 3S1 state, the intermediate states are 3S,
3P, 3D, and 1S, whereas for 2 3PJ they are 3P, 1P, 3D, 1D,
and 3F . Numerical results of various operators for the radial
parts are presented in Table II. Since the second-order hy-
perfine correction 〈H (4)

hfs , H (4)
hfs 〉 is divergent, we calculate only

the dominant contribution from the 2 1P1 intermediate state.
Here the uncertainty of 〈PA, PA〉◦ in Table II is only com-
putational. We also use the method in Ref. [34] to estimate
the uncertainty due to this approximation, i.e., calculate the
second-order perturbation of 〈P′

A, P′
A〉, and then take the differ-

ence between 〈PA, PA〉◦ and 〈P′
A, P′

A〉 as the uncertainty, which
is 10 000 a.u. for 2 3S1 and 15 000 a.u. for 2 3PJ . This translates
into uncertainties of less than 2 × 10−10 cm−1 in the hfs.

We calculate the hfs of the 2 3S1 and 2 3PJ states using
the values in Tables I and II. The contribution from the
higher-order QED corrections is calculated from the weighted
average [40,41]

Hho
QED(1s2�) = Hho

QED(1s) + Hho
QED(2�)/8

1 + δ�,0/8
, (4)

with � = 0, 1 for 2s, 2p, respectively. The uncertainty
of the contribution is estimated as 20% of the contri-
bution. According to Eq. (2), the hfs calculation of the
2 3PJ state requires the fine-structure splittings, which are
〈Hfs〉J=0 = (8 f01 + 5 f12)/9, 〈Hfs〉J=1 = (− f01 + 5 f12)/9, and
〈Hfs〉J=2 = (− f01 − 4 f12)/9, relative to the 2 3PJ centroid,
with f01 = 11.5586(5) cm−1 and f12 = −14.8950(4) cm−1

TABLE II. Second-order matrix elements for all possible inter-
mediate states connected to the 2 3S1 and 2 3PJ states. The listed
numerical values are uncertain only at the last digits when not given
explicitly. In atomic units.

State Symmetry 〈A, B〉 Value

2 3S1
3S 〈P′, G′〉 4592.8
3P 〈 �P, �G〉 0.140
3D 〈P̂, Ĝ〉 0.87
1S 〈PA, PA〉◦ −839 249.282

〈P′
A, P′

A〉 −848 800(200)
2 3PJ

3P 〈P′, G′〉 4024.6(5)
〈 �P, G〉 86.9(5)
〈P̂, G〉 40(5)
〈P, �G〉 26.678
〈 �P, �G〉 −64.1
〈P̂, �G〉 −39.8427
〈P, Ĝ〉 6.714(5)
〈 �P, Ĝ〉 19.323
〈P̂, Ĝ〉 8.882

1P 〈PA, �GA〉 9054.88(5)
〈PA, �GA〉◦ 9021.158
〈P̂A, �GA〉 −176.7(5)
〈P̂A, �GA〉◦ −139.044
〈PA, PA〉◦ −1 785 103.485
〈P′

A, P′
A〉 −1 797 300(200)

〈PA, P̂A〉◦ 27 527.773
〈P̂A, P̂A〉◦ −2547.006

3D 〈 �P, �G〉 0.044
〈P̂, �G〉 −0.0149824
〈 �P, Ĝ〉 1.563(5)
〈P̂, Ĝ〉 –0.0688

1D 〈P̂A, �GA〉 0.348(5)
3F 〈P̂, Ĝ〉 0.628(5)

for 9Be2+ [28]. The fine-structure splittings of 7Be2+ are
obtained by changing the reduced mass accordingly i.e.,
f01 = 11.558(2) cm−1 and f12 = −14.895(2) cm−1. In our
calculations, the nuclear magnetic dipole moments are

TABLE III. Theoretical values for individual 2 3S1 and 2 3PJ

energy levels in 7Be2+ and 9Be2+, relative to the 2 3S1 and 2 3PJ

centroid, where the first error in 2 3P is due to the fine structure and
the second is due to the hyperfine structure, in cm−1.

State (J, F ) 7Be2+ 9Be2+

2 3S (1, 1/2) 0.68251(1) 0.574282(6)
(1, 3/2) 0.27300(1) 0.229708(3)
(1, 5/2) −0.40950(1) −0.344566(4)

2 3P (2, 1/2) 5.90767(100)(1) 5.817172(190)(6)
(2, 3/2) 5.72041(100)(1) 5.658805(190)(4)
(2, 5/2) 5.40467(100)(1) 5.392683(190)(1)
(2, 7/2) 4.95513(100)(1) 5.015548(190)(4)
(0, 3/2) 2.01174(200)(1) 2.008479(500)(1)
(1, 1/2) −9.23556(110)(1) −9.287087(230)(3)
(1, 3/2) −9.44648(110)(1) −9.461891(230)(1)
(1, 5/2) −9.75933(110)(1) −9.727037(230)(2)
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TABLE IV. Calculated values of 7Be2+ and 9Be2+ hfs coeffi-
cients for the 2 1P1 and 2 3PJ states, in cm−1. These coefficients are
defined in Eqs. (10) to (12) of Ref. [36]. The listed numerical values
are uncertain only at the last digits.

Coefficient 7Be2+ 9Be2+

C (0)
1,1 −0.24990 −0.210283

C (0)
1,0 −0.25126 −0.211428

D(0)
1 −0.00440 −0.003701

D(0)
0 −0.00317 −0.002663

E (0)
1,1 0.00112 0.000938

E (0)
1,0 0.00097 0.000815

−1.39928(2) μN [22] and −1.177432(3) μN [16] and the
nuclear quadrupole moments are −6.11 fm2 (the theoretical
value from Ref. [26]) and 5.350(14) fm2 [25] for 7Be2+ and
9Be2+, respectively. The Zemach radius of 9Be is 4.07(5) fm
derived from a comparison between the theory and experiment
of the lithiumlike 9Be+ [25]. For 7Be it is 3.45(11) fm, which
is estimated by Rem = 4Re/

√
3π using the Gaussian distribu-

tion [36] and Re = 2.647(17) fm is the nuclear charge radius
[16]. To be conservative, we choose five times the uncertainty
from Re as the error in Rem. The hyperfine levels of 2 3S1

and 2 3PJ states can be obtained by diagonalizing the matrix
formed by Eq. (2) and the results relative to the 2 3S1 and 2 3PJ

centroids are listed in Table III.
Singlet-triplet mixing for the n = 2 manifold of P states

eventually becomes saturated with increasing Z , and so should
be treated by exact diagonalization [5,39] instead of second-
order perturbation theory. To check the effect for Z = 4, we
compared the results of a restricted diagonalization within
the 2 3PJ manifold of hyperfine states (method 1), with the
results of an extended diagonalization that includes also the
2 1PJ hyperfine states (method 2). Both the methods include
the relativistic corrections of order mα4. The second-order
matrix elements and the hyperfine structure coefficients [36]
for the 2 1P1 and 2 3PJ states are listed in Tables II and IV as
inputs. The hfs of 2 3PJ obtained by both methods is compared
in Table V. The extended diagonalization (method 2) al-
ters the hyperfine intervals (1, 1/2) − (1, 3/2) and (1, 3/2) −
(1, 5/2) by 0.000322 cm−1 and 0.000516 cm−1 for 9Be2+,
whereas for 7Be2+ they are 0.00038 cm−1 and 0.00061 cm−1,
respectively. These shifts are about three orders of magnitude
larger than for the case of 7Li+ with Z = 3. Our final results

TABLE V. Hyperfine splittings in 2 3PJ of 7Be2+ and 9Be2+, in
cm−1. Only the relativistic correction of order mα4 is included. The
listed numerical values are uncertain only at the last digits.

(J, F ) − (J ′, F ′) Method 1 Method 2 Difference

7Be2+ (2, 1/2) − (2, 3/2) 0.18729 0.18729
(2, 3/2) − (2, 5/2) 0.31552 0.31552
(2, 5/2) − (2, 7/2) 0.44873 0.44872 −0.00001
(1, 1/2) − (1, 3/2) 0.21031 0.21069 0.00038
(1, 3/2) − (1, 5/2) 0.31267 0.31328 0.00061

9Be2+ (2, 1/2) − (2, 3/2) 0.157960 0.157964 0.000004
(2, 3/2) − (2, 5/2) 0.265658 0.265660 0.000002
(2, 5/2) − (2, 7/2) 0.376899 0.376891 −0.000008
(1, 1/2) − (1, 3/2) 0.174864 0.175186 0.000322
(1, 3/2) − (1, 5/2) 0.264669 0.265185 0.000516

of 2 3S1 and 2 3PJ hfs for 7Be2+ and 9Be2+ are shown in
Tables VI and VII (see more discussion below), respectively.

IV. DISCUSSIONS

The Zemach radius Rem has a linear effect on hfs of 2 3S1

state

ν = ν0 + CRem, (5)

where ν is the hfs between two hyperfine levels, ν0 is the hfs
without the contribution from the Zemach term, and C is the
coefficient independent of Rem. Then we have

∣∣∣∣
δν

ν

∣∣∣∣ = ζ

∣∣∣∣
δRem

Rem

∣∣∣∣, (6)

where ζ is the sensitivity coefficient defined by

ζ =
∣∣∣∣
CRem

ν

∣∣∣∣, (7)

and can be approximated by 2ZRem/a0 with a0 being the
Bohr radius [5]. To our knowledge, there is no experimen-
tal determination for the 7Be Zemach radius. Here we use
Rem = 3.45(11) fm for 7Be and Rem = 4.07(5) fm for 9Be as
mentioned above. Using Eq. (2), the final calculated results
of hfs and the contribution of the Zemach radius for the 2 3S1

state are listed in Table VI. For 9Be2+, our results are not only
consistent with the experimental values of Scholl et al. [28],
but are at least two orders of magnitude more precise. It is

TABLE VI. Theoretical hyperfine intervals in the 2 3S1 state of 7Be2+ and 9Be2+ with the Zemach radius Rem = 3.45(11) fm and Rem =
4.07(5) fm, respectively.

ν0 105C ν (This work) Scholl et al. [28] ζ |δRem/Rem|
(J, F ) − (J ′, F ′) cm−1 cm−1/fm cm−1 cm−1 ppm %

7Be2+ (1, 1/2) − (1, 3/2) 0.40973(1) −6.189 0.40952(1) at 24 ppm 521(17) 5
(1, 3/2) − (1, 5/2) 0.68286(1) −10.315 0.68250(1) at 15 ppm 521(17) 3

9Be2+ (1, 1/2) − (1, 3/2) 0.344786(8) −5.208 0.344574(9) at 26 ppm 0.3448(10) 615(8) 4
(1, 3/2) − (1, 5/2) 0.574628(5) −8.680 0.574275(6) at 10 ppm 0.5740(11) 615(8) 2
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TABLE VII. Theoretical hyperfine intervals in the 2 3PJ state of 7Be2+ and 9Be2+ with the nuclear quadrupole moments Qd = −6.11 fm2

and Qd = 5.350(14) fm2, respectively.

ν(0) 105X ν(Qd ) (This work) Johnson et al. [29] Scholl et al. [28] η |δQd/Qd |
(J, F ) − (J ′, F ′) cm−1 cm−1/fm2 cm−1 cm−1 cm−1 ppm %

7Be2+ (2, 1/2) − (2, 3/2) 0.18751(1) 4.1501 0.18726(1) at 53 ppm 1400 4
(2, 3/2) − (2, 5/2) 0.31591(1) 2.7393 0.31574(1) at 32 ppm 600 5
(2, 5/2) − (2, 7/2) 0.44928(1) −4.0189 0.44953(1) at 22 ppm 600 4
(1, 1/2) − (1, 3/2) 0.21097(1) −5.3409 0.21130(1) at 47 ppm 1500 3
(1, 3/2) − (1, 5/2) 0.31365(1) 3.1606 0.31346(1) at 32 ppm 600 5

9Be2+ (2, 1/2) − (2, 3/2) 0.158149(7) 4.1472 0.158371(7) at 44 ppm 0.1581 0.1585(10) 1400 3
(2, 3/2) − (2, 5/2) 0.265975(4) 2.7698 0.266123(4) at 15 ppm 0.2659 0.2659(11) 600 3
(2, 5/2) − (2, 7/2) 0.377344(4) −4.0349 0.377128(4) at 11 ppm 0.3773 0.3768(14) 600 2
(1, 1/2) − (1, 3/2) 0.175411(4) −5.3343 0.175126(4) at 23 ppm 0.1754 0.1751(10) 1600 1
(1, 3/2) − (1, 5/2) 0.265495(3) 3.1266 0.265662(3) at 11 ppm 0.2654 0.2654(10) 600 2

noted that the uncertainties in our theoretical values of about
10–26 ppm are mainly caused by the nuclear magnetic dipole
moments. The last column in the table is the predicted accu-
racy of Rem estimated according to Eq. (6) using the listed
sensitivity coefficients ζ . In other words, once the accuracy
of future experiments reaches the level of around 25 ppm or
better, we can extract an atomic physics value of the Zemach
radius of 7Be or 9Be with an uncertainty of about 5% or better.

Next, we study the influence of the quadrupole moment Qd

on the hfs of 2 3PJ state by Taylor expanding the transition
frequency ν(Qd ) between two hyperfine levels at Qd = 0:

ν(Qd ) = ν(0) + XQd + O
(
Q2

d

)
, (8)

where ν(0) is the hfs obtained by diagonalization of Eq. (2)
without Qd , i.e., without the Heqm term and X is the linear
expansion coefficient independent of Qd that can be evaluated
through the first-order derivative of ν(Qd ) at Qd = 0. In the
above expansion, the quadratic term and beyond in Qd are too
small to be significant. Then we haves

∣∣∣∣
δν(Qd )

ν(Qd )

∣∣∣∣ = η

∣∣∣∣
δQd

Qd

∣∣∣∣, (9)

where η is the sensitivity coefficient defined by

η =
∣∣∣∣

XQd

ν(Qd )

∣∣∣∣ . (10)

Using the value Qd = −6.11 fm2 from Ref. [26] for 7Be
and Qd = 5.350(14) fm2 from Ref. [25] for 9Be, our cal-
culated results for ν(0), X , ν(Qd ), and η are listed in
Table VII. The uncertainties of our theoretical calcula-
tions are in the range of about 10–50 ppm. For 7Be2+,
the uncertainties in our theoretical hfs are mainly from
the nuclear magnetic dipole moment, the Zemach ra-
dius, and the mα7 QED effect. For 9Be2+, the main
sources of errors are from the mα7 QED effect and the
Zemach radius; the error from the nuclear magnetic dipole
moment becomes less significant due to the fact that it is
more precise than 7Be2+ by a factor of 5. Furthermore, the
uncertainties from the fine structure are canceled for the same-
J transitions. For 9Be2+, Table VII also shows the measured
results obtained by the weighted average of all the values in
Ref. [28], as well as the only available theoretical calculations

of Johnson et al. [29]. Our results are in good agreement
with these previous results and are at least two orders of
magnitude more precise. From the sensitivity coefficient η in
Table VII we can see that the most sensitive transitions to Qd

are (1, 1/2) − (1, 3/2) and (2, 1/2) − (2, 3/2) for both 7Be2+

and 9Be2+. The last column in the table is the predicted ac-
curacy of Qd estimated according to Eq. (9), which we could
extract once future measurements reach the current theoretical
accuracy.

V. SUMMARY

In summary, we studied the hyperfine structure of the 2 3S1

and 2 3PJ states of 7,9Be2+ ions, including the relativistic and
QED corrections up to order mα6. The 2 1P1 −2 3P1 singlet-
triplet mixing effect was treated by exact diagonalization for
n = 2 and by perturbation theory for the remainder. Compared
to Li+, the 2 1P1 −2 3P1 mixing effect is about three orders
of magnitude larger, indicating that this procedure becomes
essential with increasing Z . The uncertainties of the present
calculations are on the order of tens of ppm, mainly from
the higher-order QED correction of mα7 and nuclear struc-
ture contributions. Our results for the hyperfine splittings in
the 2 3S1 and 2 3PJ states of 9Be2+ have improved the pre-
vious measurements and calculations by at least two orders
of magnitude. The sensitivity coefficients of the hyperfine
splittings of 7,9Be2+ to the nuclear Zemach radius and elec-
tric quadrupole moment have also been estimated. To extract
the Zemach radius accurate to 5% or better, the necessary
experimental precision should be around 25 ppm or better.
For the nuclear quadrupole moment, a determination of 5%
or better is possible once the experimental precision reaches
50 ppm or better. An atomic physics determination of these
nuclear properties will have important implications for test-
ing low-energy nuclear models, especially for the relatively
poorly understood unstable 7Be isotope. Finally, the present
calculations can readily be extended to the one-neutron halo
11Be isotope that has nuclear spin 1/2.
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